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Chemical bond as a test of density-gradient expansions for kinetic and exchange energies
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Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for
approximate density functionals by reference to near-exact Hartree-Pock values. From the molec-
ular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-

gradient expansion does not accurately describe the noninteracting kinetic contribution to the
bonding energy, even when this expansion is carried to fourth order and applied in its spin-
density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated
that the overbinding of molecules such as N& and F&, which occurs in the local-spin&ensity (LSD)
approximation for the exchange-correlation energy, is not attributable to errors in the self-

consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality ar-
gument, it is found that the LSD approximation for the exchange energy can seriously overbind a
molecule even when bonding does not create additional nodes in the occupied valence orbitals.
LSD and exact values for the exchange contribution to the bonding energy are displayed and dis-

cussed for several molecules.

I. INTRODUCTION AND SUMMARY

The density-functional theory' of electronic structure
aspires to chemical accuracy (chemical energies in error
by less than 0.01 hartree), and in its Kohn-Sham incar-
nation comes close * to achieving it within the local-
spin-density approximation for exchange and correla-
tion. Density-gradient expansions' have always pro-
vided the most systematic means to generate density-
functional approximations, starting from the local ap-
proximation in order zero. In this paper we show that
the density-gradient expansions of the noninteracting ki-
netic and exchange energies (through fourth and zero
order, respectively), which have given remarkably accu-
rate total energies when applied to realistic atomic ' and
molecular ' densities, are nevertheless seriously
deficient in their description of the energetics of the
chemical bond. It is hoped that this observation will
stimulate the development of improved density function-
als, and the testing of such functionals against chemical
data.

The noninteracting kinetic and exchange energies of
an electronic ground state are those of a Slater deter-
minant which yields the true density. Hartree-Fock
wave functions„available for many atoms and molecules,

are Slater determinants with densities which often close-
ly approximate the corresponding true densities (even
when the true wave function is strongly Coulomb corre-
lated). " If Hartree-Pock densities were to be used with
exact density functionals, then close-to-exact dissociation
energies would probably be obtained as a consequence of
the Hohenberg-Kohn variational principle. ' Although
exchange and correlation are usually treated together in
Kohn-Sham theory (and correlation is needed for chemi-
cal accuracy), we have several reasons to consider ex-
change alone, which will be discussed in Sec. III.

Thus our approach is to start with Hartree-Fock den-
sities for the molecules and their constituent atoms. The
density functionals to be tested are evaluated for these
densities, and the resulting contributions to the molecu-
lar bonding energy are compared with nearly exact
Hartree-Fock values. For any energy term F., we de6ne

bE =E(molecule} —QE(isolated atoms} .

The noninteracting kinetic energy makes a large and
important contribution AT to the molecular bonding en-
ergy. %e will show that this contribution is described
very poorly by the density-gradient expansion. This con-
clusion holds in zero, second, and fourth order, and it
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holds even when spin polarization is taken into ac-
count.

The zero-order term in the gradient expansion for the
exchange energy is the popular local-spin-density (LSD)
approximation. %e will show that the exchange contri-
bution AE„ to the molecular bonding energy is also de-
scribed rather poorly within LSD for a number of mole-
cules. For N2 and F2, even the sign is wrong. The LSD
exchange energy functional tends to overbind mole-
cules, ' and it overbinds by about the same amount
whether the electron densities employed are Hartree-
Fock or self-consistent LSD densities. Contrary to ex-
pectations based upon the Gunnarsson-Jones nodality ar-
gument, we 6nd serious LSD overbinding even in the
exchange-only description of N2, a molecule which
forms without the creation of antibonding orbitals in the
2p valence shell. Serious LSD overbinding is also found
in the exchange-only description of a C2 excited state
which has no occupied antibonding valence orbital at all.
%'e conclude that orbital nodality is not always a reliable
predictor of I.SD chemical errors.

