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The GS' approximation for the self-energy operator is used to calculate the corrections to band
structures obtained within the local-density approximation (LDA). To that end we derive rigorous
expressions for the quasiparticle energies and wave functions, being also valid for the exact self-
energy. A detailed analysis of the state and energy dependence of the nonlocal exchange-correlation
contributions to the quasiparticle energies is given and compared to the approximative self-energies
used within the LDA. The self-energy and the dielectric response matrix are evaluated in plane-
wave representation. %e demonstrate that the wave functions obtained from the empirical pseudo-
potential model (EPM) are suScient to compute the final energy bands to within 0.1-0.2 eV. The
merit of the EPM wave functions is a fast convergence and the possibility to calculate exchange-
correlation self-energies for band structures which are determined in a localized basis. These wave
functions incorporate all structural details contained in the ab initio wave functions. As far as the
dynamics of the dielectric response is concerned a new generalized plasmon-pole concept for the
dielectric matrix is introduced which fulfills all important sum rules and possesses the right analyti-
cal properties also for the off-diagonal elements. This new scheme provides a significant improve-
ment in computational eSciency. Explicit results are given for germanium.

The local-density approximation' (LDA) is presently
the most successful method for the determination of
ground-state properties of solids. The eigenvalues of the
LDA equation, though being a priori of no physical
meaning, are nevertheless commonly interpreted as one-
particle energies. The energy gaps obtained thereby are
generally much too small. Since the band-structure pro-
grams have reached a stage of being well converged it has
become clear that this error indicates either a shortcom-
ing of the exchange-correlation (xc) functionals presently
used in the LDA or even the principal incapability of the
density-functional theory (DPI) to determine excitation
energies. Recently it has been shown ' that the xc poten-
tial for the N-particle and the (N+1)-particle system
may differ by a finite quantity 5, often called the discon-
tinuity of the xc functional. As this is a feature even of
the "exact" xc functional, the failure of the I.DA in
describing quasiparticle energies is an intrinsic shortcom-
ing of the (DFT'). Godby, Schliiter, and Sham have
demonstrated for several semiconductors that even the
exact Kohn-Sham potential leads only to a slight im-
provement over the I.DA results. It has been illustrated
by us in a previous paper for a two-band semiconductor
model that every state-independent Kohn-Sham potential
VKs(x) is bound to fail in the description of excitation en-
ergies because some of the essential physical features are
mlsslng.

A possibility to overcome this problem in the frame-
work of the DFl is to determine explicitly the ground-
state energies for the N- and the (N +1)-particle system,
as proposed recently by Kohn. This kind of approach,
determining excitation energies from total-energy
dÃerences, has actually been used before to calculate

many-body corrections to band structures starting out
from variational wave functions of the Gutzwiller-
Jastrow type.

%e will follow here an alternative way to obtain quasi-
particle energies using the Green's-function formalism
which allows a direct computation of the exchange-
correlation corrections to the LDA band structure. It
has been shown recently by ab initio and by model calcu-
lations ' that the 6%approximation (GWA) proposed
by Hedin' leads to quasiparticle energies in favorable
quantitative agreement with experimental data. Its rela-
tive simplicity from the point of view of many-body
theory enables on the other hand a detailed analysis of
the further numerical approximations to be made, such
as integration schemes and basis sets.

A further advantage of the Green's-function scheme is
the convenient access to correlation functions. This
mediates an understanding of the many-body physics in
nearly classical pictures. It is especially the response of
the system to an external test charge that provides an in-
teresting insight into the screening behavior of many-
body systems and the renormalization of quasiparticles.
A detailed discussion of this topic will be the content of a
succeeding paper.

In the present paper new techniques for the evaluation
of the self-energy in the 6%A will be presented. In par-
ticular a new generalized plasmon-pole concept has been
developed to compute the frequency dependence of the
dielectric response matrix. This scheme has the merits
that the dielectric matrix always has the correct analyti-
cal properties, which is not generally true for the o8'-

diagonal elements in the previous treatment. Moreover,
it implies a faster convergence when calculating the self-
energy. %'e applied the G%A to a series of covalent sys-
tems and found a good agreement with experimental re-
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suits. The error for the valence-band and the four lowest
conduction-band states was always of the order of 0.1 eV.
In the present paper we will concentrate on germanium
as an example of the high quality of the results obtained
by the 6%A. Germanium is a particularly challenging
case, since the LDA predicts it to be a metal or semimet-
al"' (see Fig. 1). We find that the xc corrections to the
LDA bands are not simply given by a rigid shiA of the
conduction bands to higher energies. The deviations
from this so-called scissors operator approximation are
particularly important in the vicinity of the gap. %e ob-
serve that the I i conduction-band state is shifted by 1.02
eV upwards relative to the top of the valence band,
whereas at the I. point this shift is only 0.73 eV. Subse-

quently here the xc self-energies decide that Ge is an
indirect-gap semiconductor.

Besides the presentation of the quantitative results, the
emphasis of the present paper hes on the detailed discus-
sion of the energy and state dependence of the various
contributions to the xc functional. This will elucidate
also some striking features of the LDA.

