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%'e present a systematic discussion of the e6ect of resonant impurity scattering on anisotropic
model states of heavy-fermion superconductors. The impurity scattering is treated in the self-

consistent T-matrix approximation including a renormalization of the frequency m and the quasi-

particle energy gz. Model states considered include the axial and polar states familiar from

superfluid He as well as two states, termed hexial and hybrid, occurring in the group-theoretical
classification of singlet states in hexagonal symmetry. %e calculate the density of states, the criti-
cal temperature and the order parameter, the speri6c heat, the thermal conductivity, and the
spin-lattice relaxation rate. Vertex corrections are included in the calculations of two-particle
quantities. The observed properties of the prototype Fermi-liquid material UPt3 show many quali-

tative features in common with our model. However, it turns out to be diScult to identify any

given state with certainty. An experimental test of our predictions on the behavior as a function
of impurity concentration, particularly in the gapless regime at low temperatures, would allow for
a more de6nitive characterization of the superconducting state.

I. INTRODUCTIGN

There now exists a considerable body of data' on the
thermodynamic and transport properties of the three
currently known "heavy-fermion" superconductors
CeCu2Siz, UBe, 3, and UPt3, against which theories of the
superconducting state in these compounds must be test-
ed. All measurements to date deviate strongly from the
predictions of the BCS (weak-coupling) theory, otherwise
so successful in describing many aspects of "ordinary"
superconductivity in less strongly interacting systems. A
number of authors have suggested that an extremely
anisotropic order parameter could be responsible for the
anomalous temperature dependences observed in experi-
ments on heavy-fermion systems. The best known exam-
ple of this type of order is the well-studied super6uid A

phase of He, where the order parameter actually van-
ishes at points on the Fermi surface. The existence of
Bogoliubov quasiparticle excitations in the neighborhood
of these nodes gives rise to a non-BCS behavior in the
specific heat C(T) and other measured properties, par-
ticularly at low temperatures where the node contribu-
tions are dominant. Power laws in temperature predict-
ed by the simplest version of BCS theory in the presence
of such highly anisotropic correlations should depend, at
the very lowest temperatures, only on the dimension of
the manifold of gap nodes (i.e., points or lines) and the
rate at which the gap vanishes in the neighborhood of
the nodes.

The hypothesis of anisotropic pairing, while qualita-
tively successful in explaining speci6c-heat measure-
ments, has been shown to fail when applied to the cal-
culation of transport coe%cients in the Born approxima-

tion. Simple estimates indicate that the product of the
quasiparticle scattering time and density of states is
essentially energy independent for all anisotropic gap
structures, leading to transport coeflicients with temper-
ature dependencies identical to those in the normal state.
(More precisely, in those cases where the transport
coeScient is a tensor quantity, the largest eigenvalue
behaves in this way. ) This is in stark contrast to the
temperature dependences actually observed in heavy-
fermion superconductors, where power laws in tempera-
ture with exponent higher than that observed above the
transition have been claimed.

A resolution of this dilemma was proposed by Pethick
and Pines, who argued that nonmagnetic impurities in
heavy-fermion systems give rise to an impurity potential
which is strongly screened, such that the Friedel sum
rule is essentially exhausted by the s-wave scattering
phase shift 5c=nq/Xf. Here qe is the charge on the im-

purity and Nf the level degeneracy of the scattering elec-
trons. In CeCu2Siz, crystal-field splitting is thought to
result in a doublet ground state, and there exists some
evidence that the same is true in the uranium com-
pounds despite the complications of strong spin-orbit
couphng. In this case a singly charged impurity gives
rise to scattering in the unitary limit 5c=n/2 as sugge.st-
ed by Hirschfeld et al. , ' hereafter referred to as I. In a
complementary approach, Schmitt-Rink et a'. " have
suggested that a substitutional impurity or vacancy in a
Kondo lattice is associated with a relative Kondo phase
shift of tr/2 with respect to the lattice background.

The consequences of the assumption of resonant
scattering are important in both the normal and super-
conducting states. Pethick and Pines showed that the
dramatically enhanced transport relaxation rates exhibit-
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ed by the three heavy-fermion superconductors at low

temperatures could be qualitatively understood on this
basis. The conclusion follows essentially from the varia-
tion of the quasiparticle relaxation rate I/~ in the uni-

tary limit with N(co)/[6'(co)], where 6'(~)-cu over a
wide intermediate frequency range (G' is the real part of
the single-particle propagator). Consideration of the cal-
culated frequency dependence of 1/r for model aniso-
tropic states then led Pethick and Pines to predictions
for the temperature dependence of the longitudinal
sound absorption and thermal conductivity at variance
with at least some of the experimental results on UBe»
and UPt3. Subsequently, Hirschfeld et al. ' demonstrat-
ed that an analysis based on the leading-order frequency
dependence of the density of states and similar quantities
is not sufIicieat to nake realistic predictions for the tem-
perature dependencies of transport quantities in the an-
isotropic supercoadueting state. At very low tempera-
tures, they showed that a self-consistent treatment of the
resonant scattering leads to an unusual "gapless" behav-
ior in which the system respoads, even in the presence of
very small impurity concentrations, much as in the nor-
mal state, albeit with a much reduced density of states.
Closer to T„ the temperature dependence of the order
parameter combines with the upper cutoff in the fre-
quency power laws to destroy the temperature power
laws expected. Numerical results for the temperature-
dependent speci6c heat, thermal conductivity, and ul-
trasound attenuation near the unitarity limit were corn-
pared in I with the available data for UPt3 and found to
be consistent with a line or possibly points of nodes in
the hexagonal basal plane, given an impurity concentra-
tion of 10 -10 in nominally pure samples. Similar
conclusions were reached by Schmitt-Rink et al. " and
Scharaberg et Ql. '

Resonant impurity scattering can have equally impor-
tant consequences for transport quantities in the heavy-
fermion normal state. Varma'3 and Batlogg et al. '

have emphasized the remarkable fact that mean free
paths deduced from transport experiments on heavy-
fermion compounds are of the same order of magnitude
as in ordinary metals. Since the Fermi velocity scales in-
versely with the effective mass m', the relaxation time
must vary as m '. This nay be explained by assuming a
heavy-fermion self-energy X(k, co) due to inelastic pro-
cesses with negligible momentum dependence, as pro-
posed by Varma, or in those cases where impurity
scattering dominates, by assuming the existence of near-

ly resonant scatterers in the samples. Ia the latter case
one also finds that 7 varies as X(co) cx:m' in the normal
state, just as in the superconductor.

