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The tight-binding theory of cohesion in pure semiconductors, based upon universal parameters, is
presented and applied to systems with an impurity. Results are given in terms of an energy of sub-
stitution, defined as the energy required to remove a single atom from a semiconductor, leaving it as
a free atom in the ground state, and replacing it by a free atom of another element; any excess or
deficit of electrons is placed at the valence-band maximum. Calculated values are in reasonable ac-
cord with the recent measurements by Su and Brebrick [J. Phys. Chem. Solids 46, 963 (1985)] for
Zn, In, and Sn in Ge. Lattice distortions and relaxation energies are also calculated. Agreement
with the limited amount of data is mixed but predictions are tabulated for a large array of systems.
Relaxation is seen to reduce the misfit energy by a factor of order 4. Comparison of predicted force
constants with experiment suggests that the theory underestimates the misfit energy by a similar fac-
tor so theoretical energies of unrelaxed substitution provide estimates of the experimental energies
of relaxed substitution. Such predictions are in reasonable accord with experiment for homovalent
substitutions, which are dominated by misfit energy. For heterovalent substitutions, the enthalpy is
dominated by a redistribution of bond polarities in the substitution. Extensive tables of energies of
substitution for elements and compounds from the third (silicon), fourth (germanium), and fifth (tin)
rows of the Periodic Table are given, permitting direct estimates of the energy change for a wide
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variety of atomic rearrangements.

I. INTRODUCTION

Enthalpies of solution of one semiconductor in another
are only poorly known experimentally, partly because
semiconductors are generally quite insoluble in each oth-
er so that the heat of solution is difficult to measure. In
addition, their determination from experiment frequently
involves paths through the liquid phase, and data are
most frequently for the solid and the liquid at the melting
temperature.! Heats of solution do exist for a number of
isovalent solutions,? e.g., III-V compounds dissolved in
each other, and a few recent direct measurements on
heterovalent solutions have been made by Su and Bre-
brick.?

The theory is also difficult. An earlier phenomenologi-
cal approach was made by Weiser* and a dielectric theory
was given by Van Vechten,’ both again directed princi-
pally at the segregation coefficients. More recently, there
have been estimates of the heats of solution by Stringfel-
low? and Martins and Zunger® under the assumption that
it was dominated by elastic misfit, which we shall see ap-
pears to be appropriate for isovalent solutions. There
have also been microscopic quantum-mechanical theories
of isolated cases of individual impurities,"'9 based in
most cases on using a Green’s function to represent the
crystalline environment. Baraff and Schliiter, '* in partic-
ular, obtained reaction energies for transformation be-
tween various defects in gallium arsenide. Here, we seek
a wider sampling of systems, again from microscopic
theory, but in a simple enough way to allow very general
application.

Recently, tight-binding theory, based on universal pa-
rameters, ! and on individual bond energies with correc-
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tions (called metallization) due to coupling with neigh-
bors, proved successful in predicting equilibrium bond
lengths and cohesive energies of elemental and compound
semiconductors. This approach did not depend on lattice
periodicity and is therefore directly applicable to the total
energy of systems containing impurities. Preliminary ac-
counts'>!? of such calculations have been given; here we
give a full account of the method and results.

We shall begin in Sec. II with a restatement of the
total-energy change in forming a crystal from the free
atoms—the cohesive energy—since that gives the basic
approach for all of the calculations and since we shall
need those numbers also. In Sec. III, we calculate the en-
ergy of substitution, defined to be the energy change if an
atom is removed from the crystal, left as a free atom in
the ground state, and a second atom of a different ele-
ment replaces the first. This is done first without allow-
ing the positions of the other atoms in the crystal to
change. The results are compared with the few available
experimental values. From such energies of substitution
and the cohesive energies it is possible to predict heats of
solution and a number of other interesting properties.

In Sec. IV, we allow for the relaxation of the neighbors
to the impurity. We first discuss the determination of
equilibrium spacings in pure semiconductors by minimi-
zation of the energy, writing down the terms in the ener-
gy which depend upon spacing. Then, when an impurity
is substituted, we make the appropriate changes in the
terms in the total energy and calculate the relaxed bond
lengths.

In Sec. V, we obtain in the heats of solution which are
compared with experiment for isovalent solutions, such
as InSb in GaAs, which are the systems for which the
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most data were available and at which most earlier
theory is directed. These are seen to be dominated by the
misfit energy, or elastic energy, as assumed in earlier
theories. The heat of solution for heterovalent systems,
such as germanium in gallium arsenide is seen to be dom-
inated by electronic-structure effects with the misfit ener-
gies playing a smaller role. We also calculate interchange
energies, such as a germanium atom from germanium
with an arsenic atom from gallium arsenide. In the
heterovalent case this dopes both semiconductors and the
dependence of the interchange energy on the doping of
the two systems is described.

II. THE TIGHT-BINDING THEORY OF COHESION

We begin with free atoms, one metallic atom from
column Z* (<4) and one nonmetallic atom from
column Z~=8—-Z"*. We will use these + superscripts
to denote each of the parameters which enters, as we
proceed step by step to construct the solid from the iso-
lated free atoms. Values are given at each step for galli-
um arsenide using Hartree-Fock term values tabulated by
Mann'* and listed in Table I for the elements which will
be needed here.

A. Promotion energy

To form individual two-center bonds we must prepare
each atom in an sp? configuration. For all cases we con-
sider (Z* >2), we must first raise one electron on each
atom from an s state to a p state, with an energy change
(or costing an energy) €, —e;}t +¢, —e;” per atom pair.
Then, unless Z * =4, we must transfer electrons from the
nonmetallic p states to the metallic p states, costing
(Z~—4)e, —¢, ), for a total promotion energy of

Epo=¢, —g} e, —e, +H(Z7—4)ef —¢;) ()

per atom pair. This is 19.12 eV for GaAs.
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B. Bond-formation energy

The eight electrons per atom pair may now be put,
with no cost in energy, into hybrid states of energy

er =(ef+3¢7)/4 )
corresponding in gallium arsenide to €] = —7.14 eV and
€, =—11.46 eV with an average hybrid energy of g,

(—9.30 eV). The energy difference is written as twice the
polar energy V, defined by

Vy=(ejf —e;)/2 3)

and equal to 2.16 eV in GaAs. When they are placed in a
solid, each of these hybrids is coupled to the other hybrid
forming a two-center bond by the covalent energy'®
2
L 3 4)
md
(—4.09 eV). The equilibrium bond length will be listed
in Table III. In the solid, the hybrids form bonds of ener-
gy €, —(V3+V?%)2 thus gaining a bond-formation (BF)
energy of

Egr=—8(V34+¥3)1”? (5)

(—36.99 eV) per atom pair. With V;5£0 these are polar
bonds and the polarity

a,=V/(V}+V)"? (6)

V,=—3.22

enters many of the formulae for their properties.
C. Overlap energy

This attractive bond-formation energy, predominantly
potential, is opposed by an overlap interaction V(d) aris-
ing principally from the excess kinetic energy of the elec-
trons of the two overlapping hybrids. We derive a form
for this interaction in Ref. 11,

Vold)=noV3(d) /| (e,) | 7

TABLE 1. Hartee-Fock term values in units of eV from Mann (Ref. 14). The upper number is —¢;
and the lower number is —e,. An asterisk denotes values extrapolated from surrounding values.

