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one-dimensional hopping mobility in disordered layered semiconductors: Applications &o InSe
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Calculations are presented for a one-dimensional model of electrical transport along the c axis in

disordered layered semiconductors, using a multiphonon-assisted hopping mechanism for the elec-
tronic carriers between excitons weakly bound to impurities. The excitons are intermediate states.
The e8'ect of the stacking disorder involves stochastic Seld variations, and consequently
configurational averages that are calculated for the parallel mobility, which is obtained generally in

activated form. The theoretical results are analyzed for Inse and compare favorably with measure-
ments in this compound.

I. INTRODUCTION

The optical and cyclotron resonance properties of lay-
ered semiconductors, such as InSe, ' are of interest as
this leads to an understanding of their electronic proper-
ties. The electrical properties of this material are also
directly investigated by carrier mobility experiments
to determine the specific characteristics which the
mechanical anisotropy causes. The remarkable feature of
these measurements is that optical and cyclotron reso-
nance data can be interpreted in terms of a three-
dimensional model of electronic band structures, ' '

with an anisotropy parameter —l determined from
efFective masses parallel and perpendicular to the c axis,
whereas the transport data are highly anisotropic' ' '
for the mobilities, pi perpendicular, and pi parallel to c,
with pi/pl-10 .

Furthermore, the perpendicular mobihty variation at
low temperatures is -T, a behavior that is charac-
teristic of charge scattering by ionized impurities, and at
higher temperatures is —T ~ where y depends on sam-
ple preparation. The latter variation is modeled in a
number of cases by charge scattering from homopolar op-
tical phonons, ' ' in these materials. The parallel mobili-
ty in contrast varies as -exp( F., /kT), whe—re E, is an
activation energy usually associated with a hopping
mechanism. This efFect is reported by Atakishiev et al. ,
and has been given by other authors' ' for InSe. It is
also observed in diferent layered semiconductors,
suggesting a general behavior due to stacking disorder in
these materials.

The anisotropic transport efkcts are thought to be due
to the presence of a high density of stacking faults that
inhibit carrier motion parallel to c. Ionized impurities
accumulate at a stacking fault resulting in an e+ectiue
Coulomb jield across it, and alternate faults consequently
confine the carrier within a few layers. The inhuence of
stacking disorder on the electrical properties of layered
semiconductors has been discussed theoretically in
terms of one-dimensional disordered chains in the direc-
tion of e, where it is concluded that the electronic states
close to the band edge are confined to a few layers. In
another work 3 it is shown that the phonon-assisted tun-
neling is a dominant process in the motion of the weakly

localized excitons, which confirms their hopping charac-
ter.

In this paper we present a one-dimensional model for
electrical transport parallel to e, using for the electronic
carrier a hopping mechanism across the fields of the
stacking faults. The intermediate states are treated as the
threeMimensional excitons weakly bound to impurities,
such that the hopping involves the following process:

(i)' (j) e- (0 (j)'
h+ h+ h++ h+

An exciton weakly bound to an impurity at site i loses its
electron to another at site j, by an electron multiphonon-
assisted hop, with the effective annihilation of an exciton
at i and the creation of another at j. The process is rever-
sible, and occurs across the fields of the stacking faults.
The conduction due to electron hopping is formulated in
terms of the normalized directional probability for the
net charge transfer between two such sites. Since the sys-
tem is disordered the current density is calculated as a
configurational average over stochastic distributions for
site separations in real space and for energy splittings.
We show that the current is linear with externally applied
electric fields for relatively small fields, and obtain the
temperature activated form for the parallel mobility. The
theoretical results are general for any layered seinicon-
ductor with stacking disorder. They are analyzed in de-
tail for InSe, and compare favorably with measurements
in this materiaL

II. ELECTRON HOPPING
OVER ONE-DIMENSIONAL DISORDER

Consider two impurity sites i and j separated by a dis-
tance r,j, with a stacking fault between them. r,J is a ran-
dom quantity. The transition rate for an electron hop is
calculated using the deformation potential approximation
for the electron-phonon interaction. Excitonic wave
functions are taken from the effective-mass theory, such
that the lowest energy states of an electron on the exciton
as an intermediate state, are given in the tight-binding
formalism over the conduction-band minima eigenstates.
The number n of such a basic set varies with the model
calculation. An adequate choice is n =14. The transi-
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tion rate for an electron phonon-assisted hop can be
given in the form

UJ = 3 (r~/a) exp( 2—r) /a) I b,e,j. /[exp(Pb, s,J ) —1]I,

where p and U are the density and transverse speed of
sound, respectively, eo is the dielectric constant, m~~ and
m i are the effective electron masses parallel and perpen-
dicular to c, and E (Ref. 19) is the potential gradient
across the van der %aals gap, in the layered material.
(

