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Electronic states of doped semiconductor superlattices in magnetic and electric fields
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A theoretical treatment of the e8'ects of external Selds on the electronic properties of doped semi-

conductor superlattices is presented. Self-consistent calculations of the level structure in the pres-
ence of strong magnetic 5elds reveal the existence of surfacelike states associated with the depletion
regions at the ends of the superlattice. These states he in the gap between Landau levels during
Landau-level emptying and closely track the Fermi energy throughout the range of magnetic fields

where the Hall plateaus occur, These results explain important features observed in recent experi-
ments by Stormcr et al. , such as the gall quantization index and the anomalously sma11 activation

energy. The character of the surfacelike states can be strongly alected by varying the applied mag-

netic field and especially by the simultaneous application of an electric Seld in the direction perpen-
dicular to the layers. The large sensitivity to applied fields suggests novel experimental arrange-
ments which would directly probe the density of states of the system.

I. INTRODUrwI, ON

Research on multilayer semiconductor structures has
attracted increasing attention over the past few years. '

Much of this work has been stimulated by the possibihty
of being able to carefully control the electronic properties
of synthesized materials over quite a wide range of physi-
cal parameters. This most important feature has been
used to study a variety of very interesting physical phe-
nomena as well as to explore novel device applications.
Detailed understanding of the electronic properties of
these systems is rapidly increasing and further advances
are needed to fully exploit all their possibilities.

In this paper we present a description of the energy-
level structure and corresponding charge distribution
across a realistic semiconductor superlattice in the pres-
ence of strong magnetic fields and gate voltages. We
show that the level structure exhibits a very complex be-
havior as a function of the applied fields which includes
the creation of surfacelike states associated with the de-
pletion regions near the ends of the structure. An in-
teresting prediction of our theory is the possibility of
changing the surfacelike trait of these states to a more
bulklike character by changing the magnetic fidd and/or
the electric Seld applied to the system. This provides a
unique set of conditions by which to study a type of tran-
sltlo11 111 whlcll tllc con6ncmcnt ill ollc dll'cctloll can bc
easily varied. %e discuss the role of these states in cer-
tain experiments, especially the features of recent
quantum-Hali-effect observations by Stormer et al.
Indeed, the analysis of the level structure provides a de-
tailed explanation of the Hall quantization index and
especially of the puzzhng small activation energy mea-
sured for the highest Hall plateau. We also propose that
the additional application of a potential difference across
the superlattice chai.n in a Hall configuration would pro-

vide an interesting alternative probe of the density of
states within the Landau bands, a question of great
current interest.

In this work we will focus our attention on the
so-called type-I semiconductor superlattices. This choice
was motivated by the experimental system of Ref. 3 but
our model can be easily generalized to other types of tun-
neling superlattices. These structures are fabricated from
layers of a material such as GaAs alternating with layers
of the alloy Al„Ga, „As.Since the latter material has a
larger energy gap than GaAs, and the band discontinui-
ties align appropriately, the free electrons or holes avail-
able in the system (from either photoexcitation or ionized
impurities) will be confined mostly to the GaAs layers.
The heterostructures can also be doped during growth
with well-controlled profiles (modulation doping), ' '

which provides for further versatility since it is then pos-
sible to spatially separate the charge carriers from the
ionized impurities (if the lat ter are placed in the
Al„Gal „Aslayers), greatly increasing the carrier mobil-

ity. The term superlattice is usually reserved in the
literature for those heterostructure systems with thin
constituent layers, which allow for carrier tunneling in
the direction perpendicular to the growth direction. In
this type of system the carriers will have a three-
dimensional, albeit anisotropic, dispersion relation, un-
like the so-called multiple-quantum-well structures which
one can identify with a stack of two-dimensional systems.

