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Size efFects on the vacancy-formation energy of small sodium clusters in the jellium model
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The vacancy-formation energy AEf in small sodium clusters (Naz, N ~ 94) is calculated using the

density-functional formalism. The clusters are simulated by a jellium background model. Accord-

ing to this model, strong oscillations are predicted for d Ef in the size range studied, which makes it
difFicult to advance any conclusions about the evolution of AEf for larger values of X. The oscilla-

tions in AEI can be explained by looking at the binding energy of perfect and defect clusters and in

simple terms by looking at the shift of one-electron levels induced by the formation of the vacancy.

AEf has large values for the experiental "magic clusters On the other hand, low values of AEf
correlate with clusters which become ellipsoidally deformed in Clemenger's ellipsoidal model.

I. INTRODUCTION

There is some theoretical discussion about the size
dependence of the concentration of vacanries in highly
dispersed systems and about the efFect that an in-
creased vacancy concentration at high dispersion might
have on a number of observed properties, like the change
in the temperature of polymorphous transformations, the
decrease in the lattice constant, the increase in the
compressibility, or the increase in the solubility associat-
ed with a decrease in the particle size. ' Morokhov, Zu-
bov, and Fedorov2 have shown that, in the case of metal
particles, the vacancy-formation energy b,Ef depends on
the competition of efFects of similar magnitude but oppo-
site sign, which makes it very diScult to predict if AEI
difFers with respect to the value for a bulk crystal.

Detailed microscopic calculations of b,Ef as a function
of size could then be of some potential interest if the size
variation of the properties mentioned above (or others) is
related to a possible enhanced concentration of vacancies.
As a Srst attempt in this direction, we study the size vari-
ation of b,Ef for vacancies formed in small sodium clus-
ters, simulated by a jelliumlike model. The theoretical
tool used is the density-functional formalism. This
method, combined with a spherical jellium model back-
ground, has been very successful in explaining the main
features of the mass distribution of alkaline clusters
formed in supersonic expansions, and more
specifically, the correspondence between the observed
magic numbers (occurring for a number of atoms X =2,
8, 20, 40, 58, and 92) and spherical clusters with filled
electronic shells.

Our main result here is the prediction that AEI oscil-
lates strongly as the cluster size increases (X & 100), and
that these oscillations are linked to the electronic shell
filling efFect that also governs the stability variations of
perfect simple-metal clusters. The large oscillations of
AEI with size prevent us from drawing conclusions about
a possible relation between the vacancy concentration

and the kind of properties mentioned above for ultra-
dispersed metals. One should deal with larger particles,
where quantum efFects are attenuated, to be able to draw
such conclusions. Our results for very small particles
(N & 100) are, however, interesting in themselves. In ad-
dition, it might be possible to extract from our calcula-
tions some useful implications about the interpretation of
the mass distribution of compound clusters.

II. MODEL CALCULATION

To obtain the vacancy-formation energy we have sub-
tracted the total energy of the perfect cluster from that of
the cluster with a vacancy at its center. The perfect clus-
ter is characterized by the jellium model. Each sodium
atom contributes one valence electron to an electron gas
immersed in a neutralizing positive background with con-
stant density nz+ and spherical shape. no+ is taken the
same as for bulk sodium and the cluster radius R evident-
ly depends upon the number of atoms. The electron den-
sity p(r) and the total energy of the cluster are self-
consistently calculated by solving the Kohn-Sham equa-
tions of the density-functional theory, the local-density
approximation being used for exchange and correlation
(see Refs. 9 and 10 for details).

Then, a vacancy is introduced in the cluster by remov-
ing one atom from the cluster center and placing it at the
surface. This is achieved within the jellium model by
redistributing the positive background density such that

0, r&R,
n+(r)= no+, R„&r &R

where R„=3.931 a.u. is the radius of the "unrelaxed" va-
cancy (it corresponds to the Wigner-Seitz radius of bulk
sodium). The constant no+ has, evidently, the same value
as for the perfect cluster. However, the cluster radius R
is difFerent from that of the perfect cluster and is 6xed by
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the normalization condition of the positive background
change.