A by-product of the GWA is the exchange-only or the
Hartree-Fock band structure. Although this approxima-
tion yields energy bands for covalent semiconductors that
deviate strongly from the exact ones, it is for many
reasons important to be able to treat the HFA accurately.
First the HF band structure defines the reference energies
for the many-body corrections and secondly, for insula-
tors with large energy gaps and weak screening„ the exact
bands are closer to the HF than to LDA band structure.
As has been pointed out before, the generally very strong
cancellations between the nonlocal exchange and the
dynamical screening require a very careful treatment of
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FIG. i. Band structure of germanium in the LDA (dashed
curve, Ref. 11) and the O'S'approximation (solid curve, present
work). The energies are measured in eV.

the nonlocal exchange on the same footing as the correla-
tion. Finally the results for the nonlocal exchange are a
well suited test for the accuracy of the computation
scheme used for the G%A, since there are recently reli-
able HFA results available. '

There have been eailier attempts to obtain the quasi-
particle energies of semiconductors by ab initio calcula-
tions using Green's-function' and variational methods.
These investigations provided considerable insight and
were actually more sophisticated concerning the treat-
ment of the many-body problem, i.e., in a diagrammatic
point of view they went beyond the GW approximation.
On the other hand, as only rather small localized basis
sets could be handled, their accuracy was limited. In fact
much of the present progress has to be attributed to the
use of the plane-wave basis which allows for the accurate
computation of the nonlocal exchange and dynamical
screening within the same framework. This is crucial in
view of the strong cancellations. Furthermore the plane-
wave basis makes an easy and careful investigation of the
convergence possible.

The organization of the paper is as follows. Section II
is dedicated to the key ideas leading from the many-body
problem in the quasiparticle picture treated in the 6%A.
In particular we give a rigorous derivation of an expres-
sion that allows the perturbative calculation of the quasi-
particle wave functions and energies. This provides a
tool with which to study the subtle din'erences between
LDA, HFA, and quasiparticle wave functions. This ap-
proach may turn out to be of practical importance also
for the study of the effect of correlations on defect states.
This section furthermore contains the main formulae to
be evaluated in the framework of a plane-wave basis.

The dielectric response matrix (DM), for which a new
generalized plasmon-pole ansatz for the co dependence
has been developed, is the subject of Sec. III. It will be
shown that the concept of the dielectric band structure
(DBS) introduced by Baldereschi and Tosatti' is a
powerful tool in this context. The resulting expressions
for the self-energy will be presented in Sec. IV. In the
succeeding section a brief discussion follows of the wave
functions obtained within the empirical pseudopotential
method (EPM) and used for the computation of the self-
energy and the dielectric matrix. The resulting HF and
Snally the correlated quasiparticle band structures, are
discussed in Sec. VI and compared to experiment. This
section also contains a detailed discussion of the xc con-
tributions to the self-energy, as well as a comparison with
the approximations made in the LDA for these quanti-
ties. Furthermore, a discussion of previous work will be
presented here. This section can be read independently
of the others so that the reader only interested in the final
results and discussions may go directly to it. The key
points of this paper are summarized in Sec. VII together
with an outlook on further applications. The Appendices
A-C contain details concerning the calculation of the ex-
act quasiparticle wave functions, the generalized f sum
rule and some implications for the treatment of the
dielectric response, and finally the scheme of how the
Bnllouin-zone integrations over singular integrands are
performed.
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II. 6$'APPROXIMATION

The Green's-function formalism' is a very convenient
tool for the computation of quasiparticle quantities since
it directly gives the response of the N-particle system
when an electron is added to or subtracted from the sys-
tem.

The N-electron Schrodinger equation reduces in the
framework of the Green's-function formalism via
Dyson's equation to a quasiparticle equation:

hc(x)4„(x)+fd x'X*'(x,x';e„)4„(x')=S„4„(x).

Here p, includes both the band index as well as the wave
vector. The quasiparticle states 4„(x) form a complete
set of functions but they are in general neither normal-
ized nor linear independent. Due to the nonhermiticity
of the Hamiltonian the quasiparticle energies s„are in
general complex. The real part corresponds to the excita-
tion energy and the imaginary part is related to the finite
lifetime of the quasiparticle. The Hartree Hamiltonian
hc(x} contains tllc colltflbutlolis of thc kiilctlc cllci'gy,
the electron-ion interaction, and the Hartree potential.
X*' represents the nonlocal and energy-dependent self-
energy operator which is related via a coupled set of in-
tegral equations'c to the one-electron Green"s function:

4„(x )4„'(x')
G(x, x';co) =g

to —S~—15 Sgtl(SF —Sp)

to the screened Coulomb interaction

~(x,x', co)= fd'y u(y)e '(x —y, x', i0),

and to the vertex function

(4)

In the above equation zF stands for the Fermi energy, U

denotes the bare Coulomb interaction, and e ' is the in-

verse dielectric matrix de5ned below. The G%'A consists
of neglecting vertex corrections, or in other words, I is
equated to 1. This corresponds to the first-order term in
the series expansion of the self-energy with respect to the
screened interaction W. In this approximation the expres-
sion for the self-energy reads

X*'(x,x';to)= . fdt0'e' "G(x,x', t0 —to')

X IV(x, x', co'),

with 0+ being an in6nitesimal small positive number.
It has been argued by Hedin and Lundqvist' that ver-

tex corrections for the self-energy are negligible for the
homogeneous electron gas. To our knowledge there is
only the work by Minnhagenic in which the vertex
corrections have been analyzed in more detail. Despite
some analyticity problems, the results nevertheless indi-
cate the unimportance of vertex corrections to the quasi-
particle energies. Indirectly this statement is supported
by the promising results achieved so far by the GWA. 5 s 9

The same approximation for the dielectric function leads
to the random-phase-approximation (RPA) formula

e(x, x';to)=5(x x')+— . fd y u(x y) f—dto'e' G(y, x'', tu cu')G—(x'„y;to') .
2&l

In the GWA all quantities are completely determined by
the one-electron Green's function. For completeness we
also note the formula for the ground-state density

n(x}= . f d'oi' e"G(x,x;to')=g n„~ 4„(x)
~

. (7)