The typical growth process of semiconductor superlat-
tices is usually associated with defect states near the end
layers of the structure. These states are related either to
deep impurities in the substrate materials commonly
used, or to surface states generated by the termination of
the layer growth. ' These midgap levels at the ends of a
superlattice have been reported in the literature for quite
some time; however, a more systematic study of their
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properties has not appeared, while other interface levels
are being actively studied. Since the defect levels gen-
erally lie deep in the energy gap of the semiconductor
structure they provide a reservoir of electronic traps
which pins the Fermi level of the system. This pinning
aSects the electronic level structure of doped superlat-
tices by producing depletion regions at the layers near the
top and bottom of the structure. ' A semiclassical treat-
ment is helpful in giving the extent of the depletion re-
gion and associated electrostatic potential but does not
address the quantum-mechanical nature of the resulting
electronic states. A detailed understanding of this
depletion-layer effect is of considerable interest since it
could a{Feet the various physical processes for which the
superlattices are grown in the first place.

Here we present the results of self-consistent calcula-
tions of the energy-level structure of these superlattices
and the associated charge profiles across the structure in
the presence of an applied magnetic field and a gatelike
voltage. The remainder of this work is organized as fol-
lows. ' Section II describes the model used in the calcu-
lation of the level structure. In Sec. III we present results
of the self-consistent calculations of the energy levels and
discuss the character of the associated wave functions as
a function of the magnetic field applied. We also discuss
the application of a simultaneous gatelike voltage across
the superlattice chain and its efFect on the electronic lev-

els. Finally, Sec. IV presents the consequences of the re-
sulting level structure for the quantum Hall experiment
and we discuss other experimental arrangements where
these levels would produce important observable effects.

tial wells (GaAs layers)„where j is the layer index (equal
to 1 to N) Correspondingly, the Hamiltonian which de-
scribes the motion along the z direction is given by

Z X J J(T~J(7 ~J+i CT J 0 ~J CT~J+1,~
J,O'

where cJ is the creation operator associated with the
state P and spin o, and r is the nearest-neighbor hopping
matrix element. The value of t is determined from the
bandwidth W of a periodic system by t = W/4, as in any
one-dimensional tight-binding model. 'i The diagonal
terms in Eq. (1}represent the self-consistent potential felt

by the electrons. This potential u(z} contains both the
electron-electron interaction and the electron-ion back-
ground interaction, and obeys Poisson's equation which
in discretized form is given by

vJ+i —2UJ+UJ i =47M 0 (P+ —PJ )/6, (2)

where p+ is the positive background density, p is the
electronic surface density of layer j, a is the superlattice
period, and e is the average semiconductor dielectric con-
stant. Notice that the solution to this finite-difFerence
equation is subject to complementary boundary condi-
tions, just as the difFerential equation it approximates.
The appropriate boundary conditions to this problem
should incorporate the existence of the midgap states
mentioned above. In order to model the situation in a
real superlattice system, the potential values at the ends
of the structure are kept fixed with respect to the Fermi
energy p of the system. At one end of the superlattice we
set

II. MODEL "w+i=JJ+& (3a)

A type-I semiconductor superlattice, as described in
the Introduction, may be viewed as a set of potential
wells and barriers for electrons {orholes} along the direc-
tion perpendicular to the layers (z-axis direction). The
defining features of this type of Kronig-Penney model
system are given by a fraction of the difference in energy
gap between the two materials at the I' point (fraction be-
heved to be about 65%, of a difFerence which in turn de-
pends on the alloy composition x in the case of
GaAs/Al„Ga, „As),'" as well as the corresponding
layer thicknesses. This representation of the semiconduc-
tor superlattice is in reasonably good agreement with the
observed main characteristics of these systems. Howev-
er, a calculation of the electronic level structure in the
case of a doped superlattice containing free carriers
should consider the existence of midgap states at both
ends of the system. Because of the necessary self-
consistency between the potential and charge distribution
in the system, the midgap states strongly aiect the result-
ing electronic states. This gives rise to depletion regions
near the ends of the superlattice and associated electronic
states, which are not described by the simple periodic-
potential model.

In this calculation we make use of a basis of 'Nannier
states belonging to the lowest electron miniband to de-
scribe electron propagation in the s direction. These
Wannier states QJ(z) are centered on the different poten-

where the constant value of 5 chosen produces a pinning
of the Fermi level at approximately 0.8 eV below the edge
of the conduction band of GaAs (i.e., U~ —JJ,=0.8 eV),
corresponding to the binding energy of the deep levels.