I 1I 111 v \'/ v
Mg Al Si P S
6.88 10.70 14.79 19.22 24.01
3.84* 5.71 7.58 9.54 11.60
Zn Ga Ge As Se
7.96 11.55 15.15 18.91 22.86
4.02* 5.67 7.33 8.98 10.68
Cd In Sn Sb Te
7.21 10.14 13.04 16.02 19.12
3.99* 5.37 6.76 8.14 9.54
Hg Tl Pb Bi Po
7.10 9.82 12.48 15.19 17.96
3.95* 5.23 6.53 7.79 9.05
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with (e, ) the average of the hybrid energies of the two
constituents, and we shall use that form here. The basis
of the derivation was that the nonorthogonality S shifts
both the bonding and antibonding levels upward by
—SV, and extended Hiickel theory relates the coupling
¥, to the nonorthogonality by V,=K | (g, ) | S, with K
an empirical constant. We adjusted the constant 7, such
that the total energy was minimum at the observed spac-
ing for diamond, silicon, germanium, and tin, and took
these values (1,=1.23, 1.95, 1.87, and 2.16, respectively)
to apply for compounds constructed from the same row
(e.g., 1.87 for GaAs), using geometric means for “‘skew
compounds.” Here we use a fit that should be slightly
more accurate. We fit 7, to give the correct spacing for
each compound. For bonds which do not exist in the
pure tetrahedral compounds (e.g., Zn-Sb) we take the
geometric mean of the values for the two compounds
which contain elements from the same rows and also con-
tain one constituent (values for ZnTe and GaSb in the
case of the Zn-Sb repulsion). This is a generalization of
the use of a value fit to the observed spacing for the case
of existing compounds.

This overlap interaction is perhaps the weakest part of
the tight-binding theory of cohesion. It is necessary to
adjust 7),, as suggested above, and use the same values to
predict bond lengths. Using 7, values for elemental semi-
conductors did not give very accurate predictions of bond
lengths for compounds isoelectronic with them and the
limited tests we shall make of distortions here are not too
encouraging. Cohesions predicted using this approach
are quite good, but radial force constants,
k =3’E_;, /3d?, are not well given, typically being too
small by a factor of as much as 3. Thus we can have
much more confidence in our heats of solution then in
our distortions and relaxation energies. The results will
nevertheless be informative.

There are four bonds per atom pair so we may write
the overlap energy per atom pair as

Eover:4n0V%/l <Eh ) |- 8
This is 13.72 eV for GaAs.

D. Metallization

The calculation to this point has neglected any cou-
pling except between the two hybrids making up the
two-center bond. Corrections to this approximation are
called metallization, the leading term being from cou-
pling between two different hybrids on the same atom.
This coupling matrix element (4’| H | h) is called the
“metallic energy”

Vi=(ef—ef)/4 )

(—1.47 eV, —2.48 eV). This couples bonds to neighbor-
ing bonds, but since both are fully occupied that does not
affect the total energy. It also couples each bond to the
neighboring antibonds and the corresponding lowering of
the energy is called metallization. We compute it in
second-order perturbation theory.

We note first (see, for example, Ref. 11) that the bond
orbital is a linear combination of the two hybrids with a
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coefficient on the nonmetallic atom of [(1+ap)/2)]” 2

and on the metallic atom of [(l—ap)/Z]”z, where a,, is
the polarity, given in Eq. (8). For the antibonding orbit-
als the magnitudes are interchanged and one is changed
in sign. Thus, the coupling between the bond orbital and
a neighboring antibonding orbital sharing a nonmetallic
atom has the magnitude (l—alz,)” 2y /2. This is to be
squared, divided by the energy difference, 2(V3 +¥V3)1/2,
and multiplied by 3 for the three neighboring antibonds.
The corresponding term for the coupling through the me-
tallic atom is added, the result multiplied by 2 for spin
and 4 for the number of bonds per atom pair to obtain
the metallization energy of

Epe=—301—a2)V{2+ V) /(V3+VH2 (10
per atom pair (for GaAs it is —4.22 eV).

E. Cohesion

The total change in energy is the negative of the

cohesive energy per atom pair, E_;,

'—Ecoh=Epro+EBF+Eover+Emet . (11

This is 8.37 eV for GaAs. In Table II we give the corre-
sponding values for a wide range of compounds, along
with experimental values. These values differ from those
given in Ref. 11 due to an error in the analysis of the V,,
in Ref. 11, noted in Ref. 12.

We see that we predict a decrease in cohesion with po-
larity, as observed. Both that trend and the decrease
with increasing average atomic number are rather well
given.

F. The valence-band maximum

We need an additional parameter for the pure com-
pound in our calculation of substitution energies; that is
the energy of the valence-band maximum, on the same
scale as the atomic term values we have used. This is
needed since if we substitute an atom of column Z + 1 for
an atom of column Z, the extra electron is to be placed at
the Fermi energy of the semiconductor, which we take by

TABLE II. Calculated and experimental cohesive energy (in
units of eV per atom-pair). The observed bond length is d (in
units of A).

Cohesion (eV/atom-pair)

Compound d (A) Theory Experiment?®
Si 2.35 9.93 9.28
Ge 2.44 9.19 7.76
Sn 2.80 7.05 6.24
AlP 2.36 10.47 8.52
GaAs 2.45 8.37 6.52
InSb 2.81 6.20 5.60
ZnSe 2.45 8.87 5.16
CdTe 2.81 6.93 4.12

*Reference 16.
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convention to be at the valence-band maximum. Thus,
an additional promotion energy arises.