In a previous paper on aluminum clusters using, how-
ever, a pseudopotential model, it was found that the re-
laxation of the neighbors around the vacancy is very
small. " %'e have also studied the same question in the
jellium model by smoothing out the sharp discontinuity
of n+(r) at r =R„. We have then considered a linear
dependence of n +

( r) on the radial distance, around
r =E.„allowing for the variation of the slope. The con-
dition of charge normalization fixes the rest of the inter-
vening parameters. Minimization of the total energy of
the system, obtained as well by the self-consistent
density-functional formalism, with respect to the slope,
then gives the optimum relaxation. This one occurs for
the background given in Eq. (1}. This background thus
leads to the most stable vacancy in our model. Of course,
one could imagine other models for a relaxed background
but the result obtained suggests that the relaxation
around the vacancy will be very small, in agreement with
our earlier 6nding. "

III. RESULTS

The vacancy-formation energy 5Ef(N) for a sodium
cluster with N atoms is de6ned by

bEf(N) =E(N„)—E(N),
where E(N) and E(N„) represent the total energies of
the perfect cluster and the cluster with a vacancy at its
center, respectively. The calculated vacancy-formation
energy is plotted as a function of cluster size in Fig. 1.
EEf(N) shows pronounced oscillations as a function of
cluster size. In the size range studied, b,Ef(N) presents
alternatively a maximum or a minimum for N corre-
sponding to perfect clusters with filled electronic shells.
Closing shell numbers for perfect jellium clusters are
N =2(ls), 8(ip), 18(11), 20(2s), 34(lf), 40(2p), 58(lg),

68(21), 90(1h), and 92(3s), which correspond to the suc-
cessive filling of the cluster electronic shells given in
brackets. Then we 6nd maxima in AEf for X =8, 20, 40,
(66), and 92, and minima for N = 18, 34, S8, and 90. No-
tice that the maximum at N =66, instead of 68, is the
only exception to this rule. The reason will be explained
later.

This alternate behavior is remarkable since it is
di8'erent from the behavior shown by the cohesive ener-
gy. The cohesive energy E, (N) is defined

E, (N) =E„E(N—) /N (3)

where E„=E(N=1) is the energy of the free atom, cal-
culated in the same model (that is, a jellium cluster with
only one atom}. Figure 2 shows that E,(N) presents max-
ima or shoulders for X corresponding to filled electronic
shells. This means that closed-shell clusters are compara-
tively stable with respect to clusters with adjacent sizes.
The maxima of E, occur for N =8, 20, 40, 58, and 92,
which are the experimental magic numbers of Na clus-
ters. ' Shoulders appear for %=18 and 34, which are
also magic numbers of secondary importance. ' The ab-
sence of special features at the shell-closing numbers
N =68 and 90, which will be explained below, agrees
with the corresponding absence of special features in the
experimental mass spectra. The extrapolation of
E, (N) to large N is consistent with the experimental bulk
cohesive energy (1.11 eV).

The special stability of closed-shell clusters is clear1y
displayed by the second derivative of E(N), that is, by
the function 62(N }=E (N + 1) 2E (N) +E—(N —1). It is
well known ' that this function has pronounced peaks
for the shell-closing numbers %=8, 18, 20, 34, 40, 58,
and 92, in the case of Na clusters. In contrast, Fig. 1

shows that only some of them have maximum stability
against vacancy formation, i.e., those with N =8, 20, 40,
and 92.