The other end is assumed to be attached to an
impurity-free bufFer region of thickness L (as is the case
in the experimental system of Ref. 3). The undoped
GaAs buffer region is followed by a doped substrate
which also provides midgap states at this end of the
structure. The potential u (z} in the bufFer region, since it
is free of charges, has a linear dependence in position,
with a uniform field given by —du/dz = (Uo —u, ) /a. The
potential at the far end of the bufFer is fixed at
U( —L)=p, +5', with 5' constant. From these two ex-
pressions and from u (0)=u„we find u {—L) =U,
+(Uo —U, )L/a, or correspondingly,

UO=Vi +(UN+i —Ui +5 —5)Q /L (3b)

as the second boundary condition imposed on the solu-
tion of Eq. {2).

The second term on the right-hand side of Eq. (2)
represents the electronic density, and its dependence on
the speci5c eigenfunctions of the system will force a self-
consistent solution of Eq. (2) and the diagonalization of
the Hamiltonian of the system (of which H, is the part
describing the motion in the z direction), together with
the boundary conditions provided by Eqs. (3). In the case
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The Gaussian function g(x) takes into account the im-

purity broadening of the levels,

g(x)=(2ml" )
'~ exp( —x /2I ), (7)

with a large rms width I", which allows us to neglect the
small thermal broadening present in experiments (i.e.,
I »kT). Indeed, simple estimates of I" based on the
electronic mobility po measured in these systems give
I =efi/2m@0= 1 meV. ' The form chosen for the
broadening function allows one to perform the integra-
tion in Eq. (5) analytically, reducing the expression for
the areal electronic density at layer j to

pj ——(2ma )
' g ib& i

I
„

fbi 5) CT

where I „=(1—erf [(E~+E« p)/I 2] I /2—, and
erf(x) is the usual error function.

Equations (1), (2), and (8} together with the boundary
conditions (3) form the set to be solved self-consistently
for given values of the parameters characterizing the sys-
tem. The speci6c chosen values model the system used in
the experiments of Ref. 3, but they can clearly be
changed according to the particular system of interest.
Section III presents typical level structures obtained by
the solution of the above equations.

%e are also interested in the efFect of a gate voltage ap-
plied across the superlattice in the z direction since this
would readily affect the extent of the depletion regions
caused by the pinning of the Fermi level. The application
of this voltage produces a charge imbalance which is
compensated by the charging of the structure, changing
the total amount of free electronic charge in the system
one way or another depending on the sign of the bias, in a
fashion similar to a gate voltage in modulation-doped
field-eff'ect transistor (MODFFT) structures. ' *' As is
shown in the following section, the gate voltage applied
simultaneously with the magnetic 6eld produces
signNcant changes in the level structure. This effect may

of a magnetic field along the z axis, B=zB, the in-plane
motion Hamiltonian yields the well-known Landau-level
structure, ' whose eigenvalues are given in terms of the
quantum numbers n (n =0, 1,2, . . . } and the spin z pro-
jection o =k —,', by

E„=(n+ ,' )fico—,+gpaBo,
where co, =e8 jm is the cyclotron frequency, m is the
eN'ective mass, pz is the Bohr magneton, and g is the
Lande factor appropriate to the system. In this case,
the electronic density per layer appearing in Eq. (2) can
be written as

pj =(2@a, )
' g JdE i

b
i g(E E„—), (5)

Nf, g, g

where (2ma, )
' is the Landau-level degeneracy per unit

area, and a, =(fi/eB}'~ is the magnetic length. The
coe5cients b describe the z-axis-motion eigenvector of
8, with eigenvalue E,8,4 =E 4, i.e.,

(z)= gb P (z) .

furthermore be used in the direct determination of the
electronic density of states, as will be discussed later. A
report of a very interesting experiment of this kind has
recently appeared. ' ' %e simulate the applied gate volt-
age by varying the parameter 5 which deffnes the value of
the potential energy at the edge of the semiconductor su-
perlattice. In the calculations reported in Sec. III, the
effective gate voltage is deffned as Va ——50—5, where

5o ——1.6 eV is the value in the unbiased system. ' This
variation in the parameter 5 would simulate the case in
which the voltage at that end (j =X) is applied with
respect to the middle layers of the superlattice.