II. KINETIC ENERGY

The Hohenberg-Kohn theorem' in principle permits
the ground-state energy of a system to be constructed
from its electron density, bypassing the need for a wave
function. In practice a major stumbhng block has been

the construction of an accurate density functional for the
noninteracting electron kinetic energy T. In recent
years, the fourth-order density gradient expansion
To+T2+T4 in the Hodges form has been applied to
Hartree-Fock densities of atoms ' and molecules,
and has been found to overestimate T typically by less
than 1% in comparison with Hartree-Pock values. Since
the absolute errors are still usually much larger than
chemical bonding energies, it is sometimes believed (cf.
Ref. 9) that the gradient expansion is not useful for most
applications to quantum chemistry and solid-state phys-
ics (although modifications of this expansion do account
for the repulsion between overlapping closed shells. '

)

However, this conventional belief has not yet been
veri6ed. Could it be that these errors cancel out of
bonding energy difFerences after all? Most of the kinetic
energy resides in the atomic core; if most of the error of
the gradient expansion also resides there, such a cancel-
lation of errors could occur. Indeed it is sometimes as-
serted that gradient expansions, based on the electron
gas of slowly varying density, are more appropriate to
the valence electrons than to the tightly bound core elec-
trons (and this assertion is supported by numerical re-
sults in the case of the exchange-correlation energy). We
shall present evidence that, unfortunately, no precise sys-
tematic cancellation of errors occurs. The original gra-
dient expansion gives a poor account of molecular bond-

TABLE I. Noninteracting electron kinetic energy contribution hT to the energy of formation of a
molecule {with bond length R) from separate atoms. The density-functional {DF) and spin-density
functional {SDF) gradient expansions To+T2+T4 are compared with exact Hartree-Fock {HF)
values. {Energies in hartrees, distances in bohrs. ) The molecular geometries employed are not pre-
cisely the Hartree-Fock equilibrium geometries.

Molecule

H2
BH
HF

F2

CO

H20
CO2
BH3
CH~
NH3
NNO
CpHg
H2CO
Hae+

'Reference 10.
'Reference 8.
'Reference 9.

1.4017'
2.3501"'
1 7325
1 733'
1.8342'
2.3905'
2.068'
2.0741'
2.124'
2.680"
2.68'
2.75'
2.124'
2.132'
2.1322'

~{To+ T2+ T4 )DF

0.44
0.31
0.75
0.8
0.62
1.0
1.07
1.1

0.89
0.3
0.3
0.2
1.1
1.2
1.0
1.26
1.7
0.89
1.47
1.30
2.3
1.27
1.7
0.47

~{To + T2 + T4 )sDF

0.12
0.09
0.40
0.5
0.27
0.8

—0.78
—0.7
—0.96
—0.1

—0.1

—0.2
0.3
0.4
0.2
0.39
0.3
0.35
0.52

—0.10
—0.1

0.32
0.5
0.20

gTHF

0.128
0.091
0.16
0.1

0.012
0.3

—0.01
—0.1

—0.19
—0.25
—0.3
—0.31

0.16
0.2
0.14
0.27
0.2
0.31
0.48
0.26
0.0
0.32
0.3
0.266
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TABLE II. A study of hT by orders of the gradient expansion for the molecules H2 and N2. (See
caption of Table I.) Note that To is the Thomas-Fermi kinetic energy.

6(1o)DF
~~ ~o+ ~2 ~DF

~~ ~o+ ~a+ ~4 IDF

0.403
0.418
0.439

sr"F=0.1Z8

1.33
1.19
1.07

6T""= —0.01

~~ ~o ~sDF
~c' ~o+ &2 ~sDF

~~&o+~ +~4 ~sDF

54', To )sDF
~~ ~o+ ~2 ~sDF

~~ ~o + ~2 + ~4 ~SDF

0.063
0.078
0.118

—0.37
—0.59
—0.78

'Reference 10.
Reference 8.

ing energies, which is substantially improved by the
spin-density gradient expansion, ' but even this modified
version is far from chemical accuracy.