We also show in Fig. 2 the cohesive energy E,. (N„) of
defect clusters, that is, clusters with a vacancy, de6ned as
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FIG. 1. Vacancy-formation energy as a function of cluster

size. Each part of the curve is labeled by the external electronic
shell of perfect clusters in that size range. FIG. 2. Cohesive energy of perfect and defect clusters.
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FIG. 3. Evolution of one-electron energy level eigenvalues
~ith cluster size. Continuous and dashed lines indicate levels of
perfect and defect clusters, respectively. The circles mark the
first appearance of a given orbital in perfect and defect clusters.
This occurs at the same value of X in some cases (1d, 2p, 2d, 3s,
2f) but not in others (2s, 1f, 1g, 1h). Notice that, for any size
X, only occupied levels are shown.

In tliis equation E (N, ) indicates again the total energy of
an ¹atom cluster with a vacancy at its center. Notice
from Eqs. (2)—(4) that

HEI(N)= N f—E,(N, ) —E,(N)] .

This is a useful relation for gaining insight into the be-
havior of AEI(N).

In Fig. 2 we turn our attention to the numbers N =20,
40, and 92. E,(N) presents peaks at these numbers, but
nothing like that occurs in the corresponding E, (N, , ).
This is due to the loss of cohesion after formation of the
vacancy. The loss of cohesion at these particular sizes is
larger than for neighbor sizes and accounts for the rela-
tive maxima in Fig. 1, that is, for the resistance to vacan-
cy formation.

Although HEI(N) has been obtained from total-energy
self-consistent density-functional calculations, the
features of Fig. 1 can be understood by looking at the
evolution of the one-electron levels as the particle size in-
creases. This behavior is shown in Fig. 3. Data is given
for both perfect clusters and defect clusters.

First considering the perfect clusters, there is a big
change in the total energy of the cluster when a shell be-
comes filled and occupation of the next level begins. This
is due to the energy gap between the two levels and ac-
counts for the magic-number eff'ects. However, the 2d
and 1h levels are so close in energy in the neighborhood
of N =68 that the shell-closing efFect is not important.
This accounts for the absence of relevant features in
E,(N) at N =68 (see Fig. 2). Furthermore, the similarity
of the energy eigenvalues of the lh and 3s levels near
N =90 accounts for the absence of features in E,(N) at
N =90.

Turning now to defect clusters we observe that most
low-I orbitals (for instance ls, 2s, or 2p) rise in energy
(that is they become less bound) and high-I orbitals lower
their energies when a vacancy is formed. This is not

surprising since the vacancy can be considered as a repul-
sive potential for electrons. Of course, this c6'cct is more
pronounced for low-orbital angular momentum, so the
occupation of high-/ orbitals becomes somehow favored.

This effect has important consequences. A perfect
cluster with N =20 has a closed-shell configuration
1s lp 1d' 2s . In contrast, when a vacancy is formed,
the electronic configuration becomes ls lp ld' 1f, that
is, an inversion of the order of the 2s and 1f levels has oc-
curred. In other words, the cluster of 20 atoms with a va-
cancy is not a closed-shell cluster, which accounts for
the loss of cohesion after formation of a vacancy at
N =20. A similar argument applies to N =40. The
perfect cluster of this size has an electronic
configuration 1s lp ld' 2s lf '

2p . But by forming
a vacancy the electronic configuration becomes
ls lp ld' 2s lf' 2p lg', which is not a closed-shell
configuration. In conclusion, the occupation of the lf
and lg shells starts at smaller N for clusters with a vacan-
cy, in comparison with perfect clusters. However, the
shell-closing numbers N =34 and 58 are not affected
since there is a further crossing in the filling order so that
the 2s shell is completed before the lf and also the 2p
shell is completed before the 1g. For this reason there is
no substantial loss of cohesion when a vacancy is formed
at N =34 and 58.

