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Interface response theory of phonons in N-layer snperlattices
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Bulk phonons were obtained previously for a two-layer superlattice, using slab response func-
tions. %'e shoe that they can be obtained more directly using bulk response functions and the inter-
face response theory. This near approach enables us to give for the Srst time a general theory of
phonons in N-layer superlattices. As an illustration of the theory, ~e give a closed-form expression
for phonons in three-layer superlattices.

I. IM.aODUCTION

Phonons in two-layer superlattices are of interest
theoretically' and also have been studied experimentally
by Raman and Brillouin spectroscopies for several years.
N-layer superlattices are formed out of a periodic repeti-
tion of a unit cell containing N (N p2) diferent slabs.
There has been progress recently in producing such ma-
terials2 and we hope that the present theoretical paper
will stimulate experimental investigations of phonons in
N-layer superlattices. In the next section, we first present
a simple three-dimensional phonon model and then give
the surface response operators necessary for a theoretical
investigation of N-layer superlattice phonons. We show
in Sec. III how the interface response theory enables us
to calculate the response function and the superlattice
phonons. A closed-form expression for the phonons in a
three-layer superlattice is presented here for the first
time. Finally, we discuss some extensions of the present
results.

II. SUI-& PHONON MODEI
AND THE SURFACE REPQNSE OPERATORS

This model is not rotationally invariant. Nevertheless,
this deficiency is unimportant for the qualitative investi-
gation of many physical properties and in particular for
our study of the transverse and longitudinal polarized
phonons. s

Using this form of the potential energy and assuming a
sinusoidal time dependence for the displacements, we ob-
tain three uncoupled equations of motion, which we can
write in the form

g Hc;(ll', to )u(l') =0,

where

The corresponding threefold-degenerate bulk phonon
dispersion relation is

co =2 [3—cos(kiao) —cos(k2ao) —cos(k3ao)],
M;

where k=(k, , k2, k3) is the propagation vector.

A. Semk yhomon model

We start from an infinite simple-cubic lattice of atoms
of mass M;. I.et u (I) denote the ct (=1, 2, or 3) com-
ponent of the displacement of the atom at lattice site

x(I) ao(i}xi+I2xg+I3x3)

where ao is the lattice parameter and x„xz, and x3 are
unit vectors. The potential energy 4; associated with the
lattice vibrations of the model ' considered here has the
form

$. Bulk resyoase functmon

The bulk vibrational properties of the above crystal
can be studied with the help of its bulk response function
Go; defined by

Ho; Go; ——I, (6)

where I stands for the unit matrix.
Taking advantage of the periodicity of the system in

directions parallel to the (001) planes, we introduce the
following two-dimensional vectors,

@;=T'P;ggg[u (&)—u (&+p)]',

where I ranges over all sites of the crystal, and p over the
six nearest sites of the atom /.

xi((l) =ac(1ixi+l2xq),

kl(l) =k, x, +k2x2,

and s Fourier transformation of the response function

(7a)
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Go,.(II',co2)= g Go;(II', klai )
l

Xexp(i l.[x~~(I)—x)~(I ))I, Mg
g,.=3—cos(kiao}—cos(k2ao) — (m +is),

2P;

where N is the number of atoms in a (001) plane.
The corresponding bulk response function is

Go;(lql'i', klco )=
I

with

(10)

where s is an infinitesimal positive number.

C. The surface response operators for one slab

Let us now create a slab by removing in the infinite
crystal all interactions between the atoms situated in the
I& ——0 and I& ——1 planes, and also between those situated
in the li =L; and~/ =L;+1 planes. The corresponding
cleavage operator Vo;, which when added to the Ho; gives
the dynamical matrix ho; of the slab and of the two semi-
infinite crystals, is

~oi(1313) (5i&05i'0+51315i' i 5l&0 i' i 5l&l5i'0)+ (5I L.5i ~ I, +5I,L +15l',L ~. 1 5i L 5ii I, i . 5i I, . +l5i~L ) ~

The surface response operator A„associated to this
slab is formed out of the elements of

Ao =Go Vo

belonging strictly to the slab, namely

will prove convenient for labeling a given slab i (or i') in
the unit cell n (or n'}

The interface atomic interactions are globally rep-
resented by the coupling operator Vz ..

Vl(ml;m'I' ~ )=5~m'(5i .i 5i i ~m, m+i

1&1&,I& &I.; . (14)

The above expressions (9)-(14) in another form were used
before7 for the study of sandwich phonons. They enable
us to treat in the next section the N-layer superlattice
pholions.

Pm m+1 ~

ritual

f
frt

BL THE RESPONSE FUN&:nON
AND THE N-LAVKR SUPERLAx-xxcE PHONONS

A. Delnition of the N-layer superlattice

Consider N diS'erent homogeneous slabs, each bounded
by ideally truncated free surfaces. Let these N ideally
cleaved slabs (i=1,2, . . . , N) be coupled together by
nearest-neighbor interactions P,,', between adjacent sur-
face atoms; P,2 couples surface atoms of the L, atomic
plane of the slab i =1 to those of the I& ——1 atomic plane
of the slab i =2 and so an. The unit cell formed by these
N slabs mill be labeled by an integer n.

