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Band-edge deformation potentials in a tight-binding framework
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%e calculate, within the tight-binding approximation, hydrostatic and uniaxial deformation po-
tentials for seven III-V compounds (GaAs, InAs, GaSb, AlSb, InSb, InP, and GaP). These de-
formation potentials are expressed in terms of (i) the usual tight-binding parameters describing
the unstrained bulk, (ii) an analytical law for the dependence of these parameters upon distance,
and (iii) (for the uniaxial [111]deformation potential only) the internal displacements. We show

that it is possible to derive a "universal variation law" that provides deformation potentials in

reasonable agreement with available experimental data.

The interest in semiconductor strained-layer structures
[such as (In, Ga)As-GaAs] is connected with their poten-
tial for high-speed and optoelectronic device applications.
A tight-binding description of unstrained heterostructures
has recently provided theoretical values for band offsets
that agree fairly well with experimental data (0.527 eV
for GaAs/AlAs, 0.379 eV for CdTe/HgTe, and 0.452 eV
for GaSb/AISb). ~ The main reason for this agreement is
that realistic electronic bulk band structures and dielectric
constants are used in this calculation. To apply this tech-
nique to strained structures it would be very useful to ac-
curately describe the effect of strain within the tight-
binding approximation. In this paper we report a very
simple method that takes into account the effect of strain
on the tight-binding parameters.

To obtain a good description of both valence and con-
duction bands of an unstrained bulk semiconductor, one
can use Vogl's parametrization, which makes use of an
sp s basis set. We shall consider here only the effect of
elastic strain which, in heterostructures, corresponds to
layer thickness I.smaller than some strain-dependent crit-
ical thickness. s The strain modifies the band structure. 7

Let us focus our interest on the effect of the strain on the
states near the band gap. Without strain or spin-orbit
coupling the valence-band edge at k 0 in a zinc-blende-
type material is a sixfold degenerate multiplet. The spin-
orbit interaction lifts this degeneracy into a fourfold py2
multiplet {J 2, mJ +' 2, +'

2 ) and a p~g multiplet
(J —,', mJ +' —,

' ) as shown in Fig. 1. The application
of a uniaxial stress splits the py2 multiplet and also, be-
cause of the hydrostatic pressure component of the strain,
shifts the "center of gravity" of the py2 multiplet and the

p~p band relative to the conduction band as illustrated
schematically in Fig. 1. The modifications of the band
edges are related to deformation potent. alS.. If we call E,
the bottom of the conduction band, and E,~, E„2, and E„3
the tops of the three upper valence bands, we obtain the
following.

(1) For hydrostatic strain,

where bEs is the variation of the band-gap width due to a
stress variation bP and 8 is the bulk modulus of the com-
pound.

(2) For a uniaxial strain in the [100) direction,
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where ho is the spin-orbit splitting at the top of the
valence band for the unstrained bulk, hEH is the shift of

J=3/2 m =+3/2, +1/2

FIG. 1. The left-hand side shows the valence bands (J
rnj ~ —', , +' &, and J 2, mj ~ —, in spherical notation)
and lowest conduction band in an unstressed zinc-blende com-
pound near k 0. The right-hand side shows the effect of
compressive stress on the bands.
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the gap due to the hydrostatic component of the strain.
The linear splitting of the pyq multiplet, bE ~no, is related
to the uniaxial deformation potential b as follows:

bEioo 2b(e„„—e„),
where e„, and e„are the strain components.

(3) For a uniaxial strain in the fill] direction, the
changes in energy difference between the conduction and
valence bands are also given by Eq. (2), where bE too is re-
placed by bE t 1 1 equal to 2J3de„„.

Equations (l)-(3) give a de6nition of the a, b, and d
deformation potentials in terms of the band-edge modi-
fications. In the present work these band-edge modifi-
cations are calculated and we deduce theoretical values of
a, b, and d from a tight-binding calculation applied to the
band structure of strained materials. The effect of strain
on a perfect crystal is double.

(i) A modiftcation of atomic arrangement. In the case
of an elastic strain, we can assumes 9 that the actual posi-
tions of the atoms will be close to those found from macro-
scopic arguments. 'o This assumption is used for hydro-
static or [100] uniaxial strain. On the other hand, in the
case of [111] uniaxial strain, we also have to consider
internal displacements. " In the absence of internal dis-
placement, one of the four nearest neighbors of an atom
will be much nearer —or further —from the central atom
than the other neighbors. Generally, the internal dis-
placement shifts one sublattice of the compound in such a
way that the central atom is closer to the center of its four
neighbors (for details see Ref. 11).