The energy of the valence-band maximum is obtained
in tight-binding theory'>'¢ as

EP=(e; +¢,)/2—{[(ef —¢, ) 2]
+(1.28#/md*?}V%2,  (12)

based upon the matrix elements we are using here. How-
ever, that energy is shifted by the same nonorthogonality
which gives the overlap interaction, as noted by Ender-
lein.!” Enderlein and Harrison!” estimated this shift as
the average shift for all electrons, ¥/2, but it may be
preferable to estimate it specifically in terms of orbitals
which enter the state, as in the calculations in the Appen-
dix of Ref. 11. This reduces the shift by a factor of
(1.28/3.22)%. Then the valence-band maximum becomes

E,=EI®+(1.28/3.22)*V,/2 . (13)

For GaAs it is —9.64+40.27=—9.37 eV. Correspond-
ing values for the other semiconductors are listed in
Table IIL. This correction to E[® is considerably smaller
than the average value used by Enderlein and Harrison.
Values for the valence-band maximum, Eq. (12), have
been widely used to estimate heterojunction band discon-
tinuities; it would appear that this correction would have
negligible effect on those predictions.

G. The force constant

It will be useful in our discussion to obtain one more
parameter, though it is not used in our numerical calcula-
tions. That is the force constant, equal to the second
derivative of the energy per bond with respect to bond
length (varying all bonds in the crystal together). We
have adjusted 7, for each compound such that the
minimum energy comes at the observed internuclear dis-
tance d. We may now evaluate the energy at a slightly
larger and a slightly smaller d and extract the second
derivative numerically. Such values are listed in Table
III. They are considerably smaller than the correspond-

TABLE III. Calculated valence-band maximum, on the scale
of Table I, obtained in tight-binding theory, E®, and corrected
for nonorthogonality, E,, as in Eq. (13). Also listed are the
theoretical and experimental (Ref. 16) force constants k (in units

22
of eV/A").

Force constant

k €V/A?

Compound EJ® (eV) E, (V) Theory Experiment
Si —9.35 —-9.04 4.06 9.96

Ge —8.97 —8.70 2.74 8.01

Sn —8.00 —7.80 1.39

AlP —10.22 —9.93 4.46

GaAs —9.64 —9.37 3.90 7.90
InSb —8.61 —8.41 2.29 5.62
ZnSe —11.06 —10.82 2.68 6.33
CdTe —9.80 —9.63 1.43 5.12
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ing values we obtained in Ref. 13. These values did not
contain the effects of metallization and were considerably
larger. An experimental value is directly obtainable from
the bulk modulus; values are included in Table III for
comparison.

We see that our procedure has considerably underes-
timated this constant, though the cohesive energies them-
selves are well given. This must ultimately be a failure of
the form, Eq. (7), for the overlap interaction. If we were
to adjust also the exponent of 4 in that expression to ob-
tain the observed bulk modulus we would spoil the pre-
dictions of the cohesion. Changes in the form of the
overlap interaction should not be made without a better
understanding of their origin, so we shall simply note the
discrepancy for later use, and proceed as we have de-
scribed.

III. THE SUBSTITUTION ENERGY

We turn now to the change in energy if an atom in the
compound is replaced by an impurity atom. At first we
neglect any distortion of the host lattice. We shall give
numbers at each step for substituting a germanium atom
for a gallium atom in gallium arsenide. This is directly
evaluated as the change in the various contributions
given above during this substitution, beginning with a
gallium arsenide crystal and a free germanium atom and
ending with a germanium impurity in GaAs and a free
gallium atom.

A. Promotion energy

The first step is to break four gallium-arsenide bonds
(we return to that energy in Sec. III B) and carry out the
gallium atom (actually a Ga™ ion) with one electron in
each of the four hybrids. We then gain an energy
e/ —e, by letting one of the p electrons drop into an s
state. A second p electron should be inserted in the com-
pound at the valence-band maximum, costing an energy
(4—Z*)E,—¢, ), leaving a free gallium atom in its
ground state. We must then promote an electron in the
germanium, costing (g, —¢€;), where the super s refers to
the substituting atom. If the column of the substituting
atom were not 4, we would need to transfer 4 —Z° elec-
trons from the valence-band maximum to the atom cost-
ing (4—Z°)(e,—E,) in order to have one electron in
each hybrid. This puts us in the promoted state with a
change in the promotion energy given by

SEP,°=£;—e§+(4-—ZS)(sf,—EU)
—(e,;*—s;’)—(4-Z““)(€F)L —E,). (14)
This is —1.76 eV for Ga(Ge)As.

B. Bond-formation energy

Breaking the four bonds costs the entire bond-
formation energy, 8(¥3+¥3%)!/2, for the four bonds sur-
rounding the gallium atom, but reinserting the germani-
um atom between the four arsenic neighbors gains back a
similar amount. Since the lattice is not allowed to dis-
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tort, the bond length and, therefore V,, remains the
same. However, the polar energy is different. We define
it to be

ViT =(g,—€, )/2. (15)

In this case it is positive, 1.09 eV, but if we were to sub-
stitute the germanium for an arsenic, €, would be re-
placed by € and V3 would be negative. The change in
bond-formation energy becomes

SEpr=8(V34+ V)12 _8[V34+(V5)1]2, (16)

equal to 3.15 eV in this case.

C. Overlap energy

The overlap energy for the four bonds surrounding the
impurity is modified from the substitution. Before substi-
tution it was given by Eq. (8) with (e, ) the average of
the gallium and arsenic hybrids and 7, determined as in-
dicated in Sec. IC, in this case adjusted to give the
correct spacing in gallium arsenide. After substitution
(g, ) becomes the average of the germanium and arsenic
hybrids and 7, is replaced by 7, determined as indicated
in Sec. II C, in this case the geometric mean of values ad-
justed to give the correct spacings for germanium and
gallium arsenide. [If silicon were substituted for gallium
in gallium arsenide it would be the geometric mean of the
values fit to give the correct spacing for SiGe (the average
of the Si and Ge values, by Vegard’s law) and for AlAs.]
Thus the change is

anver=8V§(n6/|EZ+E; l “770/18}}*'*'5;1— l ) . (17)
This is —1.52 eV for Ge substituted in GaAs.

D. Metallization

Replacing a gallium atom by a germanium changes the
metallization of the surrounding four bonds and also that
of the three bonds which share each of the four neighbor-
ing arsenic atoms, illustrated in Fig. 1.