%'e should stress that the boundary conditions given by
Eqs. (3) are designed to allow the total electron density in
the system to be determined self-consistently, according
to the Fermi energy. Here we have allowed the electron-
ic density to vary in a manner as to maintain a constant
Fermi level, since the system is assumed to have electrical
connections to an external charge reservoir and to be in
equilibrium with it. ' The charge would flow through
the contacts attached to the electronic system and would
regulate itself. This is of special importance in the case of
a gated system, as will be shown below, since the voltages
applied across the structure will eff'ectively empty or fill

the layers of the superlattice in order to achieve electro-
static equilibrium.

III. LEVEL STRUCTURE

In this section we present examples of the electronic
level structure of superlattices in the presence of applied
magnetic fields and gate voltages. All of the calculations
were made for a system consisting of 30 periods of
GaAs/A1GaAs layers (i.e., %=30), in order to allow
direct comparison with the experiment of Ref. 3.

A. In a magnetic Seld

Figures 1 and 2 show the energy levels of an unbiased
system with parameters given in Ref. 17, for different
ranges of the applied magnetic ffeld B. The eigenvalues
E „=E„+Eare plotted relative to the Fermi level p,
and only the center of each broadened level is shown.
Notice that each Landau level is actually a band of width
8'=4t, due to the z-direction dispersion. Figure 1 shows
the region of magnetic field in which the second Landau
band (n =1}is being emptied, and Fig. 2 shows the region
for the emptying of the third band (n =2). A very impor-
tant feature of both of these diagrams is the appearance
of split-off levels (denoted by SS in Fig. 1) that lie in the
gap region between consecutive I.andau bands. Notice
also that these levels track the Fermi level closely over a
wide range of magnetic field values, and therefore remain
only partially 611ed. The eigenvectors corresponding to
these split-off' states are strongly peaked near one of the
ends of the chain, and decay rapidly towards the interior
of the superlattice, within about two GaAs layers (see
below). This surface-localized character is not unlike
that of evanescent states appearing at crystal surfaces.
However, the surfacelike states in this superlattice system
are typically extended over a much larger region (at least
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FIG. 1. Energy levels E „ofa tunneling superlattice with
respect to the Fermi energy p (dashed line} for lowest Landau
indices n Only c.enter of each broadened level is shown (I =1
meV). SS spin doublets correspond to the quantum numbers
o =2 z', n =0, and m =24 (25) for levels below (above) p, . QSS
doublets correspond to 0 =2 2, n =0, and m =22,23.

5
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FIG. 2. Level structure at lower magnetic 6eld. Here, the
n =2 band is being emptied. Notice SS states also present in the
Landau gap regions. These spin doublets (o =k-') are labeled

by their quantum numbers n, m.

a whole GaAs layer) and most importantly, their surface
localized character is strongly a+ected by the uariation of
the applied magnetic &kid, as can be seen in Fig. 3.

Figure 3 shows the z-motion eigenfunctions 4~ [i.e.,
the value of the bj coefficients in Eq. (6)] associated with
the two SS doublets shown in Fig. 1 (which correspond to
the eigenvalues with quantum numbers ri=O, o =+-,',

I 1 I J s f ~ I I I I t I ) I I I I f I 1 I I ) l I ~ ~

0 5 S 6 20 25 30
LAY& INDEX j

FIG. 3. z-motion eigenvectors of SS states in Fig. 1 for
several values of magnetic Seld. Notice larger penetration for
increasing Seld values, where eigenstates join band quasicontin-
uum, especially for m =24 state, In each panel all traces but
the lowest are successively displaced upwards by 0.5.