In the interacting ground state the occupation number n„
is in general not a simple step function. The GWA forms
a coupled set of equations. For a given starting potential,
Xc', Eq. (I) provides a set of wave functions and energies
which then define an improved self-energy and so forth.
A well-suited starting potential Xo' is supplied by the
I.DA as the ground-state density is well described. The
quasip article description in the framework of the
Green's-function formahsm a

posteriori
justifies the inter-

pretation of the eigenvalues r.„and eigenvectors
~ 4„)

of the Kohn-Sham equation as approximate quasiparticle
quantities, which is not obvious from the Dl'I' point of
view. ' The LDA xc potential being local and state in-
dependent [Xi'D~(x, x';to) =5(x—x') Vt'D~(x}] supplies a
Hermitian Hamiltonian and hence real energies, orthogo-
nal wave functions, and a step function for the occupa-
tion numbers n~ =e( CF —e„). Once the LDA one-

QXxc(~ ) Xxc(~ ) Xxc (Sc)

In the above equation abundant indices have been
dropped. For more details concerning Eq. (8) see Appen-
dix A. A similar expression for the energy correction to
the Kohn-Sham band gap has been derived by Sham and
Schluter. Their formula has been criticized by Gun-
narsson and Schonhammer. ' The main difference of our
result to that of Ref. 4 lies in the projection operator and
the exact quasiparticle energies instead of the Kohn-
Sham energies in the arguments. The higher-order

particle quantities are known, there is a convenient way
to determine the exact quasiparticle energies s'„" and wave
functions

~

4„'"):
&ex &Ks (@Ks

~

gXXC(&ex)
~

@ex)
P P P P (Sa)

~

@ex)
~

epKS)I p GO(&ex)gXXC(&ex} Ix

Here the projection operator P„=l—
~
4„)(4„~ and

the Green's function G (ra) are defined with respect to
the eigenfunctions of the Kohn-Sham Hamiltonian. The
last unknown entity in Eq. (8) is the residual self-energy:
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corrections to the quasiparticle energies are determined
by the changes of the quasiparticle wave functions. It is
instructive to consider the two-band model. In this case
the gap is opened by the pseudopotential which already
determines the precise form of the wave functions at the
gap. Exchange-correlation corrections alect the size of
the gap but do not lead to further changes in the wave
functions. Therefore the first-order term already gives
the exact result.

For m=0 this equation provides a relationship between
the dielectric band structure, the unknown pole strength
z, (q), and the plasmon dispersion co, (q). The second rela-
tionship which determines these quantities uniquely is
given by the Johnson sum rule (Appendix 8). This results
in

( )
~pi ~ U, (G) (q+G).(q+G')
(0) G G,

' llq+Gll llq+G'

&(p(G —G') Uq, (G'), (12)

In this section we turn to the dielectric matrix (DM)
which determines the screened interaction 8'. %e ap-
plied the random-phase approximation which is reminis-
cent of the GWA for the self-energy as it is the first term
of an expansion with respect to 8'.

Our calculations have been performed in a plane-wave
basis using the Adler-Wiser formalism for the Her
mitian dielectric matrix:

4n

pi, q(G)pi', q(G')
+G, G (q'~) =2& g &n( fm )—

z;(q)
co;(q) =

1 —e, '(q)

Here Eq. (12) contains the free-electron plasma frequency
ai~i 4np(——0) and the Fourier transform of the ground-
state density p(G).

The pole strength can also be expressed in terms of the
real-space eigenpotentials %q;(x) of the DM, '9 27 which
are de6ned in Appendix 8:

p„(G)=(k,n
l

e'q+ '*lk+q, m ) .

For the Brillouin-zone integration the Chadi-Cohen
scheme s with ten special points has been employed.

To perform the co integration for the self-energy [Eq.
(5)] analytically it is convenient to introduce a general-
ized plasmon-pole ansatz for the frequency dependence of
the DM. Alternatively the ro integration can be per-
formed numerically along the imaginary axis, as it has
been done by Godby er al. ' We preferred the former
scheme since it is computationally less expensive. The
Snal results are the same in both cases.

%e express the static DM in its eigenrepresentation:

&GG(q;0)=5Go+ g U (G)[e (q) —1]U (G') .

(10)

Here U is the matrix formed by the eigenvectors of the
inverse dielectric matrix. The discussion of dielectric
properties in terms of the dielectric band structure (DBS),
i.e., in terms of the eigenvalues e, '(q) of the DM, has
been introduced by Baldereschi and Tosatti. '

In order to obtain the generalized plasmon-pole ap-
proximation it is natural to introduce the frequency
dependence in the eigenvalues, i.e.,

z;(q)
e; '(q, co) —1=

co [co;(q) i5]— —

z;(q)= Jd xp(x)llew„V;(x)ll (14)
p0

In this representation the magnitude of the pole strength
can easily be discussed. One immediately realizes that it
is positive definite. Furthermore, it is proportional to the
overlap between the ground-state density and the
eigenfields of the DM to the quantum number (q, i ) which
drops rapidly with increasing i. The eigenvalues e, (q)
of the static dielectric matrix in the RPA lie in the inter-
val (0,1).z Consequently, the plasmon frequencies (12)
are all real, contrary to the approach suggested by Hy-
bertsen and Louie.

Concerning a detailed discussion of this ansatz for the
dynamics of the DM and other features of the dielectric
response to a quasiparticle we refer to a succeeding publi-
cation. Here we just mention that the o8-diagonal ele-
ments lose their pole structure with increasing distance
from the diagonal. This is reflected in the DB$ plasmon-
pole ansatz in an increasing number of poles that contrib-
ute e8'ectively to these elements. Allowing for a small
broadening of the plasmon poles leads to an almost com-
plete agreement with the ~ dependence of the directly
calculated matrix elements.