Recently Allan et al. ' and I.ee and Ghosh'" have re-
ported Hartree-Fock kinetic energies T " and gradient
expansion values To+T2+T4 for a number of mole-
cules. In Table I we have selected those molecules
which have a spin-unpolarized (singlet) ground state, and
calculated the noninteracting kinetic energy contribution
AT to the energy of formation of the molecule from
separate atoms. For the atoms, we used numerical
Hartree-Fock densities calculated with the Froese Fisch-
er program "

For each atom considered here, the ground state is the
multiplet of highest spin S, and of highest orbital angu-
lar momentum L consistent with this value of S. The
Hohenberg-Kohn theorem applies even to a degenerate
ground state. ' However, since gradient expansions are
expected to be less accurate for multideterminant
states„ the multiplet-member chosen here was the sin-

gle Slater determinant with z components M, =5 and

ML ——I.. The density of this ground state was not spheri-
cally averaged. Calculations were performed both with
the density-functional (DF) (Ref. 5) gradient expansion
To+ T2+ T„, and with the spin density fu-nctional (SDF)
(Ref. 12) expansion. [Note that the spherical approxima-
tion for the atomic density would overestimate
5( To+ T2+ T~ ) by as much as 0.1 hartree. ]

By comparison with the "exact" Hartree-Fock value

b, T " in Table I, the density-functional (DF) gradient
expansion seriously overestimates hT. This overestima-
tion is partially corrected by the spin-density functional
(SDF) gradient expansion (since the separated atoms are
all spin polarized), but the remaining error is often large
and apparently random. For example, there is a serious
underestimation for N2 and a serious overestimation for
BF.

Table II presents a study of AT by orders of the gra-
dient expansion for the molecules Hz and N2. For Hz,
the spin-density gradient expansion gives a good account
of hT, with systematic improvements from higher orders
of the expansion. But for N&, the description is poor in

all orders. Referring back to Table I, we can see that
this expansion also works fairly well for the other s-
electron-bonded molecule (HSe+) tabulated there, but it
works erratically for the p-electron-bonded molecules.

For rare-gas diatomics with Hartree-Fock densities,
the quantitative failure of the gradient expansion was
demonstrated by Shih' and by Pearson and Gordon. '

As far as we know, the only other previous study of
molecular bonding energies via density-gradient expan-
sion was made by Yonei, ' who used (To+ T2)DF for the
kinetic energy, and the local density approximation for
the exchange energy. At each internuclear separation 8,
Yonei constructed a density which approximately mini-
mized this total-energy functional. The resultant bind-
ing energy curve for the molecule N2 minimized at
R =2.56 bohr (24%%uo greater than the experimental bond
length of 2.068 bohr), but with about the experimental
bonding energy (for R =2.068 bohr).

The molecular densities of Refs. 8-10 are claimed to
be of near-Hartree-Fock quality, as are the atomic densi-
ties employed here. Table I indicates a good general
agreement' between molecular kinetic energies calculat-
ed with a Gaussian orbital basis' and those calculated
with a basis of Slater-type orbitals. '

Four points of principle must be addressed. The first
is that, even for the Hartree-Fock density, T " is not
precisely the noninteracting kinetic energy T which the
gradient expansion is trying to approximate. The
difference is associated with the fact that the Hartree-
Fock potential is not a local potential V(r). Atomic cal-
culations' suggest that this difference (which is usual-
ly overlooked) is much smaller than the chemical bond-
ing energies of interest here. In fact, T "—T is second-
order' in the difFerence between the Hartree-Fock and
Kohn-Sham determinants for the same density. If
somehow it turns out that this difFerence is not small,
then it would very likely mean thai ALT &ALT ", which
still supports our assertion that the gradient expansion
often seriously overestimates AT. The inequality would
arise if T "is suSciently greater than T in the molecule.
CIn the atom' ' T=T ", and in the molecule T " is
never less than the exact noninteracting kinetic energy
for the Hartree-Fock density. )