Enderlein and Harrison!” also calculated this contribu-
tion. We see that it is small, but not negligible. We may
specify the change by writing a formula for all metalliza-
tion terms which are influenced by the substituted atom.
We then should subtract the energy obtained from that
formula with s replaced by +.

Each of the eight electrons in a germanium-arsenic
bond has a metallization contribution with each of the
other three germanium-arsenic antibonds with which it
shares a germanium atom. We must be careful with the
signs for these atoms. The coefficient of the bond orbital
for the hybrid on the arsenic atom is [(1+a,*)/2]'/3,
where

a =V /[VE+ (V5T )PV, (18)

which in this case is positive. The coefficient for the anti-
J

E e = =3V P[1— (a5 P1/[VE+(V5~ )22
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FIG. 1. An atom X is substituted for an atom A in the com-
pound 4B. Then, calculations of metallization and of distortion
can be made on the cluster containing X, its four neighboring B
atoms, and 12 second-neighbor A4 atoms. For X, a germanium
atom, 4, a gallium atom, and B, an arsenic atom, this cluster is
sufficient for including all metallization terms which depend
upon the Ge-As distance.

bond of the hybrid on the germanium is [(1—a}~)/2]'/2
Thus, the coupling between a bond and an antibond is
V‘l[l—(a;")z]“ 2/2, with V5 the coupling between the
two hybrids on a germanium atom. The energy denomi-
nator is minus twice [ V2 +(¥3°)*]'/? and the shift in en-
ergy of each bond electron due to coupling with one anti-
bond sharing the germanium is thus

—(V3P[1—(a ™ P1/8[ V5 + (V5 P12

Further, there is metallization of each electron in a
germanium-arsenic bond with three antibonds which
share the arsenic atom. The coefficient for the bond of
the hybrid on the arsenic is [(1+a;~)/2]'/? and that for
the antibond hybrid on the arsenic is [(1—a,)/2]'/2

The energy denominator is the difference between the
Ga—As antibond and the Ge—As bond,

(& av—I V% +(V5~ )2]1/2——[(gh )ay + V% + V% )1/2] )
(19)

The parameters in the second two terms, apply to the
gallium-arsenic antibond. There is also metallization of
the two electrons in each of the twelve Ga—As bonds
with a Ge—As antibond. It differs from contributions we
have just estimated only in that the product of the
squared coefficients is (1—a,”)(1+a,)/4 and the (g ),,
and (g} ),, in the denominator are changed in sign. It is
convenient also to note that

(Eh )av_(elrs)avz V;FS=(E}T—€';, )/2.

We may combine the three sets of terms to obtain

—6(V 7 P(1+ay N1—a,) ) /{((V3+ V)24 [V + (V5™ 2] 2= Vit
—6(V T P(1—ay N 14a,) /{(V3+ VD24 [Vi+ (V5 212+ V5] . (0
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We are to evaluate this, obtaining —10.19 eV for ger-
manium in a gallium site in gallium arsenide, and sub-
tract the value obtained with V3 replaced by ¥V and a,”
replaced by a@,, V3~ replaced by V;, and V5T replaced
by zero. This value is —7.35 eV, giving a change in
metallization of —2.86 eV.

If we were instead to substitute a germanium atom for
an arsenic atom, metallic and nonmetallic atoms are in-
terchanged everywhere. This has the effect of replacing
V3~ by V3¥, which is negative, in the corresponding a;*
from Eq. (18). V7 is replaced by Vi, V3 is replaced by
V3™, and a, is replaced by —a,. From this we are to
subtract the value obtained with V' replaced by V| and
with aj,* replaced by —a,, V5T replaced by — V3, and
V5~ replaced by zero.

E. The total

We may add the four contributions to obtain a substi-
tution energy of germanium in the gallium site of gallium
arsenide of Eg,(Geg,)=—3.01 eV; the energy is
lowered by the substitution. Such a value was used
directly with the Born-Haber cycle to discuss core shifts
in Refs. 12 and 17. Values obtained in exactly this way
for a wide range of energies of substitution are given in
Table IV.

Interestingly enough exactly these substitution energies
have been measured carefully for a few systems by Su and
Brebrick.? They give values of 3.47, 1.95, and 0.83 eV
per atom for neutral Zn, In, and Sn in germanium. In
our calculation for zinc we have removed two electrons
from the valence band, by convention, whereas in a neu-
tral zinc impurity the corresponding two holes would be
bound in a deep acceptor level. Su and Brebrick give the
energy to remove those two holes to the valence band as
0.12 eV, so one should really add this to obtain 3.59 eV to
be compared with ours; the correction is small, and even
smaller for indium. Our predicted values are 6.06, 3.91,
and 1.12 eV for Zn, In, and Sn, respectively.

Our values have given the correct general magnitudes
for the heterovalent as well as the isovalent substitutions.
We would guess the accuracy of the measurements to be
much better than that of the theory so the comparison
should give some idea of our accuracy. They are the only
values we found for the substitution energy, and the only
experimental quantities related to heterovalent substitu-
tions. Our other comparisons with experiment will be for
homopolar systems only, and will be enthalpies of solu-
tion, obtainable in terms of the energies of substitution.

Energies of substitution may not be interesting in
themselves, but they may be used directly to obtain other
quantities of interest. Their lack of direct interest is
reflected in the lack of apparent systematics from one sys-
tem to another. When we substitute a germanium for a
gallium in gallium arsenide, we are left with an isolated
gallium atom rather than an isolated germanium, with
quite different electronic energy. Further, the smaller
germanium atom has an overlap repulsion lower than the
gallium it replaces by a large amount, of first order in the
size difference. On the other hand, when we interchange
a gallium and a germanium across an interface, by com-
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bining the two substitution energies, there is no change in
external isolated atoms and the first-order change in over-
lap interaction cancels out, leaving only a second-order
effect. There is always a considerable degree of cancella-
tion of terms when we calculate quantities of physical
significance and the systematics may be present in the
final result.

IV. LATTICE DISTORTIONS

For systems such as an In atom substituted for Ga in
GaAs, we may readily estimate lattice distortions with an
elastic model, such as that used by Martins and Zunger®
and Shih et al.,'® assuming that the equilibrium bond
lengths for the In—As and Ga—As bonds are the same
as those of the pure InAs or GaAs compound. However,
in other solutions, such as Zn in Ge, we do not know
what equilibrium bond length to use, so we turn first to a
discussion of these equilibrium lengths.