(ii) From a tight binding -point of Uiew, this atomic
rearrangement induces a modi6cation of the off-diagonal
interactions. These interactions depend on the distance R
between two atoms. The most commonly used depen-
dence is given by Harrison's law' in R 2 which has been
used by different authorst3's in an sp3s parametriza-
tion. This law provides a good general trend, but it has
been shown in Ref. 15 that a more-refined fit can be use-
fuL In linear-mufin-tin-orbital tight binding, the band-
structure parameters decrease faster than R 2. 's More-
over, bulk tight-binding second-neighbor parametrizations
show that the next-nearest-neighbor interactions are
smaller than those deduced from nearest neighbors with a
R 2 variation. ' Thus, as band-structure parameters re-
sult from a fit, we decide here to express the tight-binding
matrix elements H, tt (where H is the Hamiltonian, and a

and P are atomic orbitals) as

H.,-H.',"(RgR)".&,

where the n, tt are adjustable parameters chosen to obtain,
for all the III-V compounds studied, a good variation of
the band gap with hydrostatic pressure only (in fact, only
n„, nr~, and n~~, in the Slater and Koster notation, 's

have an incidence on a deformation potential, thus the
other n, tt have been taken to equal 2.0, according to
Harrison's law). We use orbit-dependent parameters be-
cause, as s states are more localized near the atom than p
states, n„will probably be larger than ntt, T.o perform
this fit we have used experimental data given in Ref. 19,
and we obtain n„3.76, nrem

1 98,.and ntt, 2 16 .Th.e
calculated deformation potentials are given in Table I. In
this calculation, the spin-orbit coupling has been taken
into account. So we have used a set of band parameters
that provides good band edges (as in Ref. 3), and also
good spin-orbit splittings at the top of valence band. 2o

These parameters are given in Table II. In fact, inclusion
of spin-orbit couplings does not strongly modify the values
of the deformation potentials. In the absence of experi-
mental values for the internal strain parameters, we have
used an internal displacement parameter g equal to unity
for all the compounds. This value is close to the results
given elsewhere. 2' A smaller value of g would shghtly de-
crease the d deformation potential. The agreement with
experimental data is quite reasonable. A better agree-
ment with experimental deformation potentials would be
possible with an independent fit for each material. Some
authors'4 have also used a variation of the atomic levels
with nearest-neighbor positions. This dependence corre-
sponds to a crystal-field effect due to a lowering of the
symmetry. zz We have realized an independent fit for
GaAs, and have obtained exponents n, tt corresponding to
those obtained in Ref. 15. However, our purpose here is
to provide a variation law valid for all III-V compounds.
We can compare the results obtained with this new
"universal law" with GaAs and InP conduction-band de-
formation potentials a, recently measured. Experiment
gives a, —9.3 and —7.0 eV, respectively, for GaAs and
InP. These values agree very well with our results of
a, —9.6 and —7.6 eV. For comparison, a recent a
priori calculation by Cardona and Christensen provides
a, -8.8 eV for GaAs, and a, —5.9 eV for InP.

We can note that in the model just described, there is

TABLE l. Experimental (upper line) and theoretical (lower line) deformation potentials. The exper-
imental values are taken from Ref. 19. The calculated values correspond to n„—3.76, n~~ —1.98,
n~~

—2.16, and to an internal strain parameter f 1.

Gap

—9.2
—8.34
—20
—2.79

—4.77

—6.0
—6.86
—1.8
—2.33
—3.6
—3.83

—83
—8.22
—2.0
—2.30
—4.7
—3.98

-5.9
—7.53
—1.35
—2.10
-4.3
—3.61

—7.7
—7.04
—2.0
—2.00

-4.8, —5.0
—3.35

—6.35, —6.60
—6.45

—2.0, —1.55
—2.11

—5.0, —4.2
—3.54

—9.3, —9.9
—9.73

-1.8, —1.5
—2.79
—4.5
—4.75
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TABLE II. Empirical matrix elements of the sp s Hamiltonian in eV. The notations are those used
in Ref. 3. The 6rst value is obtained neglecting spin-orbit coupling. The second value corresponds to
spin-orbit splitting given in Ref. 20.