In this work, we further explore the consequences of
the resonant scattering assumption for the properties of
heavy-ferrnion superconductors. In Sec. II, we present a
more detailed account of the self-coasistent T-matrix ap-
proximation for the impurity self-energy described in I.
In Sec. III, we calculate various thermodynamic and
transport properties for model order parameters with
points and lines of nodes on the Fermi surface, as well as
states allowed in hexagonal crystal symmetry under
group-theoretical classi6cations, ' ' and compare our

results with the available experimental data on UPt3. In
addition to those properties discussed in I, we present
new calculations of the nuclear magnetic relaxation rate
1/T, . The treatment of transport properties described
in I is supplemented here by the addition of vertex
corrections, which Inay be important even in the case of
purely s-wave scatterers, ' in contrast to the familiar re-
sults for isotropic superconductors. ' A self-consistent
T-matrix description of impurity-limited transport is
shown to require renormalization of single-particle ener-
gies even in particle-hole symmetric systems, again in
contrast to the isotropic case. %e And, as expected, that
various allowed states give results qualitatively similar to
the model states considered in Sec. III. In particular,
the results for the disallowed "polar" state, with an
equatorial line of nodes on the Fermi surface, are mim-
icked by certain allowed aaisotropic singlet states. Fi-
nally, in Sec. IV we present our conclusions and sugges-
tions for further experimental and theoretical work.

In what follows we have concentrated primarily on
comparisons of theory with data currently available for
UPt3. The other two heavy-fermion superconductors,
CeCu2Si2, aad UBe», are certainly not less interesting,
and our neglect requires some justification. At present
one major goal of our analysis is to rule out, if possible,
all anisotropic states incompatible with experiment (in
the framework of the anisotropic pairing hypothesis).
Measurements of anisotropic thermal conductivity and
ultrasound attenuation, which may prove particularly
important tools in this e6'ort, have at this writing been
performed more exhaustively on UPt3 than on the other
two compounds. Perhaps more importantly, it is only in
UPt3 that we have, in the smallness of the specific-heat
jump at the superconducting transition and the onset of
coherence displayed in the low-temperature normal-state
resistivity, strong indications that the system has entered
a Fermi-liquid-like phase before it makes the transition
to the superconducting state. Incorporation of resonant
scattering effects into an anisotropic version of weak-
coupling BCS theory may therefore be justi6ed in UPt3,
since normal-state quantities may be taken as constant in
energy on a scale of T, . This does not appear to be the
case in the two Kondo-lattice compounds CeCu2Si2 and
UBeI3 where strong-coupling corrections are explicitly
reflected in the large specific-heat jumps (see, however,
experiments on UBe, 3 under pressure). Nevertheless,
there is no particular reason to assume that strong-
coupling effects make as important a contribution to
transport coe5cients as they do to the one-particle prop-
erties. Varma' has, in fact, argued that they may van-
ish altogether. The results given below may, therefore,
be in some cases relevant to CeCuzSiz and UBe» as well
as UPt3. In Sec. IV we discuss some interesting aspects
of this comparison.

Because its calculation is considerably more involved
than the other transport properties we consider here, we
have considered the problem of hydrodynamic sound at-
tenuation in anisotropic systems in a separate, comple-
mentary publication. ' The calculation follows the
method outlined here in Appendix B.
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g(k, a))=l T(k, k, a)), (2.2)

where I =(n, /sic)(N/V), n, is the impurity concentra-
tion, N/V is the electron density, No is the density of
states, and g obeys the I.ippmann-Schwinger equation

g(k, k', ~)= V(k, k')+ g V(k, k )g"(k ,a"))T(k , k",al') .
(2.3)

Here V is the scattering potential for a single electron.
It is convenient to rewrite (2.2) in terms of the normal
state (LLk ——0) K matrix, which contains the details of the
complicated scattering problem in the normal state. %e
therefore split off the of-shell part of the normal-state
propagator g~, and resume:

II. T-MATRIX APPROXIMATION
FQR THE SKI.F-ENKR(GV

%e consider the effect of potential scattering by spin-
less, noninteracting impurities on the single-particle
propagator g(k, co) for superconducting electrons, which
obeys the Dyson equation

[~so—g,Z'-~, -Z(k, ~)]g(k,~)=ro.
Here g& is the quasiparticle energy, g& is the order pa-
rameter„v (j =1,2, 3) are the Pauli matrices, r is the
unit matrix, and aB underlined quantities represent ma-
trices in particle-hole (Nambu) space. We suppress spin
indices, which do not play a role in our discussion. The
self-energy g(k, co) in a single-site approximation is

%e proceed to a solution by expanding all matrix
quantities as X= g. OX rj. The formal expression for
the one-particle Green's function is then

g(k, co)=. . .(aro+ 6„+g„~'),
@2 +2 $2

(2.7)

co =kP —Xo,

4=4+ &l

~~=~~+&i2

(2.8a)

(2.8b)

(2.8c)

6)

(ru' —6')'~'ji (2.9)

in order to obtain a consistent solution to (2.1), (2.2),
(2.6), and the gap equation

bg ——T g g V~—~.—,'Tr[(r'+r )g(k'„co„)], (2.10)

and X&2
——X&v'+X2~. The general expressions for the

solutions T, to (2.6) are quite complicated and contain
all components of the integrated Green's funct'ion 6 . A
considerable simpli6cation of the problem arises if one
assumes (a) particle-hole symmetry, and (b) an order pa-
rameter odd under inversion (odd parity) or under anoth-
er symmetry of the crystal (certain even-parity states
also included). In this case the components
6

&

——62 ——63 ——0, and one need only calculate

T= V+ V(g gN+g—N)T

=( V+~V~ V+ Vg~~V' V+ )[1+(g—g~)T]

(2.4a)

(2.4b)

where V~ is the pair potential. In (2.9) the angular
brackets denote an average over solid angle. It is not
immediately obvious that the quantities

&Jv +K—~(g gJ'v )T— (2.4c)

We now exploit the fact that Kz and, by extension, T
vary slowly in energy with respect to the sharply peaked
on-shell part of the Green's function; the off-shell part g'
tends to its normal-state value for energies outside a
shell of width 5 about the Fermi energy. This collapses
the energy part of the momentum sum in (2.4c). If we
further assume that the scattering potential is strongly
screened, the angular dependence of K~ and T over the
Fermi surface may be neglected, and we arrive at

and

1 —k
-z -z~&0

(2.1 1)

may be taken to vanish even if the single-particle spec-
trum and pair function of the pure system manifest the
symmetries (a) and (b) above. That this is indeed the
ease is shown in Appendix A. Then T takes on the par-
ticularly simple form T=To~ +T3~, where