IV. THK SKI F-ENERGY

The DBS plasmon-pole ansatz leads to the following
expressions for the numerical evaluation of the matrix
elements of the self-energy operator in the basis of the
LDA wave functions:

(15a)
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where the generalized overlap matrix is de6ned as

Sq'„'(i)= Jd x@p„(x)%'q,(x)@p ~„(x) . (15b)

The 4"s are, as before, the real-space eigenpotentials of
the DM. The Srst sum in Eq. (15a) runs over all quasi-
particle band indices in the Srst Brillouin zone (IBZ),
while the i summation goes over the dielectric bands.
This sum converges rapidly due to the generalized over-

lap matrix S. In the generahzed plasmon-pole approxi-
mation of Ref. 9 a summation over the reciprocal-lattice
vectors appears instead which exhibits a slower conver-
gence. A further crucial point is the factorization in the
indices no, no which allows the computation of the full

self-energy matrix in the same amount of time that is
needed for the diagonal elements. This is important if the
wave functions have to be updated. We performed our
calculation within a plane-wave basis in which the quasi-
particle wave functions are

with

C,;„'(G)=g e,'„,(G+G')e, „(G ) .
Qt

In the expression for the residual self~nergy of Eq. (8c)
the matrix elements of the LDA xc potential have to be
subtracted from the G%A results.

In the basis of the LDA wave functions the transfor-
mation matrix entering into Eq. (8b) is given by

[I—P G {ep )hX*']p „.p „
(1—5„~)hXp'„.p „

LDA
&p, m

—p, n

The corresponding expression holds for the eigenpoten-
tials.

This transforms the generalized overlap matrix S of
Eq. (15) into

Sq'„'(i)= g 4p„(GFPq, (G —G')Cp q(G') .
G,G'

Note that the eigenpotentials 4 for the non-Hermitian
dielectric matrix are related to the eigenpotentials U of
the Hermitian dielectric matrix of Eq. (11) via
0'~;(G)=[U(p+G)]'~ Uq;(G), where U(q)=4nlq2 is

the Fourier transform of the bare Coulomb interaction. 2

So far we have only discussed the correlation contribu-
tion to the self-energy. In contrast to the complicated
standard HF scheme, the matrix elements for the nonlo-
cal exchange take here the strikingly simple farm

1BZ occ
(@LDA

~

gx
~

@LDA) y y y U{p q+G)1 "o p, no
q n 6

X [Cq~„'(G)]'

The inverse of this matrix determines, according to Eq.
{81),the exact quasiparticle states for wave vector p and
band index m. Clearly the transformation from LDA to
the exact states does not mix dilerent p vectors. For un-

perturbed crystals the transformation matrix is to a good
approximation the unit matrix as has been found by Hy-
bertsen and Louie. The deviations from LDA wave
functions will come into play for impurities and surfaces,
for which Eqs. (8) and (19) could provide a convenient
tool to compute the correct wave functions.

For our purpose it is suScient to take the LDA wave
functions. In that case the energy corrections are just the
diagonal part of Eq. (15).

V. SINGI.E-PARTICLE %'AVE FUNCTIONS

In the self-consistent solution the exchange-correlation
self-energy and the dielectric matrix are finally deter-
mined by the exact quasiparticle wave functions and en-
ergies [Eq. (8)]. The LDA already provides a very good
starting set for these quantities, which may be computed,
e.g., by an ab initio pseudopotential calculation using a
plane-wave representation.

Instead, we shall use here empirical pseudopotential
wave functions, which already contain all the
structural details of the ab initio wave functions. The
empirical pseudopotential method (EPM) has been a re-
markably important tool for the evaluation of the dielec-
tric matrix, supplying very accurate results. The
similarity of the expressions for the DM and those for the
self-energy suggests to make use of the EPM also for that
purpose.

An additional feature of the EPM is the restriction to
very few reciprocal-lattice vectors in the expansion of the
pseudopotentials, namely three potential parameters for
homopalar semiconductors and six parameters for ionic
systems. Nevertheless the expansion of the wave function
in plane waves must be extended to a much larger num-
ber of reciprocal-lattice vectors. In our calculation it
turned out that 89 plane waves are sufficient for the pre-
cise calculation of the self-energy.

The potential form factors characterizing the EPM
bands and wave functions are determined such that the
experimental band structure is reproduced. ' Alterna-
tively one can also choose form factors which represent
the LDA band structure. In this case one has to add the
self-energy correction to the LDA energy to obtain a first
approximation to the quasiparticle energy. After a few
iteration steps convergency is achieved. The final result
is the same within the present accuracy of 0.1 eV in both
cases.

This scheme has the particular advantage that one is in
the position to compute also exchange-correlation correc-
tions to LDA band structures determined in a localized
basis, e.g., Gaussians or linearized muSn-tin orbitals
(LMTO's).

%c want to stress here that the EPM is more than a
very ef5cient method to represent energy bands; it also
provides a good approximation to the wave functions and
densities. In Fig. 2 we give an example for the rather
dramatic state dependence of the Bloch functions, or
m«e precisely « their p«ti» densities l@„,„(x) I

.
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Since these changes are very pronounced, even within
one band, one would tend to presume that this state
dependence should turn out also in the exchange-
correlation energy. The selected states, shown in Figs.
2(c)-2(f), correspond to band-structure points as indicat-
ed in Fig. 2(a). For comparison, the total ground-state
density, reflecting the typical covalent bonds, is plotted in

Fig. 2(b). The states in Figs. 2(c)-2(fl belong to the four
lowest conduction bands. The highest state at the I.
point has all its weight in the interstitial region while the
lowest state at the I' point, which is of antibonding s-
orbital character, is strongly localized at the atomic posi-
tions. The threefold-degenerate I » state shows the den-
sity distribution of an antibonding p orbital. The lowest
X-point state has its highest density in the interstitial re-
gions. It has been proposed in the case of silicon14 to
make use of this special feature of the wave function to
tune the gap by shifting the lowest conduction-band state
via changes of the potentials in the interstitial regions.