A. Natural bond lengths

We have given the total energy for pure materials in
Sec. II, and a procedure for obtaining parameters for the
overlap interaction. We could in fact have written it in
terms of each individual bond length d; in the system and
the partial derivative of the energy with respect to each
d; would have been zero at the equilibrium spacing, just
as was the total derivative with respect to all of the d; =d
in the crystal. In Sec. III we gave that total energy for a
system containing an impurity without distortion of the
lattice; that is, with each d; equal to the host d. This also
could be written in terms of the individual d;. The bond-
formation energy, the overlap interaction, and the metall-
ization are all modified and the partial derivatives of the
energy with respect to the d; near the impurity are no
longer zero. This suggests that we define a natural
impurity-host bond length by minimizing the energy with
respect to the impurity-host d;, holding all other d; con-
stant. It yields the impurity-host bond length that the
system would “like to have” if there were no elastic con-
straints from the host lattice. (We shall return to the cal-
culation of the equilibrium bond length when the elastic
constraints are included.) We could obtain, for example,
a natural indium-arsenic bond length for indium substi-
tuted for gallium in gallium arsenide. This seems a very
useful set of numbers to have, and we have a means of
predicting them. Unfortunately, the results do not ap-
pear to be very reliable but they may nevertheless be in-
formative.

Note that the natural bond length for a particular pair
will depend upon the compound in which the bond is em-
bedded. Thus the In—As natural bond length will be
different for In in GaAs than it will be for pure InAs. In
tight-binding theory such dependencies arise from the
metallization energy. We find the differences to be large
in some cases; if true this argues against the use of any
covalent radii since the bond lengths obtained from such
radii do not distinguish different environments.

The calculation may be understood in terms of Fig. 1.
We let the bond length between the central atom and the
four B neighbors be d’, different from the host d; the
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37 ENERGIES OF SUBSTITUTION AND SOLUTION IN . ..

A—B bond lengths remain as d. One of the terms in the
energy which depends upon d’ is the X-B overlap repul-
sion. In its evaluation we indicated in Sec. II C that for
Si—As, for example, for (g, ) we use the average of the
hybrid energies for Si and As. For 7, we use the
geometric mean of the values fit for SiGe and AlAs (since
Ge is in the same row as As and Al is in the same row as
Si). The other terms depending upon d’ are the X—B
bond-formation energy, the metallization energy of the
X—B bonds with the X—B antibonds and with the 4 —
B antibonds, and the metallization of the 4-—B bonds
with the X—B antibonds. We have written all of these
energies, though up to now we have not distinguished the
V, which are determined by d’ from those determined
from d.

Making that distinction we wrote a small program
which evaluates the energies for the pure compound, ad-
justing the 7, for the overlap interaction such that the to-
tal energy is minimum at the observed bond length. It
then evaluated the cohesive energy, the force constant,
and the valence-band maxima which we have tabulated.
Then for any specified impurity it obtained the substitu-
tion energy without distortion and minimized the energy
by varying the impurity-host d' numerically. Finally, it
evaluated the relaxation energy for that impurity-host
combination.

We consider first the natural bond lengths obtained
with the program. Listed in Table V are the natural bond
lengths obtained for a wide range of impurities in the
compounds in Tables II and III. In discussing the results
we use these values, as well as other values obtained with
the same program.

There is seen to be significant dependencies upon envi-
ronment. Note from Table V that we obtain a natural
bond length of 2.19 A for the Si—P bond in AlP, while
from Table V it is 2.24 A for P embedded in silicon,
which is nonpolar. Similarly the natural Zn—P bond
length was found to be 2.63, 2.64, and 2.59 A in AIP,
GaP, and InP, respectively (with of course Zn substituted
for the metallic atom). On the other hand, it was the sin-
gle value 2.53 A in ZnS, ZnSe, and ZnTe (with P substi-
tuted for the nonmetallic atom). The larger natural bond
lengths occur when the polarity is lower and therefore
the effects of metallization larger, the differences being
largest when one of the environments is homopolar.

We see that for a given environment the natural bond
length ordinarily decreases as the impurity is taken from
further right in the Periodic Table due to the increasing
energy in the denominator of the overlap interaction.
For an extreme case, such as Zn substituted for As in
GaAs, the energy decreases monotonically with spacing
so there is no natural bond length in our model. This is
also true in the other extreme with Se substituted for Ga
in GaAs, due in this case to the very large metallization
energy. The difficulty appears to be the very soft, long-
range interatomic repulsion obtained with this formula-
tion; it led also to force constants much smaller than ex-
periment. We may surmise that we have overestimated
the effects in other cases also, but expect that the qualita-
tive trends are correct.

An interesting comparison is the In—As natural bond
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length of 2.65 A in GaAs, as opposed to 2.61 A in InAs;
the Ga—As natural bond length is 2.43 A in InAs as op-
posed to 2.45 A in GaAs. Note that the two deviations
are of opposite sign so the average of the impurity-host
bond lengths, 2.54 A, is almost exactly equal to the aver-
age of the bulk bond lengths, 2.53 A, so we predict
Vegard’s law to be accurately satisfied.

An important case is the substitution of As for Ga in
GaAs; that is, the arsenic antisite defect in GaAs. The
natural bond length from Table V is 2.40 A, which we
shall see corresponds to a relaxed bond length in the crys-
tal of 2.41 A. Bachelet and Scheffler'® have made a much
more complete calculation of the relaxation of the neigh-
bors to arsenic and find the displacements to be very
small. In the doubly ionized state, appropriate to our cal-
culation, they also find an inward relaxation, but smaller
than the one we find.

The particular combinations Si—P and Zn—P are of
interest since there are nontetrahedral compounds SiP,
and Zn;P, containing these bonds. In the case of SiP,,
the P is tetrahedrally coordinated and there is a P—P
bond of 2.13 A, in good agreement with the 2.15 A from
Table V. In Zn;P, the phosphorus is sixfold coordinated
and the Zn fourfold coordinated with a separation of 2.48
A, smaller than the 2.53 A (P in ZnSe) and the 2.63 A (Zn
in AIP) obtained from Table V. There must be important
effects aside from coordination. This and some further
comparisons in Sec. IV B suggest that the predictions are
not reliable.

Our natural bond lengths are very nearly equal to the
pure-material bond lengths for tetrahedral, IV-IV, III-V,
and II-VI bonds. These are the systems where the varia-
tions of natural bond length are important to the heats of
solution; extrapolations to the other bonds, II-V, etc., are
less important to the heats of solution since other terms
dominate.