T(co)=K~+Kz g [g(k, co) gJ'v(k, co)]T(co—), (2.5) Go —CTo— ~3
c —Go ~ —Go2 2 2 2

(2.12)

where we have explicitly neglected the frequency depen-
dence of the normal state K matrix, since ECz varies on
an energy scale Ez ««T, . The principal-part integration

vanishes, leavlflg lls with

T(co)=K~+KNQ(co)T(a)), (2.6)

where Q(co) =( I/nNO)g~g(k, co), and %0 is the density
of states at the Fermi surface. Vhth the usual parame-
trization of the E matrix in terms of an s-wave scattering
phase shift 50, K~:——tan50, Eqs. (2.1), (2.2), and (2.6)
now allow for the straightforward calculation of the
single-particle propagator in the presence of impurities
of arbitrary concentration and scattering strength.

and e =—cot5o is a convenient measure of the scattering
strength, with c=0 in the unitary limit and c ««1 for
weak scattering. Furthermore, only To is necessary for
the calculation of single-particle properties via (2.7) and
(2.8a). On the other hand, the full structure of the T
matrix must be included in all two-particle correlation
functions. As a practical matter, this means that the
single-particle energies in g must be renormalized as in
(2.8b). This complication does not arise in the usual
Abrikosov-Gor'kov theory of impurity scattering in the
Born approximation, since X3 const under the usual
particle-hole symmetry assumption, and may be ab-
sorbed into the chemical potential. The eHect of X3 in
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this case thus vanishes in both the weak- and strong-
scattering limits, since from (2.12) X&~0 as c~0. The
results of I, which neglected this renormalization even
for 6nite c, are nonetheless essentially unchanged near
the unitarity limit, as shown in Sec. III.

If deviations from the resonant scattering limit are
small, inclusion of X3 in 6 is qualitatively important
only for these superconducting two-particle properties
for which vertex corrections due to impurity scattering
play an essential role. In particular, the consistent treat-
ment of X3 eliminates an unphysical singularity in the
collision contribution to the longitudinal sound attenua-
tion. ' Thus the treatment of Scharnberg er al. ' is in-
consistent except in the unitary limit. An improved ver-
sion of their theory has recently been put forward.

If c= 1, qualitative changes in transport coencients
may be expected, particularly with regard to anisotropy.
For example, o6'-diagonal components of the thermal
conductivity for uniaxial states arise through the self-
consistent treatment of vertex corrections and X3 As c
is thought to be small compared to one ia heavy fermion
systems, we do not treat these effects here.

III. THERMODYNAMIC AND TRANSPORT
PROPERTIES FOR MODEI ANISOTROPIC STATES

In a pure anisotropic superconductor, thermodynamic
and transport properties are characterized at the lowest
temperatures by power laws (T/'1, )" if the gap vanishes
somewhere on the Fermi surface. This is because
thermally excited Bogoliubov quasiparticles may exist in
the neighborhood of the gap nodes even at the lowest
temperatures, in contrast to the usual BCS case, where
excitations may be created over the finite gap only with—lk/k~ T
probability e . In the Born approximation, small
concentrations of impurities are known to preserve the
power laws, albeit with modified prefactors, for states
with point nodes, while destroying those for states with
lines of nodes. For suSciently large concentrations, typ-
ically I '"-50, zero-energy single-particle excitations
are present for any type of state. If one considers the
density of angle-resolved single-particle excitations

X-(~)=——(1/~) Im fdgg(k, ~),
one sees that what happens is that the nodes of the ener-
gy gap QG(k) are broadened to include small areas of
the Fermi surface. This gives rise to thermodynamic
and transport properties similar to the normal state, al-
beit with a much reduced density of states. The impor-
tance of the unitarity limit in this regard is that scatter-
ing is much more rapid, and therefore that part of the
Fermi surface "goes normal" at significantly smaller im-
purity concentration. %'e wiB refer to behavior of this
type as "gapless, " since similar effects are observed in
ordinary dirty superconductors when the gap vanishes
completely. A common confusion in the current litera-
ture arises because of the further use of the term "gap-
less" to mean a system mith Gnite density of states at all
energies, a characterization which may apply to aniso-
tropic superconductors even without impurities.

A. Gay anisotropy

The simplest possible model states displaying nodes in
the order parameter 5& are the polar and axial solutions
to the gap equation (2.10) for a pure J =1 pair potential,
with angular structures 6&——hocos8& and 6&——hosin0&,
respectively. It has become commonplace in discussions
of anisotropic superconductivity to present results for
these two states, since many order parameters consistent
with the crystal symmetry of the heavy-fermion com-
pounds display similar lines or points of nodes on the
Fermi surface. If a quantitative comparison of theory
with experiment is at all possible, however, more realis-
tic states must be considered. In what follows we first
discuss results for polar and axial states oriented with
symmetry axis I parallel to the hexagonal c axis, thereby
duplicating to some extent results already given in I.
Comparison with transverse sound-attenuation data in
that work strongly indicated the presence of a line or
points of nodes in the basal plane of the crystal. %e
therefore further discuss results for various states con-
sistent with hexagonal symmetry' ' which fit this cri-
terion. These include, firstly, a state already mentioned
in I as a promising candidate, with a line of nodes in the
plane and point nodes at the poles of the Fermi surface:

hi, ——b Ok, (k„+iky ) .

This state corresponds to the two-dimensional represen-
tation E& in the Volovik and Gor'kov' classification.
For want of a better name, we refer to this d-wave state
as "hybrid, " since it displays axial and polarlike behav-
ior. Secondly, we consider the "hexial" state, transform-
ing according to the representation H3, with six point
nodes in the basal plane

5„=h, [k„(k' —3k„)z]+hg [k,[(k„—ky )x —2k, key j},
(3.2)

where x, y, and x are spin directions. Here the ratio
6, /b, z is not fixed by symmetry considerations, but must
be determined from knowledge of the details of the pair
potential. '5 All states considered, including those of
even parity, are odd under some operation of the sym-
metry group of the crystal. Thus, as discussed in Sec. II,
impurities do not renormalize the order parameter hi„
except through an overall reduction in magnitude b,o.

We note that Monien et a/. have recently reported
results for thermodynamic properties of "d-wave" states,
including the state (3.1), in agreement with ours with the
exceptions detailed below.