This brings us to the central question as to what extent
these large differences of the single-particle states are
rejected in the nonlocal and energy-dependent
exchange-correlation self-energy. This question is partic-
ularly interesting in view of the local and state-
independent potential used in the LDA. In the following
section we will analyze in detail the state dependence of
the self-energy arising from the nonlocal exchange, the
local exchange which enters the LDA equations, as well
as the energy-dependent correlation contributions.

1 1 I 1 1 t 1 1

-15—2'

l l I I I I I l
'' 'I I 1 l I I l l I

L r
Wave vector K

FIG. 3. Hartree-Pock band structure of germanium in eV.
The solid curve represents the result of the present work for a
plane-wave basis, while the dashed curve is the result of the
tight-binding I.MTO scheme (Ref. 17).

VI. RESULTS

We start with the discussion of the HF band structure.
There have been numerous attempts to calculate HF
bands for semiconductors; nevertheless, solving these
self-consistent equations still remains a difficult problem
and no really superior method turned out. On the other
hand progress has been made by realizing that the wave
functions obtained by an LDA calculation are close to
the HF-wave functions and can actually replace them in
the computation of HF ground-state energies and energy
bands. ' Thereby the problem of iterating the HF equa-
tions to convergency is avoided.

The nonlocal exchange forms the largest contribution
to the self-energy and its precise calculation is crucial for
any reliable determination of correlated band structures.
Of course the nonlocal exchange is counteracted by
screening, thereby reducing its eN'ect depending on the
size of the polarizability of the material. The only other
HF calculation for germanium is, to our knowledge, that
of Svane, ' employing the LMTO tight-binding tech-
mque. ' In the HFA we And for the gap and the
valence-band width 4.9 and 18.2 eV, respectively. A
comparison of our HF band structure, derived from the
LDA bands of Bachelet and Christensen„" and thai of
Svane shows remarkable agreement (Fig. 3). This is more
surprising in view of the completely diferent characters
of the basis sets employed in these calculations. The
remaining small discrepancy localized mainly in the vi-
cinity of the I 25 point is partially related to the more ac-
curate integration scheme used here (see Appendix C).

An instructive way to analyze the self-energy correc-
tions is to plot them versus the LDA energies of the indi-
vidual states. The resulting function is not unique as in
general there exist several quantum numbers (k, n ) corre-
sponding to the same LDA energy, which will not neces-
sarily have the same exchange energy.

The result for the nonlocal exchange is given in Fig.
4(a}. The main feature of the exchange correction can be
characterized by an average smooth curve, namely by one
straight hne for the valence bands and one, possessing a
different slope, for the conduction band. Both curves are
separated by a gap of about 7 CV. In addition the result
exhibits "fluctuations" around these mean curves which
arise from the anisotropy of the system, the different sym-
metries of the wave functions, and their different loca-
tions within the unit cell. Henceforth we will call these
briefly anisotropy elects. The most dominant anisotropy
efFects are found for states which are well localized in the
interstitial regions. It, is clear that they have smaller ex-
change energy due to the smaller overlap between these
states and the valence wave functions.

%'e proceed with the discussion of the local approxi-
mation for the exchange. The lower set of points in Fig.
4(b} shows an analogous plot for the local exchange as it
enters into the LDA (VLD~=[3p(x)/n]'~'). At first
glance these data seem to have nothing in common with
the nonlocal exchange. The main el'ect of the local ex-
change is merely to shift all the energy bands by roughly—kF/'lr, which 1s thc value for thc ho111ogcncous clcctloll
gas at the Fermi momentum kF. Hence the pronounced
state dependence of the nonlocal exchange also present in
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FIG. 4. Plot of diferent self-energy contributions for a large
number of states vs their LDA energies: (a) nonlocal exchange,
(b) local exchange (lower set of points) and correlation contribu-
tion in the LDA (upper set of points), (c) dilerence between
nonlocal and local exchange, and (d) correlation self-energy cal-
culated in the GS'approximation.

the homogeneous electron gas' is discarded in the local
approximation. It is this state dependence that is respon-
sible for the large HF gaps. This can be easily under-

stood in terms of a two-band model. i Figure 4(b} im-

mediately explains why the LDA bandwidths and gaps
are generally much smaller than in the HF approxima-
tion. The local exchange increases the gap by about 1 eV
in contrast to about 7 eV the nonlocal exchange brings
about. In addition to the overall state dependence, we

recognize pronounced "Suctuations" that stem from the
x dependence of Vi D~(x) and as the most startling result
we find that these Suctuations are almost the same as
they appear in the nonlocal exchange. Subtracting the
results of the local from those of the nonlocal exchange
one obtains the smooth curve of Fig. 4(c) with only minor
fluctuations. This observation actually corroborates the
assumptions made for the two-band model. 37

Figure 4(d} exhibits the detailed results for the correla-
tion correction. %e observe that the fluctuations in the
correlation self-energy are much smaller than in the data
for the exchange. For comparison also the correlation
self-energy used in the LDA is given in Fig. 4(b). For
V, we have chosen the RPA expression supplied by
the homogeneous electron gas which corres onds to the
6%approximation. The contribution of V,

" to the gap
is vanishingly small. It is solely a rigid downward shiA of
about 1.9 eV for all bands which lowers the total energy
but docs not aS'ect the shapes and relative positions of the
bands. The total xc correction, namely hX"'=X,"„',„
—X"DA, is plotted in Fig. 5. As expected, the screening
strongly reduces the exchange correction, leading to a
6nal result reminiscent of a dis6gured scissors operator