E(s,a)
E(p,a)
E(s',a)
E(s,c)
E(p,c)
E(s',c)
V(s,s)
V(x,x)
V(x,y)
V(sa, pc)
V(sc,pa)
V(s a,pc)
V(s'c,pa)

—8.3431
1.0414
7.5412

—2.6569
3.6685
6.7397

-6.4513
1.9546
5.0779
4.4800
5.7839
4.4378
4.80&3
0.0
0.0

—8.3431
0.9252
7.4249

—2.6569
3.5523
6.6235

—6.4513
1.9S46
5.0178
4.4607
5.7413
4.3083
4.6473
0.1338
0.0553

—9.5381
0.9099
7.4099

-2.7219
3.7201
6.7401

-5.6052
1.8398
4.4693
3,0354
5.4389
3.3744
3.9097
0.0
0.0

—9.5381
0.7733
7.2730

-2.7219
3.5834
6.6095

-5.6052
1.8398
4.3977
3.0205
5.3894
3.2191
3.7234
0.1385
0, 1290

—7.3207
0.8554
6.6354

-3.8993
2.9146
5.9&46

-6.1567
1.5789
4.1285
4.9601
4.6675
4.9895
4.2180
0.0
0.0

—7.3207
0.5982
6.3715

—3.8993
2.6575
5.7287

—6.1567
1.5790
3.9959
4.9078
4.5880
4.6951
3.8791
0.3202
0.0573

—6.1714
0.9807
6.7607

—2.0716
3.0163
6.1543

-5.6448
1.7199
3.6648
4.9121
4.2137
4.3662
3.0739
0.0
0.0

E(s,a)
E(p,a)
E(s',a)
E(s,c)
E(p,c)
E(s',c)
V(s,s)
V(x,x)
v(x,y)
V(sa, pc)
V(sc,pa)
V(s a,pc)
V(s c,pa)
1st

~C

—8.0157
0.6738
6.4471

-3.4643
2.9162
5.9423

-5.5193
1.4018
3.8761
3.7881
4.5900
3.5641
3.4073
0.0
0.0

-8.0157
0.4033
6.1766

-3.4643
2.6456
5.6717

-5.5193
1.4018
3.7351
3.7455
4.S017
3.2591
3.0371
0.3064
0.1234

-8.5274
0.8735
8.2579

—1.4826
4.0465
7.0726

-5.3615
1.8801
4.2324
2.2266
5.5825
3.4607
4.4848
0.0
0.0

InP

-8.5274
0.8285
8.2129

—1.4826
4.0015
7.0726

—5.3615
1.8801
4.2084
2.2227
5.5642
3.4081
4.4187
0.0244
0.1426

-8.1124
1.1250
8.5150

—2.1976
4.1140
7.1850

—7.4909
2.1516
5.1369
4.2771
6.3190
4.6541
5.0950
0.0
0.0

GaP

-8.1124
1.0952
8.4796

—2.1976
4.0851
7.1563

—7.4909
2.1516
5.1213
4.2724
6.3075
4.6184
5.0534
0.0222
0.0578

no ftt of the b and d deformation potentials. These defor-
mation potentials, corresponding to shear deformations,
are not dependent on n,e Agood .description of b and d
then directly follows from the tight-binding description of
unstrained compounds. It is possible to get better values
of these deformation potentials by introducing some
dependence of diagonal interactions H„with distance, '4

taking into account the crystal-field effect. Then some
"crystal-field parameters" have to be introduced which
now allow a fit of b and d. However, b and d are not
known experimentally with an excellent accuracy, so that
the improvement of their values is of the order of the ex-
perimental precision and does not justify the increase in

complexity of the theoretical description.

In conclusion, we have pointed out that strain effects on
semiconductor band structures can be well described in a
tight-binding framework. The deformation potentials are
obtained by introduction of simple strain-dependent
modifications of tight-binding parameters. We have de-
rived a variation law for these modifications that can be
used for several compounds. This can be useful for the
study of strained systems (we have just obtained in this
way very encouraging results for strained quantum wells,
which will be the purpose of a forthcoming paper).
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