The second point of principle (also conventionally
overlooked) is that the Hodges form of the gradient ex-
pansion should be applied only to analytic electron densi-
ties. There is a correction to the fourth-order term
T4 due to the cusps at the nuclei which is comparable in
size to T~ itself. However, this cusp correction should
almost cancel out of the energy differences A(To+T2
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+ T4 ) considered here. The third point is that the next
term in the gradient series (T6) diverges for atoms and
molecules. Fourth and finally, we dissent from the
characterization of the SDF gradient expansion' * ' as
an "interpolation" between unpolarized and fully polar-
ized limits; for better or worse, the spin dependence is
determined by the requirement that the gradient expan-
sion be exact, ln the limit of slowly varying density. (For
each atom and molecule considered here, the Hartree-
Fock ground state that we have chosen decomposes into
independent spin-up and spin-down electron densities. )

With reasonable security, we can conclude that the
gradient expansion does not in fact have chemical accu-
racy. %e cannot say whether this situation would be
improved by applying the local asymptotic truncation of
Pearson and Gordon' to the gradient expansion of the
proper kinetic energy density. ' However, it appears
from Table II that this situation would not be improved
by the global asymptotic truncation (To+ T2+0.5T4) of
Ref. 8. %'e note interesting recent progress ' toward
the construction of nonlocal approximations to T[n].

Why does the gradient expansion fail for the valence
electrons in atoms and molecules'7 A partial answer
might be found in the behavior of the "small" parameter

~

Vn
~

/2k~n where kF (3n'n)'——~. This parameter is
less than unity over most of the interior of an atom, but
diverges exponentially as

~

r
~

~ 00 in an atom or mole-
cule. ' In a bulk solid (especially a metal), this parameter
is better behaved and the gradient expansion might still
provide a useful description of the valence electrons.

III. EXCHANGE ENERGY

Chemical accuracy is more nearly approached by the
Kohn-Sham version of spin-density functional theory, in
which the noninteracting kinetic energy is treated exact-
ly and only the exchange-correlation energy E„, is ap-
proximated. In the commonly used local-spin-density
approximation, the SDF gradient expansion for E„, is
truncated at order zero. A worrisome overbinding (at
worst 0.08 hartree for 02) results for first-row sp-bonded
diatomics, although H2 and the alkali dimer Li2 are ac-
curately described. 3 In their study of the sources of er-

ror in the LSD approximation, Gunnarsson and Jones
have emphasized that errors in the exchange energy are
a major cause of the discrepancies with experiment.
This conclusion was also reached in an earlier study of
refinements to the correlation energy in the H2 mole-
cule. It is useful to compare results from exchange-
only LSD calculations for selected systems with results
from near-exact Hartree-Fock calculations in order to
distinguish these errors from those that are due to ap-
proximations in the treatment of Coulomb correlation.
Then errors often appear in an exaggerated form, and
effects due to improvements in the treatment of ex-
change can be isolated. This is apparent in the
exchange-only bonding energies hE„, for N2 and F2 re-
calculated here self-consistently for a= —,

' by the method
of Ref. 3, and compared with Hartree-Fock bonding en-
ergies in Table III. The LSD overbinding for each of
these two cases is -0.15 hartree. (The exchange-only
LSD approximation is the same as the spin-polarized Lo;
method ' with a =—', .)

In search of the explanation for this error, it is natural
to question the role of difFerences in the density alone.
The LSD valence-electron densities for atoms are known
to decay much too slowly into the vacuum. Neverthe-
less, the Hartree-Fock and exchange-only LSD orbitals
are suIciently similar that first-row atomic exchange en-
ergies calculated from the Fock integral with the two
types of orbitals agree within 0.005 hartree. Similarities
have also been observed between the LSD and Hartree-
Fock molecular orbitals in ozone.