I I I I I I I I I I I

-10 0 10
cLDA (eV }

FIG. 5. Total xc self-energy dX"' computed in the GWA
plotted vs the LDA energy of these states.

with a discontinuity of about 1 eV. Yet the deviations
from the simple step function in the vicinity of the gap
are important as to the correct topology of the conduc-
tion band. Whereas in the LDA the lowest conduction-
band states at I. and I are almost degenerate, it is the
difference in the xc corrections of 0.73 eV at L and 1.02
eV at I' which determines Ge to be an indirect-gap semi-
conductor (Table I). For the indirect gap we find 0.82 eV
when startin~ from the LDA calculation of Bachelet and
Christensen' and 0.67 eV when using the more recent
LDA results of Christensen 2 this has to be compared to
the experimental gap of 0.74 eV.

A particularly large deviation from the scissors opera-
tor is found for the highest conduction-band state at I.
(Table I}. The L2 state has a very high amplitude in the
interstitial region, see Fig. 2(c). The two LDA calcula-
tions differ here somewhat, while their agreement is oth-
erwise almost perfect. This excellent agreement between
LDA calculations based on LMTO's and on plane waves,
respectively, has been pointed out recently by Bachelet
and Christensen. " In view of our xc corrections we find
good agreement with experiment for this particular state
if we adopt the Sgure quoted by Christensen'z (Table I).
A comparison of the LDA and the GW band structure is
given in Fig. 1.

The correlation correction to the gap can roughly be
described by b X'= —hX"(1—I /eo). This formula
rejects the decisive trend that the HFA becomes a good
approximation for large gap insulators (eo—+1), while in
the case of small gaps (@0~&1)the LDA is more reliable.
This expression for hX' also explains why the RPA
dielectric matrix already gives quite accurate results for
the band structure, although the macroscopic dielectric
constant e~ calculated in the RPA is generally about
10% too small. For germanium esr ——14.5 compared to
the experimental value of 16.0. This leads, however, to a
change of 1 —1/eo of 0.7% or to an error in the gap of
about 0.03 eV. This uncertainty is an order of magnitude
smaller than the precision presently attributed to the
band-structure calculation. A more precise discussion of
this point can be found in Ref. 6.

It had been pointed out in Ref. 9 that local-Scld effects
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TABLE I. Band-structure energies of germanium for some selected high-symmetry points in units of
eV. The energies are listed for the valence bands and four lowest conduction bands. All energies refer
to the top of the spin-orbit-split valence band. The xc self-energy for the I 2s state on the absolute scale
is —0.13 eV. The spin-orbit coupling raises the top of the valence band by about 0.10 eV (Ref. 12).
This has been taken into account for the LDA energies. The xc corrections hX"' to be added to the
LDA energies are given in column 1. The LDA values are taken from Refs. 11 and 12 (values in

parentheses). The quasiparticle energies determined in the present work (column 3} are compared to
those of Ref. 9 (column 4). The last column contains the experimental results from Refs. 38-41. If two
experimental values are given they refer to spin-orbit-split bands. The present work yields correctly
that the minimum gap is that from I" to L of about 0.7-0.8 eV.

L2
Lc

C

L3
J U

LU

Ils
PC

I"2s
PU

Xc

Xl
X4
Xl

QQXC

+ 0.16
+ 0.81
+ 0.73
—0.04
—0.33
—0.32

+ 0.85
+ 1.02
+ 0.00
—0.36

+ 1.06
+ 0.55
—0.15
—0.37

LDA

+ 6.94 (+7.74)
+ 3.64 (+3.63)
+ 0.09 ( —0.06)
—1.48
—7.66

—10.72

+ 2.47
+ 0.00
+ 0.00
—12.80

+ 9.36
+ 0.60
—3.15
—8.74

+ 7.10 (+7.90)
+ 4.45 (+4.44)
+ 0.82 (+0.67)
—1.43
—7.99

—10.40

+332
+ 1.02
+ 0.00

—13.16

+ 10.42
+ 1.15
—3.30
—9.11

G%'A (HL)

+ 7.61
+ 4.33
+ 0.75
—1.43
—7.82

—10.89

+ 3.26
+ 0.71
+ 0.00
—12.86

+ 1.23
—3.22
—9.13

Expt.

+ 7.81(1)'
+ 4 3(2)b, a

+ 0.744
—1.4(3)
—7.7(2)

—10.6(5)

+ 3.01,3.21
+ 0.89'
+ 0.0
—12.9(2)'

+ 1.3(2)
—3-2(2)
—9.3(2)d

'Reference 41.
bReference 38.
'Reference 40.
dReference 39.

(the ofF-diagonal elements of the dielectric matrix) strong-
ly influence the self-energy. These authors discussed that
question in the framework of the static Coulomb-
hole-screened-exchange (COHSEX) approximation in-
troduced by Hedin. ' The local-field effects are indeed
essential but not as important as the COHSEX approxi-
mation suggests. In the static approximation the huge
Coulomb-hole term contributes only via the ofF-diagonal
elements to the gap, while in the complete dynamic cal-
culation the diagonal elements also contribute to it. The
main efFect of the local fields is a rigid shift of the valence
band. Neglecting the oS'-diagonal elements from the very
beginning leads to an almost rigid upwards shift of all
valence-band states by about 0.4 eV relative to the con-
duction bands.

The results of our calculations are also in very close
agrcemcnt with the results published earlier by Hybertsen
and Louie. The only somewhat larger discrepancy
occurs for the I 2 state. Therefore these calculations and

the work of Grodby et aI. suggest the 68'approximation
to be a promising method to perform precise and fast
band-structure calculations for semiconductors and insu-

lators.