B. Distortion and relaxation energy at impurity atoms

We now wish to use the natural bond lengths discussed
in the preceding section to predict the properties of im-
purities. To do this we use a simple model which will
give us the relaxed bond length in terms of the natural
impurity-host bond length and the host bond length; it
will also give us the relaxation energy in terms of that
which we have already calculated for full relaxation
without constraints from the lattice. We can then obtain
the needed results directly from the numbers obtained
above.

1. The relaxation

In the cluster model,%!® the outer 12 atoms in Fig. 1,
labeled A, are held fixed. It is very easy to solve for a
small radial displacement u of the nearest-neighbor atoms
labeled B by setting the total force on one of them equal
to zero, assuming that the radial forces dominate the
problem and a single force constant k is appropriate.
There is a force on the B atom given by k times the natu-
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37 ENERGIES OF SUBSTITUTION AND SOLUTION IN . ..

ral bond length d, for the X—B bond minus the host
bond length dj, minus the displacement of the B atom;
F=k(d,—dy,—u). There are also forces from the A4
atoms due to the displacement. We must take com-
ponents of the displacement (u/3) along the second-
neighbor ( A—B) bonds, take the radial component of
the resulting force (—ku /9), and add it for the three
bonds to A atoms to obtain ku /3. Setting the total equal
to zero gives the equilibrium displacement

u=3d,—d,) . 21

The impurity-host bond stretches three quarters of the
way from the host bulk length d, to its natural bond
length d,, as follows:

d=(dog+3d,)/4 . (22)

Note that we have taken all the same force constants and
then they cancel from the result. Our underestimate of
the force constants seen in Table III does not directly
lead to error in the relaxed bond length.

We may then use the natural bond lengths from Table
V to directly predict the equilibrium distortions for vari-
ous impurities. Unfortunately, only a few have been mea-
sured or calculated by more accurate methods.

Recently Erbil, Weber, Cargill, and Boehme® used ex-
tended x-ray-absorption fine structure (EXAFS) to deter-
mine that the As-Si distance for As dissolved in silicon is
2.41£0.02 A, greater than the bulk-silicon bond length
by 0.06 A. From Table V we obtain a natural As—Si
bond length of 2.31 A and thus a relaxed bond length of
2.32 A. We find a relaxation of the opposite sense to that
given by the measurements. Self-consistent Green’s-
function calculations by Scheffler et al.?! appear to have
been in the same direction as the experiment, but smaller
by a factor of 2. Note that this is a shallow impurity level
so no appreciable effects of the charge state of the impuri-
ty are expected.

More recently Sette, Pearton, Poate, Rowe, and Stohr?2
similarly found the Ga-S distance for S dissolved in GaAs
to be 2.43+0.04 A compared with our estimated 2.19 A
using Table V. In this case we seem to have considerably
overestimated the distortion.

Preliminary self-consxstent local-density calculations
by Froyen and Zunger? have ngen 2.47 A for the Si- Mg
distance for Mg substituted in Si. We considerably
overestimate the spacing at 2.97 A, obtained using the
3.18 A natural bond length from Table V.

Mikkelsen and Boyce?* have measured the In-As dis-
tance for In dissolved in GaAs and the Ga-As distance
for Ga dissolved in InAs but these are fitted well by the
use of pure-compound bond lengths as natural bond
lengths and that is close to what we predict.

2. The relaxation energy

The total elastic energy initially arose from the distor-
tion of the four impurity-host bonds and was
4X 1k(d,—dy)* After relaxation it included the re-
duced elastic energy of the four impurity-host bonds plus
the elastic energy of the twelve B— A springs; that equals
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1k(d,—dy)*. The reduction in energy therefore is
three-quarters of the initial elastic energy. In our calcula-
tion of the natural bond length in Sec. IV A, we allowed
the full unrestricted relaxation, corresponding to a relax-
ation of all of the elastic energy. Thus, the relaxation en-
ergy of the impurity is approximately three-quarters of
the full unrestricted relaxation energy.

Because of this large cancellation it is essential to treat
the relaxation in the same approximation that gave the
initial misfit energy. This would be accomplished if we
simply took three-quarters of the relaxation energy ob-
tained in the tight-binding program described in the
preceding section, though our underestimate of the
spring constant by a factor of order 3 would suggest that
we underestimate both misfit and relaxation by a factor of
order 3, assuming that our natural bond lengths are well
given. A simple way of approximately correcting the
total-energy estimate is simply to use the unrelaxed ener-
gy of substitution. This underestimates the misfit by a
factor of order 3, but neglects the fact that relaxation
would reduce that misfit by a factor of order 4. It may
not be the most appealing way to correct an intrinsic
inaccuracy of the theory, but in the context of the cluster
approximation and the inaccuracy of the force-constant
prediction it may be as accurate as we can be.

As we have indicated, the substitution energies are not
as easy to interpret as the properties we calculate in
terms of them. We therefore turn to enthalpies of solu-
tion and heats of mixing.

V. ENTHALPY OF SOLUTION
AND THE HEAT OF MIXING

In order to use our tables for determining a property
we must specify exactly what experimental quantity is be-
ing evaluated. We define an energy of substitution of a
free atom X for an atom A in the compound AB leaving
the atom A as a free atom. This was well defined but or-
dinarily not the quantity directly measured. The enthal-
py of solution of the compound 4B in the compound CD
may be defined as the energy required to remove an A4
and a B atom from the compound, to substitute the 4
atom for a C atom and the B atom for a D atom in CD,
and to return the C atom and the D atom to the bulk CD.
This energy is

HCD( AB)ZECOh( AB)+ECD( AC)+ECD(BD)_Ecoh(CD)
(23)

per atom pair. This would be the energy for an AB pair
to leave a step in a heterojunction between AB and CD
and dissolve into the CD. The pair was removed from a
step so the interface energy does not change; the step
simply moves.

For example, the enthalpy of solution for Ge in GaAs
from this formula is the cohesive energy of germanium,
given in Table II as 9.19 eV per atom pair. Energies of
substitution are obtained from Table IV. In particular,
EGans(Geg,) is —3.01 eV, Eg,a(Gey ) is + 3.21 eV, and
E_ ,(GaAs) is 8.37 eV for a total of 1.02 eV per pair.
This is a large positive enthalpy of solution. Germanium
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is quite insoluble in gallium arsenide.

We may note here that the misfit and relaxation are
rather small on the scale of Hp( AB). We calculate an
unrestricted relaxation for the two cases of —0.193 eV
and —0.083 eV, for germanium on the gallium and the
arsenic sites, respectively. This corresponds to a misfit
energy of 0.27 eV included in our calculated value, only a
quarter of the total. We also argue that this is an un-
derestimate, but that relaxation of the full value brings
the total near to the 1.02 eV we obtain from the program.