These previous findings are consistent with the results
for molecules displayed in Table III, where the exchange
contribution hE to the bonding energy is calculated in
the LSD approximation and compared to exact
Hartree-Fock values. Molecular exchange energies were
taken from Table I of Ref. 9, while atomic values were
computed here. For each molecule in Table III, the
LSD and Hartree-Fock values of AE„were calculated
with the same (Hartree-Pock) density, while the LSD
and Hartree-Fock values of bE„, were calculated with
difFerent (respectively, self-consistent) densities. For the
cases tested (N2 and F2), the LSD error for b,E«, is
found to be essentially the same as that for hE . Clear-
ly, this error arises directly from the error of the LSD

TABLE III. Changes hE„, and EE„ in the total and exchange energies, respectively, upon mole-

cule formation. The exchange-only description presented here neglects electron Coulomb correlation.
All values were calculated with accurate Hartree-Pock densities, except for the local-spin-density

(LSD) value of AE„„which was calculated with the self-consistent LSD density. Note that the disso-

ciation energy is —hE„,. (Energies in hartrees. Note that the spherical approximation for the atom-

ic density mould have underestimated the LSD value of AE„by as much as 0.01 hartrees. )

Molecule

Li&

N2

F2
BH
HF
CO
HBe+

LSD

—0.010
—0.33
—0.11

EE„t
Hartree-Pock

—0.006
—0.19

0.04

—0.004
—0.14
—0.15

LSD

—0.02
—0.06
—0.07
—0.14
—0.23
—0.09

hE
Hartree-Fock

0.13
0.07

—0.07
—0.09
—0.12
—0.10

LSD error

—0.15
—0.13
—0.00
—0.05
—0.11

0.01
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exchange energy functional, and not from the error of
the self-consistent LSD density.

Gunnarsson and Jones have proposed a rationale for
the errors of LSD exchange in molecules and other sys-
tems. Simply stated, their argument is this: Since the
LSD exchange energy functional does not retain in detail
the orbital nodal structure that arises in the Fock in-
tegral, errors will ensue with a size depending upon how
greatly the nodal structures di8'er in cases being com-
pared (e.g., molecule and constituent atoms). Thus the
errors of the LSD bonding energy are expected to be
much smaller in Li2, BH, and HBe+, where the occupied
valence molecular orbitals are all bonding orbitals, than
they are in Fz, where some of the orbitals are antibond-
ing with additional nodes. These expectations are
confirmed in Table III. However, the isoelectric mole-
cules N2 and CO are surprising: They display large LSD
exchange-only overbinding (comparable to that in Fz),
even though all of their 2p-derived occupied orbitals are
bonding. This unexpected result has been uncovered
here because our study of these molecules is exchange
only; N2 does not look so anomalous when correlation is
included. '

If the Gunnarsson-Jones rationale applies to N2 and
CO, then it must be the Zs-derived antibonding molecu-
lar orbitals which are responsible for the exchange-only
LSD overbinding. %'e have excluded this possibility via
an exchange-only study of an excited singlet state of the
carbon molecule C2 (los) (let„) (2crs) (lm„) (3tTS),
which dlssoclates to exctted carbon atoms C ( 1$) (2$1 )

(2@t) . This molecule is like N2 but without the anti-
bonding (2o„) electrons. We first performed unrestrict-
ed Hartree-Fock calculations with a 6-3116" basis
for C2 and C', and obtained a bond length 8 =2. 14

bohr with a bonding energy b,E„,(HF) = + 0.01 hartree.
%e then performed exchange-only LSD calculations
with the basis of Ref. 3 and the same bond length, and
obtained a bonding energy b,E„,(LSD)= —0.21 hartree.
There is a pronounced LSD overbinding despite the ab-
sence of occupied antibonding orbitals in the valence
shell. %e conclude that orbital nodality alone is not al-

ways a reliable predictor of LSD chemical errors.
The substantial errors of the LSD approximation for

~, often are largely canceled by compensating errors
in the LSD approximation for EE„ the correlation con-
tribution to the bonding energy. A similar cancellation
of errors occurs for the jellium surface energy and many
other problems, and is partially understood. * This
cancellation of errors should not be neglected in any
effort to understand the reasons for the success of the
LSD approximation for exchange and correlation, or to
go beyond it. In particular, it bodes well for the eventu-
al success of generalized gradient approximations (e.g.,
Refs. 32 and 33) for exchange and correlation taken to
gether Impr. ovements over LSD in chemical bonding
energies have already been achieved ' by such approx-
imations.
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