VII. SUMMARY

In the present work we calculated the nonlocal and
energy-dependent exchange-correlation self-energy using
the GS' approximation suggested by Hcdin. ' The loca1
approxlmatIon to the XC self-energy as used In thc LDA Is

calculated in addition. The difFerence of these two quan-
tities de6nes the corrections to the LDA band structure
and hence the quasiparticle energies.

Particular emphasis is put on the detailed discussion of
the state dependence of the difFerent contributions to the
nonlocal xc self-energy. First, there is a global state
dependence which is already present in the homogeneous
electron gas. It is this state dependence that leads in
semiconductors to appreciable corrections to the energy
gap between valence and conduction bands. Secondly,
there are fluctuations in the xc self-energy arising from
the pronounced changes in the wave functions even
within the same band.

In view of the quasiparticle equation (I} the Kohn-
Sham equation can be interpreted as an approximate
scheme for the calculation of band structures that omits
essential parts of the nonlocal and energy-dependent
self-energy. This is the source of the severe underesti-
mate of energy gaps in LDA. An interesting point is the
observation that the fluctuations appearing in the nonlo-
cal exchange self-energy, which arise from anisotropy
eFccts, the different symmetry of the wave functions, and
their diFerent localization within the unit cell, are rather
well described by the LDA. There are, however, excep-
tions for those states which have a high amplitude in in-
terstitial regions.

Nevertheless the remaining fluctuations in hX"' invali-
date the scissors operator concept. These fluctuations
lead in Ge to relative shifts of about 0.3 eV for the
diFcrent conduction-band states close to the gap. Hence
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tlley ale crllcial for tlM pliyslcal conclusions, i.e., whether
theory tells us that Ge is a direct- or an indirect-gap
semiconductor.

The self-energy equations must be solved self-
consistently, leading to the quasiparticle energies and
wave functions. A convenient starting set is given by the
DVI which in principle leads to the exact ground-state
density. Hybertsen and Louie pointed out that the
quasiparticle wave functions are almost identical to the
wave functions obtained by the LDA. We have
developed here a closed expression which allows the per-
turbative calculation of the quasiparticle wave functions
and energies. This provides a tool for the study of the
subtle differences between LDA, Hartree-Pock, and
quasiparticle wave functions.

As a by-product we calculate the unscreened or
exchange-only bands. For germanium considered here
they are found to be in favorable agreement with the very
recent and only other HF band-structure calculation of
Ref. 17. A precise exchange-only calculation is a neces-
sary prerequisite for the accuracy of the final quasiparti-
cle band structure.

For the evaluation of the self-energy the dielectric ma-
trix is a key quantity. The straightforward computation
of it, even in the RPA, is rather time consuming. We
developed a generalized plasmon-pole ansatz starting
from the dielectric band structure, or in other words, the
diagonal representation of the dielectric matrix. This an-
satz fulfills the Johnson sum rule as well as the Kramers-
Kronig relation and it leads to the correct analytic prop-
erties for all matrix elements. It turns out that this an-
satz gives a fairly realistic description of the frequency
dependence also for the oN'-diagonal elements which can
generally not be characterized by a single-pole structure.
This point will be discussed in more detail in a further pa-
per.

A decisive point in these computations is the use of the
plane-wave basis which makes the accurate evaluation of
the 6%A Snally possible, as the matrix elements are con-
ceivably simple. But it should not be concealed that a
variety of systems exists for which plane waves are not an
appropriate basis set. Among these is a great number of
interesting substances, e.g., the transition metals and 4f
systems. It is therefore a challenging task to develop an
ef(icient program for the GWA in a mixed basis.

There are several very interesting open problems that
can immediately be attacked with the GWA: (a) Energies
and wave functions for impurity states, (b) conduction-
band ofFsets in heterostructures or superlattices„(c) pres-
sure dependence of band structures and thereby induced
insulator-metal transitions, and (d) applications to low-
symmetry systems. This list of interesting questions,
which can very likely be.answered with the 6%A, can be
easily continued.

The reason for the unexpectedly good results of the
G%A is more or less an open issue. To clarify that point
we are presently investigating the lowest-order vertex
corrections. It has to be expected that these energies
vary on a scale much larger than the Fermi energy, which
is intuitively clear as vertex corrections describe the
physics over short distances in real space.
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APPENMX A: PERmRSArION XHEORV
FOR THE QUASIPARTICLE WAVE FUNCI'IONS

AND ENERGIES

In this appendix we outline the derivation of the ex-
pressions for the exact quasiparticle wave functions and
energies given in Eq. (8). First the Hamiltonian is split
into the Kohn-Sham Hamiltonian and the residue:

H =Ho( I p(x) I )+b X"'( Ip(x) I;co), (Al)

(s„—H, ) i C„&=aX(s„)
i e„&, (A3)

can be rewritten using the zeroth-order Green's function,

l
G,(~)=

co Ho( Ip'*(x ) J )—

into the form

i 4„)=60(s„)bX(s„) i 4„),

(A4)

where the energy argument in the Green's function has to
be the exact quasiparticle energy. In the following we re-
strict the discussion to nondegenerate states. In general
the results are the same for degenerate states as the xc
corrections do not alter the degeneracy; otherwise a gen-
eralization is straightforward. Analogous to Eq. (Al) we
split the wave function into the eigenstate of Ho and an
orthogonal correction:

I +„&=
I
+'„&+

I c.'&
(~'„/ 4'„)=5„„, (A6)

(e„'i e„'&=0.