For convenience, we have assumed a spherical Fermi
surface for calculating angular averages, even for those
states compatible with hexagonal symmetry. In princi-
ple, k in (3.1) and (3.2) should be replaced with the Fer-
mi velocity U& and integrals performed over the true Fer-
mi surface. However, me expect that results at low tem-
perature mill be insensitive to the details of the Fermi
surface, given a particular gap structure. This statement
may apply qualitatively even in the case of an order pa-
rameter with the exact (unbroken) symmetry of the un-
derlying lattice and "quasinodes" created by a pair po-
tential which varies by factors of 10-100 over the Fermi
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surface, following a highly anisotropic e5'ective mass. In
this case, b, i, would have to be renormahzed, as in the
usual Abrikosov-Gor'kov theory of impurity scattering.

Anisotropic order parameters are conveniently charac-
terized by the density of single-particle excitations, given
in the case of particIe-hole symmetry by

N(co) = —IinGc,
XO

(3.3)
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FIG. 1. Quasipsrticle density of states X(co)/NO vs reduced
energy u/h, o. Solid lines in main Sgores are c =0,
y—:I /ho ——0.01, 0.1. Insets show variation at low energy vrith

cotangent of scattering phase shift @=0, 0.1„0.316. (a) Polar
state; (1) axial state; (c) hybrid state; (d) hexial state.

where Gc is determined by solving Eq. (2.8a) self-
consistently.

In Figs. 1(a) and 1(b), we plot N(co)/No for polar and
axial states in the presence of various impurity concen-
trations and scattering strengths. Above a critical ener-

gy co, =y' &0, where y—= I'/lie, self-consistency is un-

necessary, and the curves display the co and coi behavior
expected for the pure polar and axial states, respectively.
Below this frequency in the unitary limit e =0, a peak is
observed centered on zero frequency, the analog of the
bound state in the gap found in calculations of resonant
scattering in ordinary superconductors. For small
deviations from the unitarity limit, the peak position
shifts to finite frequency and eventually disappears. For
weak scattering (c »1) the results become asymptotical-
ly those of Ueda and Rice for impurity scattering in
anisotropic superconductors in the Born approximation.

For an axial state, a small-energy expansion of (2.8a)
shows that N(0) is finite for concentrations and scatter-
ing strengths such that y &(2/tr)c2, and hence is finite

for infinitesimal impurity concentration in the unitarity
limit. The same is true for the polar state even for weak
scattering, as erst demonstrated by Ueda and Rice and
Gor'kov. The dependence of N(0) on y and c is given
by

N(0) y —:f i (y) (axial),
No tany

(3.4)
N(0) y =fi(y) (polar),

s1nhy

where y is the solution of f; (y)=yy —c . The limiting
behavior of N(co) for co ~co„which determines, e.g., the
specific heat of the system at the lowest temperatures,
can vary dramatically with small deviations from the un-
itary limit. For example, in an axial-like state,
N(co)-N(0) for y»c, N(co)-co' for y-ct, and
N(co) —co for y ~~c, provided y ~~ 1. In a polarlike
state, N (co)-N (0)+etc co for all y ~~ 1, where
ct =ct ( y, c) is a coilstailt.

In Figs. 1(c) and 1(d) we plot N (co)/No for the hybrid
and hexial states. In both the intermediate and "gap-
less" frequency ranges discussed above, the hybrid state
is seen to yield results qualitatively very similar to the
polar state, due to the presence of line nodes which dom-
inate the low-energy behavior. Similarly, the hexial state
mimics an axial-state behavior for frequencies co~~z,
where the scale coi, is set by the ratio 5, /b, z, here taken
to be 1.

C. Critical temperature and order parameter

In order to calculate temperature-dependent quanti-
ties, we need to know the behavior of the critical tem-
perature T, and the gap magnitude bc(T/T, ) as a func-
tion of y and c. The former is determined as usual by
solving the gap equation (2.10) for 50~0. The T,
suppression found is the usual Abrikosov-Gor'kov re-
sult, "

(3.5)ln =1t( —,
'

) —1(
—+

CO C

where I"
N =—I /(1+c ) is the scattering rate in the nor-

mal state and f is the digamma function. In the unitary
limit the pair-breaking parameter a,:I ~ /2m. T, is-
roughly given by n, T~ /T, ; Assuming TF ——10 (m /
m')T„a concentration of a few percent should destroy
superconductivity altogether, as is actually observed in
Upt3 On the other hand, T, wi11 be only slightly
depressed if impurity concentrations remain at the
10 -10 level considered characteristic of nominally
pure samples. Thus (I /T, )'s of the order of 0.01—0. 1

should be relevant to our analysis of the existing experi-
mental results on "pure" heavy-fermion superconduc-
tors.

At the small concentrations we consider here, the gap
parameter ho is also depressed only slightly. In Fig. 2,
we show the results of a numerical solution of (2.10) for
a polar state for various values of I and c. Results for
axial and other states are similar. It is easy to show
analytically that, for all states, ho is depressed linearly in
order I /T, for small n, In additio. n, expansion of (2.10)
near T, yields results for the weak-coupling specific-heat
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Polar State
C =CO) 80

.M6 0
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FIG. 2. Order-parameter magnitude 50/T, vs temperature
T/T, for a polar state„ I /T, =0, 0.1, 0.3 at c =0, 50(0)/T, vs

phase shift 50, I /T, =0.1, 0.3.

pure superconductor, the thermodynamically important
excitations are the Bogoliubov quasiparticles, which are
eigenstates of momentum lt and spin rr (in the absence of
spin-orbit interactions}. For the purpose of calculating
the entropy, these excitations may be considered to be
independent (the residual interaction of the Bogoliubov
quasiparticles, which among other things gives rise to
their finite lifetime, leads to negligible corrections to the
limiting low-temperature entropy). The entropy is then
given by the usual combinational expression for a Fermi
gas of particles with energy E&.

In the presence of impurity scattering, momentum is
no longer a good quantum number. Rather, the Bogo-
liubov quasiparticles are now energy eigenstates in the
presence of an impurity potential with eigenvalues E„.
These eigenstates are obtained as solutions to the
Bogoliubov-de Gennes equations. The important
thing to notice is, however, that inasmuch as the impuri-
ty scattering is elastic, the Bogoliubov quasiparticles can
still be considered independent excitations, for the same
reasons as in the pure case. This is true as long as the
presence of impurities does not a6ect the validity of
mean-field theory which does not occur until much
higher concentrations than we consider here. Their en-
tropy is therefore still that of a system of independent
fermions, with energy E„ in states labeled by n, and is
hence given by

S=—2k& g [f„lnf„—(1 f„)ln(1 —f„)] . —(3.7)

where tu:—(1—c )/(1+c ) and b =—,'for an axial state,

}p for a polar state, and —', for a hybrid state. Here
ij}'"'(x) is the nth derivative of the I" function. To illus-
trate the effects of unitary scattering, we plot in Fig. 3
b,C/C)v for two values of the scattering rate, I'/T, =0.1

and 0.5, for polar and axial states.