and m=24, 25), for several values of the magnetic field.
These states are mostly associated with a given end of the
lattice (m=24 with the right end, m=25 with the left
end), but their extension in the superlattice changes with
the value of the magnetic field. Indeed, the eigenfunc-
tions are strongly peaked at one given layer for fields
8 5 8.9 T, corresponding to the larger splitting from the
band, and become more "bulklike" as their eigenvalues
approach the band, reducing their splitting. This is espe-
cially so in the case of the m =24 doublet which joins the
Landau band at about 10 T, while the doublet with
m=25 remains highly localized at the left end of the
structure. Therefore, changing the magnetic field by
about 2 T (from 8.9 to 11 T) increases the penetration
(i.e., layers for which b &yO) of the state 424 by a factor
of 3 and that of 42, by only a factor of 2.

Figures 1 and 2 also show states (denoted by QSS)
which have a tendency to peel ofF from the band
quasicontinuum, but only for a small range of magnetic
ffelds (51 T}, and indeed act as precursors of the total
emptying of a Landau band. Moreover, the energy shifts
of the QSS states are accompanied by an enhancement of
their wave-function amphtude near the end layers, which
makes them acquire a more surfacelike character. The
z-motion eigenfunction 4&3, corresponding to one of the
QSS states, is plotted in Fig. 4 for several values of mag-
netic Seld and shows clearly these efFects. It is very in-
teresting that the wave function associated with this state
is much more sensitive to changes in magnetic field than
that of the SS states even though the energy shifts are
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FIG. 4. z-motion eigenvector m =23 for two different ranges
of 8. Notice drastic changes in extension for this QSS state
which peaks near the left end of the structure when its splitting
from the Landau band is greatest (see Figs. 1 and 2),

smaller than those of Cz4 and 4zs. This diFerent behav-
ior may be related to the complete occupation of the
low-lying doublet, as opposed to only a partial filhng of
the others. Notice also that 42& is greatly affected by the
emptying of the n =2 Landau band, as can be seen in the
lower panel of Fig. 4. This behavior is accompanied by a
rather pronounced sphtting of its eigenvalue from the
band in the range 8 =4-4.5 T and shown in Fig. 2. The
state with eigenfunction 4z2 is also afFected by varying
magnetic fields although in a less pronounced fashion,
and 42z tends to remain extended throughout the struc-
ture except at 8 =8.9 T, when it is highly peaked around
j=25.

It is also striking to find in Fig. 1 a sudden global rear-
rangement of the level structure with respect to p, , occur-
ring simultaneously to the total emptying of consecutive
Landau bands. This is an unexpected elect produced by
the electronic interactions introduced in the self-
consistent description of the system, and would not ap-
pear in a noninteracting-electron situation. The global
rearrangement occurs every time that a I.andau band
empties. This is propitiated by the varying degeneracy of
the magnetic levels, and exhibits smaller "jump" ampli-
tudes for larger Landau band index values (smaller mag-
netic fields) because of the decreasing fractional charge of
each band with respect to the total. This latter feature is
evident in Fig. 2 where the level restructuring is less sud-
den and pronounced. One can also see the global level
restructuring in a plot of the total density of states for

a-10 T

8.88 (
I

~ s
l
s

s

s

I

~

0
-20

FIG. 5. Total density of states D(E) of Eq. (9) for sev«a&
6eld values near the emptying of the n = 1 Landau band. Struc-
ture at the Fermi level for 8 =8.87 I is due to SS doublets.

various magnetic field values {Fig. 5}. This plot, comple-
mentary to Fig. l, shows the total density of states per
unit area D (E), given by

D( E)= ( 2n a,z) ' g g (E E—„},
m, n, 0

where g {x)is defined by Eq. (7). For fields 8 =8 and 10
T, we see the expected symmetric distribution for each
Landau band with a total bandvndth =4t+2I =4.5
meV. However, at the emptying of the n =1 Landau
band (8 =8.9 T) the function D (E) is highly asymmetri-
cal and shows a large feature right at the Fermi level
which comes mainly from the two SS doublets (n =0,
o =2—,', m =24, 25).