In the same manner, one can couple periodically an
infinite number (—ao &N & + ce) of the above N layered
slabs in order to obtain a new bulk material, the N layer-
superlattice,

In what foBows, the following more condensed nota-
tion

m =nN+i =—(n, i),
m': n'N+i': (n', i') . — —

B. Reference response function 6
of the N-layer superlattice

Define~ for the N-layered superlattice a reference
response function 6 as a block-diagonal matrix formed
out of only the elements of the bulk response functions

Go, contained within the space of the definition of each
slab, namely, with the notation given above:

G(mli„m'Iq)=5~ G~(li1'i), 1&Ii,ii (L~
where 5 ~ is the usual Kronecker symbol.

C. Response Aaection g of the N4ayer superiattice

The respond function g or the X-layer superlattice can
be calculated directly from the reference response func-
tion G defined above, through the universal relation

(I+A ')g=G, (17)

3
where the interface response operator A ' is defined by

A'=A,'+GVI .
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A,
'

is the block-diagonal surface response operator
formed out of the A,'(ml&', m'li) given by Eq. (14),

3,'(ml3', m'l& }=5 3,' (lzl & ), (19)

and Vl is the coupling operator defined above.
The general solution of Eq. (17) for any model of an W-

layer superlattice was given before. For the present
model, the elements g (mli;m'li) are scalars and can be
calculated in closed form with the help of the following
(2 &(2) matrices:

H(m) =

—1,m p, t

t+1 P
I.

tm

—1
2

(25)

3'(rn 1;mL } 2'(ml;m +1,1}

1+A'(mL;ttiL ) A'(mL;m +1,1)

(20)

Note also that

detK(m }=—
L

Pm m+1 tm

P t' —1

R(N) =P(N)P(N —1) . P(1) .

The explicit expressions for K(m) and H(m) are

L
Pm m+i tm

+1 P t' —1

I.
P +1 t

P t' —1

3'(tti 1;m —1,L, ) 1+3'(m 1;m 1}
2'(mL;m —1,L 1) A'(tnL;tti 1)

(21)

p(m) = —K '(m)H(m),

When calculating P(m), it is helpful to define

t =e

and

sinh[(L —1)q ]
A

P sinh(q )

cosh[(L ——,
'

)q ]8
cosh(q /2)

(29)

1 Pmm+1 m

t +1 P t' —1

Pm, m+ i tm

P t' —1

(24)

C =2p tanh(q /2)sinh(q L ) . (30)

Then P(m) is for the present phonon model given by

—
m im~ P 1 A +8

T (31)

m, m+1 m, m+1 &m, m+1

Use can be made of these results (24)—(31) for the calcula-
tion of the elements of the response function g for a two-
layer superlattice .

D. The N-layered suyerlattice yhoaons

The expression giving the N-layer superlattice phonons
appears in the denominator of g (nile;n'i'l3) It was a. lso
shown that one can obtain N-layered superlattice modes
directly from the trace of the (2 X 2) matrix R(N), namely

cos(k3a„)=TrR(N), (32)

where

N

a„=ao Q L; (33)

is the width of the unit cell of the superlattice and ki the
component of propagation vector k perpendicular to the
interfaces.

So for any value of the integer N & 1, the result given
by Eq. (32), together with the Eqs. (23) and (27)-(31), en-
ables us to find a closed form for the expression for N-
layered superlattice phonons. In what follows, we give
the results for N =2 and N =3.

The expression for a two-layer superlattice phonon is

2cos(k3a„)=28,8&+ +e;J —A;CJ+ C;&J.
12 2 12

(34)

where the Einstein summation rule for tensors is used
and the Levi-Civita symbol is

ifi j=l or2, i~j
0 otherwise.

This result was given before' in a less condensed form.
The new result for three-layer superlattice phonons is



BRIEF REPORTS 37

C~C2C3
2cos(k3a„)=2BIBIBI+ + i e;k i B;AjC&+—,'B,B,C„ A;C Ck

1

jk

(36)

bearing in mind again the Einstein summation ruie for tensors and the Levi-Civita syrnboI,

1 if i,j,k is an even permutation of i,j,k =1,2, 3

ejk —— —1 if ij,k is an odd permuation of i,j,k =1,2, 3

0 otherwise.
(37)

This closed-form result (36) gives implicitly the disper-
sion relations for three-layer superlattice phonons (fre-
quency versus wave vector). In Eq. (36), the wave-vector
component k3 normal to the layers is clearly visible; the
wave-vector components kl, k2 parallel to the layers and
the frequency al appear in the quantities defined by Eqs.
(10), (11), and (27)-(30). If there are many atomic layers
in each superlattice slab, there will be a large number of
solutions co inside the reduced Brillouin zone. Equation
(36}can be solved easily numerically in the same manner
as for a two-layer superlattice. ' The results of an explicit
calculation of three-layer superlattice phonons will be
given in a forthcoming paper. 9 An extension to a four-
layer semiconductor superlattice, and a comparison with
forthcoming experimental results, are also in progress.

IV. DISCUSSION

A general theory of phonons in N-layered superlattices
was presented for the first time in this paper, in the frame
of a simple phonon model. Although the lattice model is
somewhat simple, it is sufilcient to illustrate the salient
features.

The present formalism can be made to deal fairly
straightforwardly with more sophisticated models, in or-

der to deal with acoustic as well as optic modes in ionic
N-layered superlattices. In such more-realistic models,
there will also be, in general, a coupling between trans-
versely and longitudinally polarized modes.

A complete discussion of all possible extensions and
improvements of the present paper would be very
lengthy, especially when one recalls that the interface
response theory applies to any composite system, without
any limitations in the shape of the interfaces and the
number of components. If the present paper stimulates
more realistic and interesting future theoretical and ex-
perimental studies of composite systems, that will be a
source of considerably satisfaction to its authors.
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