~

b, E,, ~
) is the variance of the distribution of energy

splittings over the ensemble of stacking faults, for which
the standard deviation in an ideal crystal with no disor-
der identi5es a single-phonon mode. In one dimension
we define a normalized directional probability for the net
charge transfer from i to j using (1), to obtain

P;1 =(UJ —U~; )/(U;~+ U; )=tanh(pcs, j /2} . (4)

The efkct of stacking disorder in the bulk involves
configurational averages along c. These are calculated
with the use of two distributions, the first ( . ), depicts
the stochastic probability for the separations in real space
between two impurity sites i and j, and the second
( )a, that for the energy splittings in the hopping
processes between the sites. %'e take the 6rst in the nor-
malized form

( " ),=(4/r') f...exp( —2r,, /r)

This is a modified Poisson distribution which, with no
loss of generality, assigns the dominant probability to the
mean separation ( r,j ) =r between impurity nearest
neighbors.

There is no detailed information available as regards
the second distribution, usually associated with a single-
trap level. We know, however, from photoluminescence
measurements at low temperatures that the envelope of
the density of states of weakly bound excitons along the
layers in the Eie polarization shows a Gaussian-like spec-
trum. The stacking disorder giving rise to this stochas-
tic distribution suggests a similar distribution along ihe e
direction, with a generalized variance. %'e therefore take

where a is the Bohr radius of the exciton in the ground
state, and P=(kT) ' Th. e energy sphtting in the hop is

5Eg~ =EJ —E; (2)

where e; and c are the zeroth-order energy levels of the
electron on i and j excitons, respectively, in the Coulomb
field of the stacking faults. b,s,.j is a random quantity for
the disordered layered semiconductor. We calculate the
factor A in Eq. (2), using the deformation potential due
to homopolar optical phonons polarized along the nor-
mal to the layers. It can be expressed as

F2A=
m(

i
b, s',, i

')pu'iii'

2e 12
'2

3eoa ri 4(rrl j /I i
—1 )

the second distribution as the normalized Gaussian:
—( hP,"(min) )

( . . )„==~...I
+

(hc, (min})

(bc,; )
exp

20

III. HOPPING MOBILITY

The current density is the configurational average of
the net rate of charge hopping. For an independent one-
electron model of the nondegenerate electron gas, it is
given using (1) and (4}-(7)by

j =((e/S;, )P;, U,J ),
where S,

&
is the area across which the charge transfer

occurs in the i to jhop.
In the absence of externally applied electric fields there

are equal likelihoods for back and forth hops, and putting
(4)—(7} into (8) yields the configurational average of the
net hopping current as zero. If the externally applied
electric field E&0, however, the energy splitting between
the excitons at i and j is modified owing to the work done
on the electronic charge in going from one site to the oth-
er, so that

he,"=AF; +er; E=hc; +s . (9)

For electric 6elds E ~ 10 Vcm ' and usual concentra-
tions of impurities, the inequality er,JE « (

~

b,s,j ~
) can

be shown to hold. Putting (9) into (4) we obtain under
these conditions the modi5ed probability of the net
charge transfer between i and j, in the linearized form

P(~(E&0)=Pgj(E =0)+[1 P~j(E =0)](Ps—/2) . (10)

The first term on the right-hand side of (10}does not con-
tribute to the hopping current, whereas the second one
does. It should be clear that (10) is inappropriate for
high electric Selds as the conductivity becomes field
dependent. This can be seen from (9) and (4) in (8), and is
in fact experimentally observed in layered semiconduc-
tors.

In this disordered system it is further appropriate to con-
sider a symmetric distribution that yields a net zero
current for zero external electric fields. The limits on the
integral k(hs; (min}) are finite to depict a significant
probability only for nonzero energy splittings over the
stacking faults. Furthermore, the limit when
(b,s,j(min})~0 implies that hopping still occurs with
dominant contributions from he, ; =0 hops. In the corn-
plete absence of stacking disorder this limit can be inter-
preted by taking the standard deviation o to be the ener-

gy of a particular homopolar optical-phonon mode. ' '
The total con6gurational average is now given in gen-

era1 by
~ 0 ~ ~ ~ ~ ~ a 1 ~ ~ (7)

where we have assumed in a first approximation for the
disorder that the distributions are independent, and b,s;
is not explicitly a function of r; .
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3. 14Aea (N, N )'
p=

(2+It i/3+g —I/3) I{~&pmin} & (12)

I(m, p;„)=f 1 —tanh
~min

dp . (13}
e ~—1

The quantities in (12}and (13) are defined by

( b,e,j(min) ) N~
Pmin= (14)

noting that (b,s; (min))=(hs; (min)). It is instructive
to study the behavior of the integral I(m„p, ) in the
high- and low-temperature hmits, m ~g1, p;„~ I, and
m R 1, p;„)1, respectively, and this is done in the fol-
lowing section.