These are heterovalent solutions, since Ge is from
column IV and GaAs is a III-V compound. However,
note that though in substituting Ge for Ga we place an
electron at the valence-band maximum, we remove it in
the substitution of Ge for As. This will generally be true
for molecular solutions of this kind. If we dissolve GaAs
in Ge, the p-type doping of the Ga cancels the n-type
doping of the As. In contrast, if we were to dissolve Ga
from metallic gallium into germanium, electrons would
be removed from the germanium at the Fermi energy. If
the germanium is p type the Fermi energy lies at the
valence-band maximum as we have assumed. If the ger-
manium is n type, the electrons would again be added at
the Fermi energy, which now is at the conduction-band
minimum. The enthalpy of solution would be reduced by
an energy equal to the band gap in germanium. We shall
consider such a case in Sec. V C.

It will generally be true for heterovalent solutions that
Hcp(AB) is large and positive and that the relaxation is
quite small in comparison. In contrast, for homovalent
solutions, such as InAs in GaP, H.p( AB) is dominated
by the misfit energy, some three-quarters of which is can-
celled by relaxation. Again we expect an underestimate
of a factor of order 3 so our unrelaxed estimate should be
approximately correct. Indeed, it was noted earlier' in a
similar calculation that the unrelaxed estimate was in
reasonable accord with experiment, while relaxation re-
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duced it far below the experimental values. We now un-
derstand why.

The comparison with the experiment is frequently
made for the heat of mixing, which for ideal solutions is
given by AH™=QX (1—X), where X is the concentration
of one constituent. ? This assumes that
H ,3(CD)=H¢p( AB), which is only approximately true
experimentally and in our calculation. However, we may
compare experimentally determined values of Q) with the
average enthalpy of solution

Qpeor=[H 45(CD)+Hcp( AB)]1/2
=[ECD( AC)+ECD(BD)+EAB(CA )+EAB(DB )]/2,
(24)

where we have noted that when Eq. (23) is inserted, the
cohesive energies cancel out.

Experimental values for () are available for a number
isolvent solutions? so we consider those first. We then
treat heterovalent solutions and ones which result in dop-
ing.

A. Isovalent solutions

Predicted values for ) are directly obtained from Eq.
(24) using the energies of substitution from Table IV.
These are listed in Table VI for a number of isovalent
mixtures along with experimental values where avail-
able,? and predictions of the Martins and Zunger® model
B discussed above. All are positive (or essentially zero),
indicating energy must be supplied to transfer atoms
across the interface. Our estimates are in reasonable ac-
cord with experiment, as are the Martins and Zunger
values.

We may see from our calculations that our estimate is
principally misfit energy by calculating that misfit energy
using the cluster model and the force constant which

TABLE VI. Heat of mixing Q (in units of eV per molecule of mixture) for isovalent mixtures.

Total Misfit Martins®
Compound [Eq. (24)] [Eq. (25)] and Zunger Experiment®
AlAs/GaAs 0.00 0.00 0.00 0.00
AlAs/InAs 0.22 0.11 0.31 0.22
AlSb/GaSb 0.00 0.00 0.00 0.00
AlSb/InSb 0.10 0.06 0.18 0.05
GaP/GaAs 0.06 0.03 0.10 0.03, 0.09
GaP/GaSb 0.50 0.31
GaP/InP 0.24 0.12 0.39 0.30, 0.28
GaAs/GaSb 0.20 0.13 0.40 0.35, 0.39
GaAs/InAs 0.16 0.09 0.22 0.14, 0.26, 0.17
GaSb/InSb 0.10 0.06 0.22 0.13, 0.16
InP/InAs 0.03 0.02 0.06 0.03
InP/InSb 0.33 0.20
InAs/InSb 0.16 0.11 0.25 0.20, 0.25
Ge/Si 0.09 0.03 0.14 0.10
Si/Sn 0.55 0.55 2.38 1.69
Ge/Sn —0.02 0.27 1.33 0.65

*Reference 6.
bReference 2.
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come from our calculation. We see from Eq. (24) that
our estimate of () is one-half the energy to interchange an
atom pair between the two compounds. Let the bond
lengths and force constants for the two materials be d,
d,, k,, and k,. Let the natural bond length at an inter-
changed atom be }(d;+d,) and the spring constant be
1(k;+k;); then without relaxation, as we calculate it,
each of the 16 new bonds from the interchanged atom
pairs has a bond differing by +(d, —d,) from its natural
bond length, for a misfit energy per bond of
1[4k, +k;)1[1(d;—d,)]% There are 16 such bonds and

we are to divide by 2 to obtain Q ;..

Qmisﬁtz%(kl+k2)(d2_dl)2 . (25)
These values are also listed in Table VI. The two theoret-
ical calculations are totally different, but the values are
rather similar. This confirms the fact that for homopolar
mixing the heat of mixing is dominated by misfit energy.
To the extent that the solutions are ideal, it also follows
that the individual enthalpies of solution are dominated
by misfit.

Under these circumstances it is probably preferable to
use the cluster model and experimental lattice constants
and force constants as Martins and Zunger® did for
homopolar substitutions where all of these parameters
are known. Their values are essentially Q. /4, based
on empirical k; and d;. For heterovalent substitutions we
must proceed with a more complete description, as we
have done here. Then the fact that we have obtained
reasonable results for the simpler homopolar case lends
support to the method.

B. Heterovalent solutions

We may immediately evaluate the enthalpies of solu-
tion using Eq. (23) and Table IV. Results for a number of
heterovalent and isovalent systems are given in Table
VII. The values are much larger than for the isovalent
case. They are also much larger than the misfit contribu-
tion, obtained from Eq. (25). Unfortunately, there appear
not to be experimental values with which to compare, al-
though the comparison of experimental and theoretical
energies of substitution in Sec. III E would suggest that
they are approximately correct.

We may see what the principal contribution is by con-
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sidering the individual terms. There is again no change
in promotion energy in the solution process, but the sum
of bond energies, —2(¥3+¥3)!2, does change and this
is the dominant term. This contribution is in fact the
same as that treated empirically by Van Vechten? in the
Phillips—Van Vechten dielectric model. For this reason,
our treatment of antistructure defects in polar semicon-
ductors, 2 gave values very close to those obtained earlier
by Van Vechten. Indeed, antistructure defects consist of
heterovalent substitutions. This is also the reason why
the dielectric model did rather poorly in describing the
heats of solution of isovalent impurities>® which are
dominated by misfit.