C=COt 3O

i.0
1 0.8

D. Syeci6c heat

The specific heat of a weak-coupling superconductor is
most conveniently calculated from the entropy. In a

Here f„=f(E„)is the Fermi function, and the factor 2
in (3.7) accounts for the spin degrees of freedom. Intro-
ducing the density of states N(co), defined by

N(co ) =2 g 5(~ E„), — (3.8)

one can rewrite (3.5} as

S= —ks I dm N(co)[f lnf —(1 f ) ln(1 —f )]—, (3.9)
0

where now f=f(co). Note that N(cu) is a T-dependent
quantity here.

The specific heat follows from (3.9) by differentiation
with respect to temperature as

dS
y

~d N(ro)P ro e~"
dT o

~

(et' +1)~

pdN(a))
1 p

6f

+
e~ +1

(3.10)

0,7 I

0.0 0.2
I

0.4
I

0.6 LO0.8 k2

8,

FIG. 3. Normalized specific-heat jump hC/Cz for axial and
polar states vs phase shift 5O, for K'/T, =0. 1 and 0.5.

where p= 1/k&T. This is a rather involved expression,
due to the temperature dependence of the density of
states.

In Fig. 4, we plot the specific heat versus temperature
for various states. Figures 4(a) and 4(b) show the varia-
tion of C/T for polar and axial states with scattering
phase shift and concentration. As remarked in I, the
crucial feature is an offset in the T—+0 limiting value of
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C/T, reflecting the finite zero-energy density of states,
even for surprisingly low impurity concentrations. In
Ref. 34 data on UPt3 (see also Refs. 35 and 36) were
fitted to the laws C(T)=aT+PT~below-0. 3T,. If one
then extrapolates linearly to 0 while maintaining entropy
balance, C/T is finite at T =0, corresponding to
y-0.03 for a polar state in the unitary limit. In Fig.

4(c), we plot C/T for all four states considered here. We
note that, although C/T in all cases does essentially
refiect the corresponding density of states, distinguishing
between states with points and hnes of nodes in the or-
der parameter on the basis of one-particle properties
may prove extremely diScult, except in very pure sam-
ples.

PoIar State

C=0 2.0

(b)

1.6

0.8 0.8

00O.O
I

04 1.0 "oo 0.4 0.6 0,8

I'iT, =.Ot

G=O

(c)

r

&+Wp'
, ~

O. P $.0

FIG. 4. Normalized specific heat CT, /CzT for axial and polar states vs reduced temperature T/T, . (a) and (b) For c =0,
I /T, =0.01, 0.1, 0.5. Inset shovn variation anth cotangent of scattering phase shift e =0, 0.316, I for 1 /T, =0.01. (c) CT, /C&T
for I /T, =0.01, c =0 for axial (dashed line), hexial (dashed-dotted), hybrid (dashed-double-dotted), and polar (solid) states. Dot-
ted line: data of Ref. 34 on Upt3.
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%e have derived the speci6c heat from a weak-

coupling theory, assuming a spherical Fermi surface.
The jumps hC/C shown in Fig. 4 are therefore deter-
mined by the weak-coupling coeScients in the
Ginzburg-Landau (GL) expansion of the BCS free ener-

gy near T, . Were the heavy-fermion systems in question
really weakly-coupled and anisotropic, only that single
state with the highest T, (corresponding to a given rep-
resentation) would be thermodynamically stable; other
states are, in this case, energetically unfavorable. Here
we adopt the point of view that, while strong-coupling
corrections to the GI. coef6cients are likely to be small
in UPti, there is no reason to suppose that band-

structure anisotropy corrections will be negligible. Thus
a polarlike state may well be stabilized with respect to
an axial state by Fermi-surface snisotropy, just as in He
the ABM (axial) state is stabilized with respect to the
BW (isotropic) state by strong-coupling corrections. The
quantitative values of the specific-heat jumps plotted-
as opposed to the qualitative low-temperature
behavior —should therefore not be taken as the basis of
a realistic comparison with experiment. In particular,
the apparent near agreement of the theoretical bC/C~
for the polar state snd the experimental jump for UPt3
must be regarded as accidental.

E. Thermal conductivity

The thermal conductivity x of an anisotropic
super6uid state is in general a tensor quantity. It can be
expressed in terms of the heat-current response function

by a Kubo formula. Generalizing the treatment given
for an s-wave superconduetor3 we find the heat conduc-
tivity tensor as

P 2

a;j =a~(T) f
I~

X sech' Re[XI%(i(m)] .
(3.11)

Here ~N(T)= ,'CNUFr is the —heat conductivity in the
normal state and

X(kg(co)= —f fdpi, Tr[Q'g(c0+iO)QJg(a) iO)], —I 10
(3.12)

where the overbar denotes an impurity average andA
Q'=k; ris the bare vertex. The trace is over Nambu
matrices. The response function X& has been de6ned to
be dimensionless, with hmiting value 7&&~—, in the hm-

it of large frequencies and/or in the normal state. The
definition of X&& in (3.12) coincides with the general
de6nition of the response function X~& in Appendix B.
Using the definitions introduced there and the results for
vertices of odd symmetry under k~ —k, we have

X'j~(~)=&k, k, L, 33&-„+ y &,k, L'")-„„A. &,k. L")-„,

(3.13)

with L'J given by (82), and (85), and (87), and A„
defined in (813}. Note that the vertex corrections, i.e.,
the last term in (3.13), vamsh for even-parity pairing,

due to the even parity of the Green's functions and the
quantities I. J. For odd-parity pairing, there is in general
a contribution from the vertex corrections to x. It is
worth noting that for unisxial states the largest eigenval-
ue is unrenormalized. This is because the quantity
(kL ")z, n = 1,2, vanishes for certain symmetry direc-

tions; these are, e.g., qj.l for the polar state and q~~/ for
the axial state, where q is the direction of the thermal
gradient. In each case, the smallest eigenvalue, xm;„, is
renormslized, but the effect is relatively large only at the
smallest energies at the impurity concentrations con-
sidered here; in this energy range the conductivity x;„is

in any case too small to be experimentally observable.
Thus for the small impurity concentrations we discuss,
the effect of vertex corrections is negligible, except
perhaps on the anisotropy i~(q; T) at the lowest tempera-
tures. Here vertex corrections will be of relative order
(q n), where n is the direction of gap nodes, with
respect to the bare bubble. Similarly„ the effect of renor-
malized single-particle energies g not considered in I is
neghgible, except for changes of —10% for values c —1.
In this case the off-diagonal elements k, , i&j, also be-
come appreciable, as mentioned above.

In Fig. 5 we plot the eigenvalues ~ „and ~„calculat-
ed from (3.11) and (3.13) for the states considered here,
and compare with experimental data on UPt3. ' In no
case do we find substantially better agreement than in I
comparing the naive average 17=Trx= —3~„+—,'~„with
experiment, although the hexial results are somewhat
closer to the experimental results on polycrystalline sam-
ples at low T. It seems clear, however, that while this
average is appropriate at high temperatures, where all ei-
genvslues of x are of similar magnitudes, it is suspect at
low temperatures where ~ is highly anisotropic. In this
case, a model of the polycrystalline superconductor con-
sisting of grains of fixed, randomly oriented I directions
leads to the conclusion that grains with I optimally
oriented to conduct hest flow will dominate the conduc-
tivity. Thus we expect a crossover from 17 at high tem-
peratures to ~m,„at lower T in polycrystalline samples;
this improves the qualitative 6t to experiment of the res-
onant scattering model, although deciding among the
various candidate states remains problematic. Note that
the existing data on UBe» follow a T law from T,
down to the lowest temperatures.

F. Nuclear magnetic relaxation rate

The calculation of the nuclear magnetic relaxation
rate T&

' in an impure superconductor has been re-
viewed by Maki. ' Assuming a contact nuclear matrix
element T ] is proportional to the imaginary part of
the electronic spin-spin correlation function evaluated at
the nucleus,

(T, T) ' ~ Im([S(r), S(r, Qo)] )

Im T g g Tr[g'g(ken„)a'g( eke„+iQO}]
0 co„kk'

(3.14)
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FIG. 5. Normalized thermal conductivity E;(T)T,/EzT vs T/T, . (a) and (b) For polar and axial states, I"/T, =0.01, c =0.
Solid lines represent a, dashed a;„,and dashed-dotted the naive average conductivity ~= —,~„„+—,'a . Triangles and squares are
data of Refs. 34 and 38 on Upt3. (c) and (d) Variation of x(T)/T vs T with cotangent of scattering phase shift c =0, 0.316, 1 with
I /T, =0.01, 0.1. x,„ is the largest eigenvalue of x for polar and axial states, respectively. (e) Maximum eigenvalue a,„as indi-
cated vs T for axial, polar, hexial, and hybrid states, F'/T, =0.01, e =0. Dotted line is low-T fit from Ref. 34.
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where 00 is the I.armor frequency and
a'—:diag(cr, , —e, ) is the electronic spin operator in
particle-hole space. Since by assumption G&2 ——0, only
the z components of g contribute to the momentum
sums:

r

(T, T) ' a: (2m NO) Im T g Go(co„)Go(co„+iQo)
0 N

dence of T, ' is observed to cross over to a roughly
linear behavior characteristic of the normal-state Kor-
ringa relaxation. This is exactly what one expects in the
presence of resonant scattercrs, as seen from the figure.
Thus resonant scattering in an anisotropic superconduct-
ing state provides an alternative explanation to the new
low-energy relaxation mechanism invoked by the authors
to explain their data.

(3.15)

This expression may be most easily evaluated by using a
spectral representation for Go,

(3.16)

Performing the analytical continuation and taking the
limit 00~0 yields finally

P

T df—
dr0

(T) ~)~ T, 0 Bru

2
N(co)

(3.17)

Nuciear Spin Relaxation

0.6—

I

0.4—

00 ~o~ ~ Wlswsps~

0.2 0.6

T/ c
FKJ. 6. Nuclear-spin relaxation rate'T, T, '/TT» vs tem-

perature T/T, for polar and axial states in the unitary limit,
e =0, I /T, =0.0i, 0.1.

where ( T
&

' )z is the normal-state relaxation rate at T, .
Unlike the other two-particle properties discussed here,
the bare spin-spin correlation function in (3.14) does not
have to be supplemented by the addition of vertex
corrections.

In Fig. 6 we have plotted (T~ T) ' for axial and polar
states in the unitary hmit. . Unfortunately, at this writing
an NMR signal has been observed only in UBe, 3, for
which none of the states discussed here is appropriate.
Furthermore, direct comparison with experiment is
problematic in this case, as remarked in the Introduc-
tion. Nevertheless, one striking aspect of the experiment
of Mcl.aughlin et al. seems worthy of comment. Below
-0.2T„ the observed power-low temperature depen-

IV. CONCLUSIONS

There are a number of pieces of evidence indicating
that resonant scattering impurities are present in all
heavy-fermion superconductor samples grown to date,
and play an important role in the thermodynamic and
transport properties of the anisotropic states we consider
here. Perhaps the most compelling argument is that, as
of this writing, no other explanation for the strong (but
non-BCS) temperature dependence of transport proper-
ties, and particularly the thermal conductivity, has been
put forward. Given the highly anisotropic nature of the
superconducting state, a hypothesis qualitatively con-
sistent with all experiments on heavy-fermion systems
thus far performed, impurity-limited transport properties
deviate strongly from their normal-state behavior at low
temperatures only in the presence of strong (near-unitary
scatterers).

In addition, offsets, " or finite low-temperature limit-
ing values of a./T and C/T in UPt3, strongly suggest a
finite density of zero-energy quasiparticle excitations.
This is possible in ordinary gapless superconductors, but
only at impurity concentrations so large as to nearly des-
troy superconductivity. While we have been reluctant to
apply the theory described herein directly to UBe» be-
cause of the strong energy dependence of normal-state
quantities, a similar offset in (T, T) is highly sugges-
tive. Ott et al. , while claiming no offset in a fit to
UBe» specific-heat data, find that near-resonant scatter-
ing in a state with point nodes does provide a good fit to
experiment.

Our investigation of various more realistic states con-
sistent with the hexagonal symmetry of the UPt3 crystal
has not substantially improved quantitative agreement
with experiment. This is perhaps not surprising, consid-
ering our neglect of Fermi-surface anisotropy, known to
be large in UPt3. This enters not only in the usual
Fermi-surface integrals, but through arbitrary functions
with D6 symmetry, here taken to be unity, with which
each of the states, e.g., (3.1) and (3.2), may be multiplied.