For IIIP;„«1 and p;„~1 it is straightforward to
show that the integral contributes mainly as

I(m, p,„)=f e I'dp=
~min

[1—erf(p;„)] .

This implies that the hopping current increases until it
saturates at suSciently high temperatures. For lower

temperatures m p~;„R 1 we obtain

2.
1 min

I(m, p;„)=
1+Pmin/2~ g ~pmin

(16)

This result is of particular interest since it applies for
temperatures over which experimental measurements are
usually made. In the InSe for example, it applies for tern-
peratures up to 500 K as can be seen from the numerical
analysis. Substituting (16) and (14) into (12) yields the
one-dimensional hopping mobility as

3. 14/gaea (N, N )'
min

(2+x''"+J:-'"}
—2T /T0

1+[(To/2~ ) ——,']{T/To)

To= (b,E,J(min) ) /k . (18}

The stacking disorder along the direction of e in layered
SCInicoIldllctors 1s c11ai'acterized ln 0111' IIlodel by To ~ T

In order to compute A of {3)we should calculate the
variance (

~

b,e;
~

)=(
~
be;

i
) of the energy splittings

in the nonzero limit of (b,e,j(min)). Using the general
form (6) this is

) =~ + ( 4s;~ (min) )

Furthermore, the concentrations ¹ and X of the impur-
ities yield r and (S,J ), and we take the number of impuri-
ties involved in the hopping (N;N )'/ to be a constant
with temperature.

The one-dimensional hopping mobility is calculated as
a configurational average using (5), (6}, (8), and (10). It
can be expressed as

for temperatures of experimental interest. Equation (17)
depicts consequently a general activated form with tem-
perature for the parallel mobility pi in these materials,
where the exponential dominates the temperature varia-
tion. The configurational average of (18) is obtained com-
paring with experimental measurements as

{19)

The absolute value of the parallel mobility (17) depends
on A, and particularly on p~;„, which is obtained from
(19)-(14) and Ir. The quantity A is calculated using the
relevant data for a particular layered semiconductor, and
(11) into (3). The quantities (b.e, ,j(min) ) of (18) and the
corresponding p;„of (14) characterize in the first place
the stacking one-dimensional disorder of a layered semi-
conductor along the c axis, and in the second place
strongly inhuence the strength of the parallel mobility as
in (17). In contrast p,

~~

is less sensitive to the variation of
the impurity concentrations. The parallel mobility of
disordered layered semiconductors is determined by their
distributions of energy splittings in the fields of stacking
faults. No detailed information is available, however, at
present as regards such a distribution.

IU. NUMERICAL ANALYSIS AND CONCLUSIONS

The simple theory presented for the hopping current in
disordered layered semiconductors gives a good represen-
tation of the parallel mobility along the c axis. By com-
paring the experimentally determined activation energy
with theoretical results one can obtain information as re-
gards the strength of this mobility. The small variations
of @~I from sample to sample are due in this model to the
variation of impurity concentrations.

The results presented are applied to InSe, and Eq. (17)
is compared to measurements of the parallel mobility in
this material. Using (19) we obtain TO=0.05 eV, and

pm;„=2. 52 for a value o =0.014 eV.3' It follows that
(17) applies for temperatures &500 K. In Fig. I a
theoretical plot is presented for )ul and compared to the
experimental data. To obtain absolute values, the quanti-

so

44
E 0
g
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FIG. l. A theoretical plot is presented for the absolute value
of the parallel mobility in Inse as a function of temperature.
The dots are experimental measurements from Ref. 9.
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ty A of (3) is calculated using the above numerical re-

sults, Eq. (12), and the following data: mi =0.13mo and

m~~
——Q.oslo, 6

eo ——10, n =14, p=5. 5 g cm, and

U =4X10 cmsec '. The value of e(lnSe)=9. 2 eV/A is
estimated from e(GaSe)=6. 6 eV/A (Ref. 27) and taking

g (InSe) =0.06 (Ref. 15). The mobility is calculated using

N,. =X =10' cm and K =1.
In this paper a one-dimensional model for electrical

transport is presented in disordered layered serniconduc-

tors, using a hopping mechanism for the electronic car-
rier between three&imensional excitons as intermediate
states weakly bound to impurities. The hopping process
is reversible and occurs across the field of the stacking
faults. The effect of stacking disorder involves

configurational averages that are calculated for the one-
dimensional current density and mobility. The activated
form and absolute value of the parallel mobility along the
c axis are calculated for a disordered layered semiconduc-
tor using a Gaussian distribution for energy splittings in
the fields of the stacking faults. The results are analyzed
for InSe and compare favorably to measurements in this
compound.
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