A consequence of the shift of energy level eigenvalues
with vacancy formation is that, for cluster sizes such that
a low-I external orbital is partially occupied, the
vacancy-formation energy increases with N. The oppo-
site occurs during the occupation of high-I orbitals. This
accounts for the maxima in hEI at N =8, 20, 40, (66),
and 92, and the minima at N =18, 34, 58, and 90 in Fig.
1. (Notice that ld is a high-angular-momentum level rel-
ative to lp and 2s, whereas 2d is of low-angular momen-
tum relative to Ig and lb. )

It was pointed out above that the very similar energy
of the 2d and lh levels of the perfect clusters with N =68
accounts for the absence of a peak in E„at N =68.
%'hen forming a vacancy the 1h level falls below the 2d
for N ~ 72. This effect is responsible for shifting the weak
relative maximum from N =68 to N =66 in Fig. 1.

Since the formation of the vacancy perturbs mainly the
region around the cluster center, one could search for a
correlation between hEI and p(r =0}. We have obtained
that such a correlation exists for values of N = 18-20 and
N =90-92, that is, when an external s shell is involved.
In contrast, no correlation is found for other cases.

Before proceeding further, a brief comment on the
values of AEI may be in order. Studies of the 6rst ioniza-
tion potential V;,„ofalkaline clusters ' ' show that
thc jcllium model predicts thc jumps of V; „observed in
the experiments. ' However, the magnitude of the jumps
is overestimated. %e admit that a similar e8'ect might
occur in b,EI(N). This could account for the apparently
large values of hEI at the maxima in Fig. 1 and the rath-
er low values at the minima (the theory predicts, in fact, a
negative hEI at N =17,18 and N =82—90). The values
of AEI could be improved using a more reined model.
However, such re6ned models are not easy to implement
for large N. But from the success of the jcllium model for
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alkali-metal clusters ' we expect that the general features
of Fig. 1 will still be valid in more re6ned models. The
model used in this paper has been, in fact, successful in
explaining the characteristic features of the mass distri-
bution of mixed K&Mg clusters. ' In this case, the posi-
tive background given in (1) is modified to account for
the presence of the Mg atom at the cluster center. This
was achieved by simulating the Mg + ion by a jellium of
different (larger) density.

A question of interest is the extrapolation of EEf to
the limit N = Qo. Our results for N ~100 show that we
still are in a size region where quantum size e8ects dom-
inate and that it is very diScult to extrapolate the results
to the large N limit. However, an average value of b,EI is
consistent with the experimental value for bulk sodium
(0.42 eV). ' In conclusion, the dominance of quantum
size effects does not permit us to connect with the experi-
mental work on small particles discussed by Morokhov
and co-workers, ' which pertains to larger particles.

Detailed, fine-structure features existing in the experi-
mental mass spectra of alkaline clusters have been ex-
plained by Clemenger, ' using a model of ellipsoidal dis-
tortions analogous to the shape variations among nuclei.
For most sizes the predicted shape is ellipsoidal instead of
spherical, so that the spherical shells are divided into el-
lipsoidal subshells. In Clemenger's model, clusters with
N =2, 8, 20, 40, 58, and 92 remain spherical, but the rest
become ellipsoidally deformed (in particular, N =18 and
34 become oblate ellipsoids).

The resistance of the magic clusters N =8, 20, 40, and
92 to ellipsoidal deformation correlates with their resis-
tance to vacancy formation (maxima in Fig. 1), which is
another kind of deformation. These clusters are thus
strongly resistant against any kind of deformation. On
the other hand, the ellipsoidal clusters of Clemenger's
model have a lower EEf (in the spherical model) than the
spherical clusters. This is particularly noticeable around
X =18, 34, and 90. In conclusion, one should contem-
plate the possibility that clusters with vacancies could be
formed during the process of cluster growth in a super-
sonic expansion. This could provide a method of employ-
ing the extra energy of the hot clusters. This extra ener-

gy comes from the kinetic energy of incident atoms and
from the gain in cohesive energy. Of course, formation of
vacancies is less probable in the magic clusters. Finally,
it is likely that our results might have implications for
understanding the formation of mixed clusters. zo In
fact, our recent paper on K&Mg clusters' shows that the
change in the Kz magic numbers due to Mg substitution
can be understood in terms of the change of the one-
electron levels induced by the attractive effect of the Mg
1on.
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