What is clearly needed is a systematic measurement of
specific-heat and transport properties at larger impurity
concentrations, preferably in single crystals to avoid
averaging ambiguities like those discussed in Sec. III E.
Observation of increasing values of x/T as T~O for in-
creasing impurity concentrations would provide strong
support for the hypotheses advanced here. On the other
hand, if low-temperature transport and speci6c heat
were observed to decrease with increasing doping levels,
this would almost certainly imply filling in of gap nodes,
contradicting the assumption. of symmetry-enforced no-
dal structure (G,z

——0) made here. Impurity scattering
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in this case might well still be unitary, but a somewhat
more complicated treatment involving self-consistent
order-parameter renormalization would be necessary.

It has proven diN]Icult to identify the nodal structure
of the heavy-fermion gap from temperature dependencies
of thermal properties alone. A more important tool in
this regard may be hydrodynamic sound-attenuation
measurements, a discussion of which we reserve for a
later work. ' Here one has two external directions, ul-
trasound polarization and wave vector, with which gap
anisotropy may be probed. The calculation is comphcat-
ed, however, by the important role played by vertex
corrections, due to both pair and impurity scattering.
The former must be included to maintain gauge invari-
ance, because in the anisotropic state the stress-tensor
correlation function determining the attenuation couples
to the density. In addition, novel relaxation mechanisms
may contribute to attenuation over the entire tempera-
ture range.

Finally we mention that we have, until now, no micro-
scopic basis for the assumption of resonant scattering in
these systems. An understanding of this phenomenon
may prove essential to the understanding of heavy-
fermion superconductivity itself.
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X(k, co) = g V(k, k')G(k', co) V(k', k)
k'

X,= I
V I'&o fdic (A2)

is a self-consistent solution to (Al). In the T-matrix ap-
proximation, however, X,=O is no longer a consistent
solution since X is no longer proportional to g, even in
the case of s-wave scattering [cf. Eq. (2.12)]. In fact, in-
spection of (2.6) shows that X&cc T&

——0 is not a con-
sistent solution under any circumstances.

Nonetheless we show here that, under the assumption
of particle-hole symmetry, gz may be replaced by the
bare single-particle spectrum g'i, in all expressions for
single-particle properties, and that 6& may always be
taken to vanish. The corresponding component of the
self-energy, X3, is nonzero but plays no role in the calcu-
lation of single-particle quantities.

We begin by considering the quantity

Gi(co) =— g gs(k, co)
1

0

(oi —Xo) —()+Xi) —b, i, i

(Al)

where the second equality follows from the assumed
momentum independence of the scattering potential V.
In the particle-hole-symmetric case, we may replace the
energy-dependent density of states N(g) to a very good
approximation by N0, and note that

APPENDIX A SKI.F-CONSISTENT TREATMENT
OF s-%AVE SCAI j.RRING

In this appendix we show that the ~3 component of
the integrated Green"s functions Q defined after Eq. (2.6)
may be neglected in a self-consistent treatment of any
system with particle-hole symmetry in the presence of s-
wave scatterers. Relaxation of the particle-hole symme-
try requirement, or inclusion of higher-order angular-
momentum waves in the scattering matrix element,
makes the solution of the Dyson equation (2.1) consider-
ably more dificult. %e note as well that the argument
for the consistency of the assumption 6, =6& ——0 in the
case of order parameters odd under certain crystal sym-
metry transformations exactly follows that given here for
63.

The formal solution to (2.1) given in (2.7) shows that
impurities shift the poles in the single-particle Green s
function to renormalized quasiparticle energies
co =g „+5z, where co, fi„and Ekz are as defined in (2.8).
In the Born approximation for the self-energy X due to
spinless s-wave scatterers, one has

where we have explicitly exhibited the definitions (2.8) of
g and co, but taken hi, to be unrenormalized for simplici-
ty. The consistency of the last assumption follows from
arguments identical to the present one, as mentioned
above. Note that particle-hole symmetry has been as-
sumed in the second equality in (A3). Continuing the in-
tegration into the complex g plane, we see that the in-
tegrand has poles at +go —X3, where go=—+[(co—Xo)

bk]', as shown in F—ig. 7(a). We may transform the
variable of integration to g:—/+Xi at the cost of trans-
forming the contour of integration C in Fig. 7(a) away
from the real axis. If Xi is such that the transformed
contour lies between the two poles, as does, for example,
the contour C, in Fig. 7(b), the contour may be rotated
to C

&
so as to pass thl ough the origin. In this case

Gi=O because the integrand in (A3) is odd in g. It
remains only to show that the situation represented by
contour Ci [Fig. 7(b)], where the contour passes outside
of both poles /=+go, never occurs. The proof is a self-
consistent one. If 63 ——0, the T-matrix may be shown to
have the simple form (2.12). The self energy X is then
proportional to T through Eq. (2.2):
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Thus

(A5)

from which it follows that contours of the type Cz never
occur. As argued above, 63 must therefore vanish, con-
sistent with the original assumption. It is somewhat
more tedious but straightforward to show that 63~0 is
not a consistent solution of (A3).

APPKNMX 8: VERTEX CORRECTIONS
TO T%0-PARTICLE CORRELATION FUNCTIONS

In this appendix we calculate the vertex corrections to
two-particle properties in the superconducting state.
These are seldom discussed in the literature on ordinary
superconductivity, since they vanish identically for an

I

Furthermore, it is a matter of straightforward algebra to
show that

l
g'o

l
& l Xo l. Therefore

(A6)

isotropic gap parameter 6 in the simplest s-wave scatter-
ing approximation. In an anlsotropic superconductor
this need not be the case, ss pointed out recently by
Scharnberg et al. ' Nevertheless, wc show here that
vertex corrections msy still be neglected in s large num-

ber of cases when the response function and order pa-
rameter obey certain symmetries. The most important
exceptions are the longitudinal components of the
stress-tensor-stress-tensor correlation function needed to
calculate the deformation-potential contribution to lon-

gitudinal sound attenuation in the hydrodynamic limit.
Here vertex corrections are always important. The ex-
pressions given by Scharnberg et al. ' are, however, in-

consistent with the Dyson equation (2.1) due to a failure
to properly renormalize the single-particle energy spec-
trum, as discussed in Sec. II (see, however, Ref. 23). Be-
cause of unphysical divergences in certain components of
the vertex function which result if X3 is arbitrarily taken
to be zero, large errors in thc calculated attenuation may
occur even very close to the unitarity limit c=0. %e
discuss this point in more detail in Ref. 21. Here we

give a general solution for the two-particle vertex func-
tion for s-wave scattering.

To calculate vertex corrections to two-particle correla-
tion functions due to independent scstterings of elec-
trons and holes from impurities, we use the formalism
developed by Baym. The retarded correlation function
between operators A(k;q, Q) and 8(k;q, Q) is depicted
in Fig. 8. All solid lines represent full Green s functions,
and Greek letters are taken to label the particle-hole in-
dices. The full vertex part A is then related to the
particle-hole irreducible vertex I:5X/56 th—rough the
integral equation shown in Fig. 9. The irreducible ver-
tex is fully determined when one has chosen a particular
approximation for the self-energy, as shown in Fig. 10
for the T-matrix approximation used in the text.

Before solving the Bethe-Salpeter equation shown in
Fig. 9 for A, it is useful to anticipate some properties of
its solution. Since we always make the assumption that
impurities are strongly screened, impurity interaction
lines carry no momentum; consequently, none is
transferred between particle and hole lines in the second
diagram of Fig. 8. Thus the only internal momentum
sums are over the momentum dependencies of the opera-
tors A snd 8 and free propagators. In fact, the general
expression for the correlation function ([A,B]) is

([A,B])(q,Q=O)= —J X„s(co), (Bl)

X„~(co)=X„~+ 2 g Ap~(k. q)g (k+co+ )gp tt(k co )
(mXo )

X& p. . .g gg (k+co+)gtr& (k co )B&(k, q)
k

(Bla)

where 7 is the response function with self-energy
corrections only, all quantities are labeled by particle-
hole indices as in Fig. 8, k+ =k+ —,'q, co+ =co+i0+, snd a
sum over repeated indices is implied.

In ordinary (isotropic) superconductors, g is indepen-
dent of direction on the Fermi surface. If A(k q) or
8(k.q) is then proportional to P, (k q), 1&0, as is the
case for many observables„corrections to Xzz vanish
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FIG. 8. Diagrams of the response function 7».

identically as a result of the integration over angles. In
an anisotropic system, however, the function

r 0L~ .&(k,q, co, Q)= — dgg ~ k+ —,'q, co+ —+i0

ggpp k —-q~ 6)— —lo0
2 '

2

(82)

is angle dependent and may have an overlap with
A (k q). However, some general cases may be identified
in which (AL ) vanishes identically. For example, if
A, B are given by a Legendre polynomial of odd order,
all vertex corrections vanish in this approximation at
q =0 for euen pari ty st-ates. For example, both the
Meissner kernel and the thermal conductivity are related
to current-current correlation functions and are thus un-
renormalized, provided b,k

——5 k. Even for odd-parity
states, vertex corrections vanish for certain special sym-

I

metry directions of the wave vector q relative to internal
symmetry directions (gap axis). A similar statement may
be made for the collision contribution to the transverse
sound attenuation if the polarization and propagation
vectors e and q are orthogonal and the symmetry axis of
the order parameter lies along a direction of crystal sym-
metry. This follows since, in this case, the transverse
component of the stress tensor is odd under re8ection in
some plane.

As an example, we sketch the derivation of the vertex
corrections to the thermal conductivity (3.11). We are
interested in the heat-current-heat-current response,
with vertex A =k;r (a factor r0 has been split oII).
From (Bla) and (82) we then have

(83)

where we have adopted a shorthand notation suppress-
ing momentum indices in order to better illustrate the
particle-hole structure of the problem. The averaged
vertices (kL ) clearly vanish for all even-parity states, as
noted in the text. If the order parameter is odd parity,
however, we decompose L in Nambu space in the follow-
ing way:

a,~, ,NA= ij a,a,

where now only the components

Loo =—I ~+~ I ~~ I 4+4

I @+~k . r k+~1,
L01 L 10 L31 L 13

m D '
m D

will be relevant to our analysis. Here we have defined

D=(co ~ —g+ —hk)(a) —g —hk) (85a)

and

4+=4+qn+&3(~+&0) .

LalPl, a~P2 2L +alPI+P2a2 &

It is now convenient to Snd another decomposition of
(82),

ward to show that

=Loo+L»+L3300

=Loo+L11—L33
11

L =Loo —L11—L33,22

=Loo —L11+L33 *
33

L =i(LO, L~o) = L— —23

=L13+L31=L13 31

L =i(L30—L03)=

(87)

such that L now acts as a projection operator onto sub-

space i on the left and j on the right. It is straightfor-

I
t
l
l

I
I
I

+ 0 ~ ~ + + ~ ~ ~

FIG. 9. Integral equations for the vertex function A.
FIG. 10. Diagrams contributing to the irreducible vertex

function I.
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Inserting (86) into (83) and performing all contractions,
we fmd

X~~ =&k,'L"&S,, + g &k,L'"&A„.&k, L "&,
It = 1~2 (88)

& =(1 I—„&L."&+I„&L."&)(1—I„&L"&+I„&L"&)

+(I„&L'&+I„&L"&)(I„&L"&+I„&L"&)
(814)

From (811) we have

where we have defined

Aop, a'p'= 2' ij +ap~p'a' ' (89)

1»=I22=To To T3+T3

Ii2=t(To T3 —T3 To }=—I~i
(815)

I,":——,'Tr(r'T+r'T (811)

After performing all traces we are left with

A,, =I„.+I...&I."j'&-„A,,
which may be inverted to give

(812)

Thus, calculating X&& requires knowledge only of the
four components A&&, A22, A&z, and A» of the fuB vertex
function, which obeys the equation depicted schematical-
ly in Fig. 9,

+ — +
AaP, a'P' Taa'TP'P+ Taal 4 ~a&P& a2P& f gTP&PAa2P& a P

(810)

The equations may be decoupled by using (86},(89), and
defmlng

which, along with equations (85), (87), (88), (813), and
(814) completely determine X&&. Consideration of the
analytic properties of the T matrix and the form of (815)
now make it straightforward to show that the function A
is both real and even in ~ at q=O. %e note that prod-
ucts of two advanced and two retarded Green's func-
tions, which contribute, in principle, to general response
functions, vanish identically at q=O, A=O for vertices
with symmetry k;~ k ~, as in the present calculation.
This is true for both the bare response' and vertex
corrections.

For completeness, we also give the result for the
response function X„z, where A k

——a(k)v3, and the or-
bital part a(k) is even in k (examples are the density and
the stress-tensor operators),

X„„=& (k)'L" &-„

A„=[(1 I„&L &—)I„I,&L &—]/R,
A22 ——[(1—It, &L "&)I)t —I tq &L "&]/8,

A)2 ———A2, ——[It2+(Ifq+Itt )&L' &]/Ii. ,

(813)

+ &a(k)L "&-','I —(I' —I,', ) & I,"&-„

(816)

Note, however, that the above expression for X~~ is not
the complete response function, as pair-interaction-
induced vertex corrections are needed to maintain gauge
in variance.
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