We may evaluate this contribution to the enthalpy of
solution, by summing —2(¥3 + ¥3)!/2 over the bonds be-
fore and after substitution. Since this is done bond by
bond, it also makes it possible to make the evaluation for
complex geometries such as transferring interface atoms
across a heterojunction; this is the procedure used by
Grant et al.?® Applying it to an enthalpy of solution, for
example, dissolving two germanium atoms into gallium
arsenide, without relaxation, replaces four germanium-
germanium bonds (8¥, with V,=—4.09 eV) and four
gallium-arsenide bonds [ —8(¥3 +V3%)!/? with V,=2.16
eV] by four gallium-germanium bonds and four
germanium-arsenic bonds (—16 [V3+(V,/2)*]'/?), for
an increase in energy of 2.04 eV. This is to be compared
with the value of 1.02 eV from Eq. (23) or Table VII.
Adding the change in overlap interaction would raise our
estimate even higher, but the change in metallization has
brought it down to 1.02 eV. These estimates are qualita-
tively correct, indicating that the insolubility of the
heterovalent systems arises because it is unfavorable ener-
getically to replace strongly and weakly polar bonds by
bonds of intermediate polarity. To be at all quantitative
in the predictions requires the inclusion of the metalliza-
tion.

C. Solutions of dopants

The solutions described above were specifically chosen
such that the atomic interchange involved no net transfer
of charge. Of more importance are solutions, such as ar-
senic in germanium, in which there is a charge transfer
and, as a consequence, carriers are added or
subtracted —the system is doped.

TABLE VII. Enthalpy of solution Hcp( AB) of ABin CD (in units of eV per atom pair).

CD SiSi GeGe SnSn AlP GaAs InSb ZnSe CdTe
AB

SiSi 0.08 0.28 1.82 0.59 0.06 5.19 3.96
GeGe 0.10 —0.14 2.26 1.02 —0.01 5.88 4.30
SnSn 0.82 0.106 3.52 1.54 0.77 6.44 4.88
AlP 1.57 1.58 1.80 —0.05 0.70 0.73 1.14
GaAs 0.68 0.78 0.57 —0.06 0.11 1.42 1.30
InSb 1.53 0.92 0.46 1.24 0.25 1.97 1.15
ZnSe 4.06 3.83 3.53 0.66 1.26 1.60 0.29
CdTe 4.22 3.57 —0.03 1.36 1.17 1.01 0.45
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In the case of arsenic, perhaps from gallium arsenide,
being dissolved into germanium the germanium atom
which is replaced can be returned to the germanium, but
one must also specify what is to be done with the vacant
arsenic site; we have been left with a nonstoichiometric
gallium arsenide crystal unless, as in the preceding sub-
section, we also dissolve a gallium, but then there is no
doping. One alternative is to fill the arsenic site with a
germanium atom. In this case, we simultaneously dope
the gallium arsenide p type and the germanium n type
and the energy we calculate is the sum of the energies re-
quired to dope the two systems. This is the case which is
treated here.

For the particular interchange we are discussing, we
may directly add the energies of substitution
EGege(Asge) + EGaas(Gea)=1.53 eV. This process
leaves a free arsenic and a free germanium atom before
and after the interchange so they can be ignored. We
should note, however, that in our substitution of the ar-
senic for germanium, we placed, by construction, the ex-
tra electron in the valence band. This would be appropri-
ate if the germanium were p type, but if we are interested
in the doping of otherwise intrinsic material (or further
doping n-type germanium), we should move the electron
to the conduction band, costing the gap energy for ger-
manium, 0.76 eV. Thus the total energy for the inter-
change, which dopes the Ge n type and the GaAs p type,
is the sum 1.53+0.76=2.29 V.

We might instead wish to ask for the energy required
to insert an arsenic atom into germanium, doping it n
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type, from a clump of arsenic on the germanium surface.
We might do this by removing an arsenic atom from the
arsenic metal, taking a cohesive energy of 2.96 eV, which
we many obtain from a list for all elements given by Kit-
tel.2” We substitute this for a germanium atom, costing
Eg.(Asg.)=—1.62 eV, but we then require 0.76 eV to
raise the extra electron to the conduction band of the ger-
manium. Finally, we return the substituted germanium
atom to the germanium, gaining the cohesive energy per
atom of germanium of 4.60 eV, for a total cost in energy
of 3.74 eV per dopant atom. Similarly, we could substi-
tute a germanium atom from pure germanium for an ar-
senic atom in gallium arsenide, placing the resulting free
arsenic atom in a pure arsenic crystal costing an energy
of 0.19 eV. These two doping energies depend upon a use
of empirical tables of the cohesive energy of the elements,
but our theoretical values for cohesion are close enough
to experiment that the combination of theoretical and ex-
perimental values should not cause problems.

The calculation of desired doping energies is so
straightforward from our tables, and it is so important in
any application to decide what the process is which is be-
ing considered, that we have not produced a table of
these doping energies.

ACKNOWLEDGMENTS

This work was supported, in part, by U.S. Office of Na-
val Research (ONR) Contract No. N00014-85-C-0135.

*Permanent address: Department of Applied Physics, Stanford
University, Stanford, CA 94305.

IF. A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).

2G. B. Stringfellow, J. Phys. Chem. Solids 33, 665 (1972); 34,
1749 (1973).

3Ching-Hua Su and R. F. Brebrick, J. Phys. Chem. Solids 46,
963 (1985).

4K. Weiser, J. Phys. Chem. Solids 7, 118 (1958).

5J. A. Van Vechten, Phys. Rev. B 7, 1479 (1973).

6J. L. Martins and A. Zunger, Phys. Rev. B 30, 6217 (1984).

"D. Vanderbilt and J. D. Joannopoulos, Solid. State Commun.
35, 535 (1980).

8G. A. Baraff and M. Schliiter, Phys. Rev. B 30, 1853 (1984).

9M. Scheffler, J. P. Vigneron, and G. B. Bachelet, Phys. Rev. B
31, 1327 (1985).

10G, A. Baraff and M. Schliiter, Phys. Rev. Lett. 35, 1327
(1985).

11W. A. Harrison, Phys. Rev. B 27, 3592 (1983).

12E, A. Kraut and W. A. Harrison, J. Vac. Sci. Technol. B 2,
734 (1984).

13E. A. Kraut and W. A. Harrison, J. