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Raman scattering from plasma excitations in a conducting double layer
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%e have investigated the Raman-scattering amplitude from processes in which the radiation field

excites longitudinal coBective modes in a system comprised of two parallel quasi-two-dimensional
conducting electronic layers embedded in a dielectric medium. within the random-phase approxi-
mation we have derived explicit formulas for the density response and the Raman intensity as a
function of the exchanged frequency. The Raman spectrum consists of two resonance peaks corre-
sponding to the optical- and acoustic-plasmon branches which are peculiar to this system. Both the
position and the width of the resonances have been studied and are shown to depend on the elec-
tronic elastic lifetime.

The Raman scattering amplitude from plasma modes
in a layered electron gas has recently received a great
deal of attention both theoretically' and experimental-
ly. 3' The coupling of the collective excitations of these
systems to external probes has been lately reviewed in
Refs. 5 and 6. In this note we present the results of a
study of the Raman scattering intensity from plasma ex-
citations in a system comprised of two identical spatially
separated conducting layers in which the electronic dy-
namics is for all practical purposes two-dimensional (2D).
The layers are parallel and are embedded in a medium of
average dielectric constant eo. This problem is of current
experimental interest because the system at hand is a
model for double-quantum-well heterojunctions and sin-

gle inversion layers with more than one populated sub-
band. Recently the possibility of an electronic mecha-
nism for superconductivity in a double well in which the
efFective interaction is mediated by plasma excitations has
also been investigated.

In the Raman scattering process at hand an incident
photon of frequency co;, wave vector k; (in the plane of
the layers), and polarization vector e; outside the materi-
al, is scattered by the collective excitations of the elec-
tronic system in the two layers. Outside the material the
final photon has a frequency co&, in-plane wave vector k&,

I

and polarization vector e&. At zero temperature the
cross section for this process is found to be proportional
to1,5

cc I(q, co)
~
e; eI ~

I (q, co) = —f dzdz'Im [Il(q, co;z,z')]

X&
—2ik (z —z') —(s+z')/08 (2)

with q=k, . —k& and co=co; —co& (co positive). In Eq.(2) we
have assumed that the two layers are located respectively
at z=0 and z=d, and II(q, co;z,z') is the in-plane
Fourier transform of II(x,z, t;x', z', t'), the density
res]xonse function of the system. The two wave vectors
5 '=(2co;/c)lm(eo)'~, and k =(co;/c)Re(eo)'~, charac-
terize the propagation of the light waves inside the polar-
izable medium.

The response function Il(q, co;z,z') can be evaluated as
follows. Il(q, co;z,z') obeys the following Dyson's eclua-
tion

II(q, co;z,z')=rlo(q, co;z,z')+ f dzi f dz2 110(q,co;z,zi ) V(q;zi, zz)II(q, co;zi,z'),

where, within the random-phase approximation (RPA),
IIO(q, co;z,z') is the value of II in the absence of Coulomb
interactions. The in-plane Fourier transform of the
Coulomb interaction between two electrons is given by
V(q;z, z')=u(q)e e~' '

~ where u(q)=2tre /eoq and
for simplicity me have assumed the layers to be strictly
two-dimensional. From the fact that the electronic densi-
ties are localized at z =0 and z =d one can readily infer
that II(q, co;z,z') and II~(q, co;z,z') have the following
structure

II(q, co;z,z')

m, m'=0, 1

5(z —md )5(z' —m 'd )II(q, co; m, m '),

II&(q, co;z,z') = g 5(z —md)5(z' —m'd)ilo(q, co) .
m, m'=0, 1

(4b)
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In the last equation II&(q, co) is the density response func-
tion of a noninteracting 2D electronic system. Using Eqs.
(4a) and (4b) in Eq. (3) we find a system of algebraic equa-
tions for the functions Il(q, co;m, m') whose explicit solu-
tion leads to

I.O

II(q, co;1,0)=II(q, co;0, 1)

II&(q, co)
=e +u (q)

D q, co

II(q, co;0,0)

= II(q, co; 1, 1)

II&(q, co)
[1—u (q)IIo(q, co)],D q, co

(5a)
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where

D (q, ~}= [1—u (q)rl, (q, co)]'—e -2e"[u(q) 11o(q,co)]' .

These expressions for Il{q,co;m, m') substituted into Eq.
(4a) lead to the required function Il(q, co;z,z'). We note in
passing that D(q, co) is the determinant of the dielectric
tensor e,, (q, co) for the double layer system. 'o

The nonrelativistic spectrum of the longitudinal collec-
tive excitations is given in the present case by the poles of
the response function II(q, co;z,z'} [i.e. the zeros of
D(q, co}]. In the absence of any processes leading to a
finite electron lifetime this problem has been studied in
Refs. 7, 9 and 10. All these theories are based on the
RPA description of the electronic interactions. It is
found that the spectrum consists of two plasmon
branches, an optical plasmon (OP) and an acoustic
plasmon (AP) with dispersion relation Q0(q} and Qz (q}.
In the long wavelength limit Qo(q) =q '~ whereas
Q„(q}=q. In Ref. 10, in particular, the correct analyti-
cal expressions for the plasmon dispersion relation in the
long wavelength limit were derived. Fig. 1 shows a nu-
merical calculation of the plasmon spectrum for the case
of two identical electronic layers separated by a distance

q/k f
FIG. 1. Nonrelativistic longitudinal spectrum u vs q for an

electronic double layer in absence of impurity scattering. A
schematic of this system is provided in the inset. The two con-
tinuous lines represent the optical (OP) and the acoustic (AP)
branch of the plasmon spectrum. The shaded region is the
electron-hole pair continuum. The layers are assumed to be
identical and separated by a distance d. The parameters have
been chosen as follows: m =0.07m„n=73g10" cm ',
co=13.1, and d =100 A.. The two dashed lines are extrapola-
tions of the exact long wavelength asymptotic formulas for the
dispersion relations obtained in Ref. 10.

d =100 A . Here the eS'ective mass of the electrons is
taken to be m'=0. 07m, , the areal electron density is
n =7.3X 10" cm and eIi

——13.1. These values are typi-
cal of GaAs/AI, Gai „Asheterostructures. For compar-
ison the long wavelength limit asymptotic behavior de-
rived in Ref. 10 is shown. Notice that the long wave-
length limit results are approximately valid up to
q/kF =0.2.

%e now turn to the evaluation of the Raman intensity
I(co). Using in Eq. (2) the explicit expression for the
density response function II(q, co;z,z') [see Eqs. (4a), (5),
and (6)], we find

I(q, co)= —Im{IIo(q,co)D(q, co) 'I 1+e —u(q)Ilo(q, co)[1+e —2(cos2kd)e 2 e ~ ]J ). (7)

As is readily realized, if the electronic elastic lifetime is
infinite the plasmon Raman spectrum consists of two del-
ta functions centered at the resonance frequencies Qo(q)
and Q„(q).This is at variance with the case of semicon-
ducting superlattices where the width of the Raman
peaks seems to be mainly determined by the presence in
the spectrum of a plasmon continuum. ' In what follows
wc will then investigate the elect of elastic impurity
scattering on the plasmon Raman spectrum. Elastic im-
purity scattering leads in general to a finite width for the
electronic states. As a consequence the collective modes
are broadened and shifted to a lower frequency. "' A

Ilo(q, co)= —No 1—
[(~+ y)i2 u2q2]1/2

(8)

where No =m '/efi is the density of states in a 2D elec-
tron gas and y is the inverse electronic elastic lifetime.
It should be mentioned here that as discussed in Ref. 1-1

microscopic evaluation of IIo(q, co) in the presence of im-
purities can be explicitly carried out in the regime of in-
terest, {small q and co}, with the use of a diagrammatic ap-
proach. One obtains"
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weak localization efkcts are not important at the fre-
quencies at hand. An alternative approach which allows
to take properly into account the el'ect of the impurities
is the one based on the well-known phenomenological ex-
pression first proposed by Mermin. '

Ho(q, ru) is in this
case simply expressed in terms of Xo(q, co), the nonin-
teracting 20 electron gas Lindhard function, ' and y.
As it turns out in the long wavelength and small frequen-
cy regime Mermins expression for II&(q, r0) coincides
with Eq. (8) so that either formula can be satisfactorily
used in the context of the present calculation.

At a fixed in-plane wave vector transfer q, and given y,
the Raman intensity I(co), as a function of the photon
frequency shift co, has two peaks at frequencies Qo(q, y )

and Q~(q, y) which, for realistic values of y, are a few

percent lower than the y =0 values Qo(q) and Q z (q)."
Fig. 2 shows the Raman intensity I(ru) for a system
characterized by the parameter values used in Fig. 1.
I (co) is given here in arbitrary units. The actual absolute
value, depending on transfer functions and enhancement
factors, will vary for different experimental situations. '

For illustration we have chosen here q =0.02kF,
y =0.3 meV, kd =0.25, and 5=6000 A. For these values
of the parameters the nonrelativistic approximation is
very good. We also note that in the present case the effect
of the photon decay length 5 is negligible since 5 is much
larger then the interlayer separation d.

We find that a physical quantity of interest is the ratio
R (q} of the heights of the two Raman peaks (optical and
acoustic) as a function of the in-plane wave vector
transfer q. ' It can be shown that for values of ar close to
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FIG. 2. Raman scattering intensity as a function of the fre-
quency co for the case of finite electron elastic lifetime. The
physical parameters of the system are the same as in Fig. 1. %e
have chosen here q=0.02k+, y=0.3 meV, kd=0. 25, and
5=6000 A. The arrow at low frequency indicates the onset of
the electron-hole pair continuum in RPA.

either one of the two resonances, and for small values of
y, I(ru) can be approximated with a Lorentzian. By
evaluating the resulting expression at the two resonance
peaks and taking the ratio we obtain

Xo(q, Qo(q))BD(q, Q„(q))/r)ru I 1+e —u(q)XO(q, Qo(q))[l+e —2(cos2kd)e q"e ] jR (q)=
Xo(q, Qq(q))BD(q, Qo(q))/Bru I 1+e —u(q)XO(q, Q„(q))[l+e —2(cos2kd)e ~ e ])

where we have made use of Merrnin's formula. In this
limit we can simply use in Eq. (9) Qo „(q)instead of the
actual values Qo „(q,y}. Furthermore for consistency
the derivative BD(q, co)/ ) racuppearing in the expression
for R (q) must be evaluated using the 2D Lindhard func-
tion Xo(q, ro). Fig. 3 shows the behavior of the peak inten-
sity ratio R (q). The values of the relevant parameters are
the same as in Fig. 2. It is interesting to notice that the
acoustic branch leads to the largest peak for small wave
vectors while the optical branch is the prominent feature
in the Raman spectrum at intermediate and larger values
of q. Because the actual y is finite the value of 8 (q), as
evaluated directly from Fig. 2 for instance, divers by a
few percent from that calculated using the approximated
expression of Eq. (9) which however becomes increasingly
more accurate as q increases.
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FIG. 3. Plot of the peak intensity ratio R (q), Eq. (9), as a

function of the plasmon wave vector q. The parameters are the
same as in Fig. 2.
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