One has to be aware of the fact that the
i 4„) are not

normahzed. For convenient bookkeeping we introduce a
projection operator P„projecting onto the space orthog-
onal to i@„):

with the residual self-energy

hX (Ip(x)li'co)=X (Ip(x)I~~) —XKs(Ip(x)I) (A2)

Both parts of the Hamiltonian are functionals of the
ground-state density. The following derivation is based
on the assumption thai the exact ground-state density is
also used for Ho. As a matter of fact, the Kohn-Sham
Hamiltonian yields the exact density. Had we chosen
another zeroth-order Hamiltonian the whole scheme
would have to be performed iteratively with an improved
density for Ho at every cycle. The quasiparticle equation,
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1 q)0
I—P„G (e„)EX(e„)

I @„)= I @„)+&„G0(e„)hx(e„)I 4„) .
(AS)

The second relation embodies the generalized Dyson
equation for the wave functions. To obtain the energy we
multiply Eq. (A3} with (4„I. The resulting correction
to the quasiparticle energy is

bs„=(@„lEX(s„)I4„) . (A9)

In the derivation of this formula use has been made of

~„=(I—
I
c„')&e'„I ) .

Applying P„on Eq. (A5) and allowing for Eqs. (A6) and
(A7) leads to the following equivalent expressions for the
exact quasiparticle wave functions:

Eq. (A6).
Several points should be emphazised:
(i) The zeroth-order Green's function contains the ex-

act ground-state density.
(ii) The energy argument of G0 is the exact quasiparti-

cle energy.
(iii) In contrast to the Lippmann-Schwinger formula a

projection operator has to be taken into account.
The energy change given by Eq. (A9) shows that

corrections to the first-order term (@„I
b,X

I 4„) origi-
nate from the higher-order corrections to the DFT wave
functions. These changes are believed to be small.

APPENDIX 8: GENERALIZED f-SUM RULE

The Hermitian causal dielectric matrix can be ex-
pressed by

—Sm' p„0(q+ G)p„'0(q+ G')

I'llq+GII llq+G'll . (81)

With p0„(p)=(0 I

e'p'
I

n ) and co„0=E„E0in te—rms of the exact many-body states
I

n ) and energies F.„. Hence the
generalization of the f-sum rule can be formulated as

+- d~, -«&0
I
[e'q+G'*, H]e-"q+o'"

I
o)

vllq+ GII llq+ G'll

~p& (q+ G) (q+ G' } p(G —G')

llq+ GII llq+ G'll p(0)

Here
carpi

——«p(0) is the free-electron plasma frequency. For the derivation of Eq. (82) use has been made of the fact
that the ground state is an eigenstate of the momentum operator with eigenvalue equal to zero. Furthermore as the po-
tential part of the Hamiltonian commutes with e'q+o'* only the comutator with H„;„has to be evaluated, which is an
easy task.

The advantage of the expression in Eq. (82) is that it reveals how the f-sum rule changes with a basis transformation

Uq, (G):

+ dc'
( i( ) ~ }

~pl + U, (G) (q+G) (q+G') p(G —G')
U

llq+Gll llq+G'll p«)

2p(0) Jd x p(x)[V„+q, (x)] [V„'Iiq~(x)]*,

with the real-space eigenpotentials defined as

(G) —itq+G) x
g, l

llq+GII

(83)

I d k f'"',
Ilk —koll'

(Cl)

entering the expression for the self-energy causes some
trouble due to the singular denominator. To circumvent
this problem the authors of Refs. 5, 9, 15, and 17 used the
midpoint rule, thereby replacing the singular terms by

APPENDIX C: SRILLOUIN-ZONK INTKGRALS
%'ra H SINGULAR Pixj;GRANDS

The numerical evaluation of Brillouin-zone integrals of
the form

the spherical average.
%e have chosen the following procedure. Due to the

singularity of the integrand the latter has to be computed
for a large number of integration points. On the other
hand f(k) is not known analytically and its numerical
computation is quite time consuming. The problem can
be eluded by making use of the fact that f(k) is well
behaved and therefore can be interpolated by simple
functions. This leads to analytic expressions for the in-
tegrand which can be evaluated for any number of in-
tegration points.

To begin with we divide the whole integration volume



8362 37

into jV equal reduced copies h, V of it, which have their
centers at points k;:

f(k+k; )

sz Ilk k,ll, , av 11k+k,. k, ll

As f(k+k; ) is a smooth function we can expand it into a
Taylor series around the point k;.

As a matter of fact the linear term in k is of the same
order as the quadratic one, namely of order O(h t), where
It is the diameter of hV. Therefore the first term in the
Taylor expansion already leads to a quadratic scheme:

dsk ~k, =" I(k)
iiz Ilk koll, ,

'
avi Ilk+ k; —koll

The remaining integrals are performed numerically with
high accuracy. To obtain an accuracy of 0(0.001 eV) it is

sulicient to take %=343 equidistant points k, corre-
sponding to 20 points in the irreducible part of the Bril-
louin zone.

The simple midpoint rule leads, in the case of the HFA
band structure, to an underestimate of the direct gap of
germanium by 0.3 eV. This underestimate has also been
noted by Gygi and Baldereschi. ' They pointed out that
the midpoint rule used by Ohkoshi' in a calculation of
the HF band structure of silicon tends to underestimate
the gap by about 1 eV as compared to their integration
scheme. For Si we find a somewhat smaller discrepancy
of 0.5 eV. Nevertheless that is a significant contribution
as far as the HFA. results are concerned. In covalent
semiconductors, however, the error in the final
exchange-correlation energies is reduced to about 0.01 eV
and can be neglected. Hence the more accurate treat-
ment of the Brillouin-zone integrals becomes more im-
portant for wide-gap semiconductors or insulators.
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