One very important characteristic of the level structure
is the fact that the surfacelike states remain almost sta-
tionary in energy across the global level rearrangements,
with only a gradual slow drift with respect to p which
changes their fractional occupation. This tracking of the
Fermi level by the SS levels clearly causes a nonzero den-
sity of states at the Fermi level for all values of the mag-
netic field, as is shown in Fig. 6. This "straddling" of the
Fermi level by the surfacelike states has a very important
consequence: the observed electronic properties of the
system in this regime will be strongly influenced by the SS
states, and they would be of the utmost importance in a
number of experimental con6gurations such as the quan-
tum Hall efFect (see Sec. IV}.

As mentioned in the previous section, the boundary
conditions imposed on the self-consistent potential U(z)
allow fluctuations of the total amount of negative charge
in the superlattice structure. Indeed, while the level
structure is undergoing the substantial rearrangement de-
scribed above, the total electronic charge increases with
magnetic field although only slightly. The dimensionless
ratio of total negative charge to total positive charge den-
sltles,
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FIG. 6. Density of states at the Fermi level vs magnetic Seld.
Nonzero values at the emptying of the I.andau bands (8=8.9
and 4.5 T) are due to SS states near p.
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changes from 0.7986 to 0,7992 (or 0.075%) in the range
of magnetic field from 3 to 11 T. This small change in
the total charge of the system would occur in typical ex-
periments, with the exception of the so-called floating
gate arrangements where the total charge in the system
can be controlled with great precision. Notice also that
the change in the total electronic charge with magnetic
field occurs in the semiconducting layers near the ends of
the superlattice while the layers in the middle remain
with a constant amount of negative charge. This of
course is in agreement with the fact that the SS states
with varying "filling factors" are peaked mostly near the
end layers, and that the associated depletion region ex-
tends over only a few layers. Figure 7 shows a typical
electronic density profile across the superlattice and the
corresponding potential function U(z). Notice that the
depletion regions at the ends of the superlattice extend
over several layers, and are not parabolic, contrary to
what the semiclassical treatment in the absence of mag-
netic 6eld would suggest.

We have also investigated the efFect of varying the
transparency of the superlattice layers via the hopping
parameter t. In practice, this parameter can be changed
over a wide range since it is determined by the alloy con-
centration and the layer thickness. Figure 8 shows the
electronic energy levels of a more "transparent" system
which has a larger tunneling parameter than the system
of Fig. l described so far. In this case we have chosen
I; =2.5 meV, four times as large as before, ' which is
reAected in the larger width of the Landau-band
quasicontinuum, approximately lo meV. Some of the
main features observed in Fig. l also appear here, espe-
cially the surfacelike states which track the Fermi level

FIG. 7. Electronic density per layer pj (solid line) and corre-
sponding potential function u, for a typical value of magnetic
Seld. Depletion regions on both ends of the structure extend
over several layers on each side.

over a range of magnetic fields, and a gradual emptying
of the SS states. Notice, however, that the level rear-
rangement at the emptying of consecutive Landau bands
is much less pronounced, and moreover that the precur-
sor QSS states present in Fig. 1 do not appear here. The
corresponding QSS eigenvectors, with rn =22,23, show
no tendency to peak around a layer near the ends of the
structure and remain bulklike for all values of field. The
larger tunneling parameter has thus smoothed out the
sharp level rearrangement seen before, as well as prevent-
ed any peel-of precursor of the Landau-band emptying.
This is understandable since in the limit of very large r

the system will become completely three dimensional, the

P m a'isa'eeemmawaaaaaamaaaeeaaaeeaaeeaamaaaaaaaeeaeaa

l

6 7
s r f I 1 I l f t ~

FIG. 8. Level structure for a superlattice ~ith t =2.5 meV,
in the region of n =1 band emptying. SS doublets are clearly
present but QSS are not.
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magnetic quantization mould not be extreme, and we
would have partial occupation of even the bulklike states
(since at these values of the field Aco, would be smaller
than the z-motion bandwidth).

S. Emect of gate voltage

As mentioned before, we have also studied the effect of
a gate voltage on the electronic level structure of this sys-
tenl. Iil our calclllatloil we collsldel' the gate voltage to
be applied with respect to the middle portion of the struc-
ture, where the self-consistent potential function is Sat
(see Fig. 7). In this scheme, the right-hand side of the su-
perlattice (layer index j=30) will have an additional po-
tential bias, while the left-hand side is left untouched.

Figure 9 shows the results of our calculations for a
magnetic field value of 8.5 T. The level structure at
VG

——0 corresponds to that shown in Fig. 1 for this 8-
field value. It is clear that for increasing bias the total
negative charge of the system increases and correspond-
ingly the number of z-motion levels below the Fermi level

must increase as well. Figure 9 shows how the levels are
pulled below the Fermi level one by one for successively
larger voltages. A most important feature of this dia-

gram is the rapid energy shift of the surfacelike states ly-

ing in the Landau gap. This sharp variation in energy is
of course accompanied by the corresponding change in
character of the z-motion eigenfunction 4, as verified

by direct inspection of the results. This Ineans that the
surfacelike states become more and more bulklike as the
bias is increased and they eventually join the Landau-
band quasicontinuum. This sensitivity of the eigenstates
to applied electric fields would allow one to smoothly
vary the extension over the rather larger length scale of
several superlattice periods. The application of gate volt-

ages would then be a unique probe which drastically
changes the physical response of the system, since the SS
states are the closest to the Fermi energy and would be
most important in a number of experimenta1 situations.
Notice also that the rapid energy shift of the SS levels
changes their fractiona1 occupation very fast, which
would affect the weight of their contribution to physical
response functions.

Figure 10 shows the level structure at a larger magnet-
ic 6eld, 8 =8.87 T, corresponding to the emptying of the
n =1 Landau band (see Fig. 1). Notice how the SS levels
vary rapidly with VG in this case as well, despite the fact
that the Landau bands are more spread out and the
difference between levels in the band and out of it is less
pronounced. In fact, the large sensitivity of the SS states
to app1ied gate voltage is present for all values of magnet-
ic 6eld studied.

In Fig. 11 we show the total density of states at the
Fermi level for the values of magnetic field of the previ-
ous two figures, as a function of the gate voltage. This
quantity is of interest since it enters in a number of physi-
cal functions such as the magnetoresistance. ' As one
would expect from Figs. 9 and 10, D (p) shows successive
maxima as the middle of each SS doublet crosses the Fer-
mi level (recall that I'=1 meV in this calculation). The
crossing of each SS doublet occurs approximately every
0.7 V, although this spacing between levels rapidly de-
creases for increasing bias by about 0.1-V steps. One can
directly compare the bottom trace of this theoretical plot
with recent measurements by Stormer et al. of the mag-
netoresistance p„,as a function of the gate voltage.
Figure 7 of Ref. 3(b) shows large oscillations in p„„for
varying bias with intervals closely in agreement with
those of our Fig. 11, However, a detailed comparison of
the peaks in D(p) with these experimental results should
await calculation of the transport coefficient which takes
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8 =8.5 T. Only n =0, 1 Landau bands are shown. All SS levels
with an m label belong to the n =0 band, and are successively
pulled below p for increasing VG.

FIG. 10. Level structure vs V& for 8 =8.87 T. Landau
bands are much more spread out at this field value but SS levels
still shift rapidly with V&.
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into consideration the distribution of extended and local-
ized states @+thin the Landau band, as well as the de-
tailed quasiparticle level distribution presented here.

As more and more levels are successively pulled below

p for increasing VG and their fractional occupation in-

creases, the total negative charge in the system also in-

creases. Figure 12 shows this variation for 8 =8.5 T (the
corresponding trace for 8 =8.87 T is indistinguishable
on this scale). We notice linear sections on this curve
corresponding to the filling of a particular SS state and
joined smoothly by curved segments at voltages which
agree with the minima of Fig. 11.

One also notices in Figs. 9 and 10 that while a SS level
shifts and its filling changes quickly, the level immediate-
ly above it remains only partially Med, close to p, and
practically with the same energy. Analysis of the z-
motion eigenfunctions corresponding to the diS'erent lev-
els shows that the eigenvector of the nearly fiat level is
peaked at the left-hand side of the structure (small values
of the layer index j), in contrast to the SS level which has
its eigenvector mostly at large j values. This is a conse-
quence of the procedure followed in applying the gate
voltage, which leaves the left end unchanged with respect
to the middle layers of the structure.

IV. DISCUSSION

We have presented in the previous sections the results
of self-consistent calculations of the electromc level struc-
ture of a doped semiconductor superlattice in the Hall
configuration for large magnetic fields and simultaneous-
ly apphed gate voltage.

Let us now discuss the consequences of the calculated
level structure for the quantum Hall efFect. In the usual
two-dimensional systems, at low temperatures and strong
magnetic fields, the Hall resistance is quantized to a very

high degree of accuracy according to p„=hjve~, where
v is an integer, while p nearly vanishes. 2' The Hall pla-
teaus are understood in terms of the Fermi level lying in a
mobility gap with the integer v being a topological invari-
anti'2 related to the number of Landau levels r having
their extended states below the Fermi level. In a single
two-dimensional (2D) system v =r, whereas in a
multiple-quantum-mell stack v=n, vrhere s is the number
of wells in the stack. The experimentally observed value
of v=48 reported by Stormer et al. for the plateau cen-
tered at 8 =8.9 T is completely consistent with identify-
ing v with the number of broadened levels E „whose
centers lie below the Fermi energy in our calculation (see
Fig. 1, where there are 48 levels below p, ). The SS levels
have a strong 2D character because of their near
confinement to a single GaAs layer, and it is thus reason-
able to assume that they would have a very narrow range
of extended states at the middle of the broadened E

„

level, in agreement with the results for truly 2D sys-
tems. Correspondingly, the activation energy 5 of the
Hall plateau should be given by the separation between p
and the closest surface level extended in the x-y plane
(notice that there are localized states right at the Fermi
leuc/ which come from the tails of the nearby levels as a
result of the finite broadening). We find i) &0.5 meV.
This value is over an order of magnitude smaller than the
activation energy which one would expect in the absence
of surface states (since then one would estimate
b =%co, —W=13 meV, as explained in Ref. 3). Our cal-
culations thus provide an explanation to the puzzle of the
very small activation energy measured by Stormer et al. ,
5 ~,=0.26 meV. Precise agreement with experiment
can be attained here by small variations of the constants
5 and 5', or by changing I', but this would be somewhat
artificial since one expects other effects also to have an
impact on this fine tuning. ' This interpretation also
answers the question of why an integer v is observed ex-
perimentally even though there is unequal filling of the
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FIG. 11. Density of states at the Fermi level vs gate voltage
for two values of magnetic Seld. Peaks correspond to the mid-
dle of SS states successively crossing p.

FIO. 12. Total negative charge in the system, Eq. (10},vs

gate voltage for 8 =8.5 T.
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layers in the depletion region and a layer counting argu-
ment similar to that of multiple-quantum-well systems
would not be valid.

Another consequence of this picture is that by applying
a gate voltage one changes the number of levels below& p,
as seen in Figs. 9 and 10, and this would be expected to
change the measured value of v. Stormer et al. , antici-
pating this result with great intuition, have indeed
verified that this is the case. They have measured p„~for
difFerent gate voltages and found v to vary in steps of
two, corresponding to each SS doublet being emptied or
611ed as the bias varies. ' ' lt is interesting to notice that
the gate voltage would affect the value of Is, since it pro-
duces shifts of the SS levels. Determination of b, for
different gate voltages could provide an alternative and
rather direct experimental map of the distribution of ex-
tended and localized states within the SS levels.

The existence of the surfacelike states should also be
important in other experimental situations where the
states near the Fermi level are being probed. Examples of
this could be the far-infrared resonance of the superlat-
tice, and the collective excitations of the electronic sys-
tern associated with its surface. Further experimental
and theoretical work is needed to assess the impact of
these states.
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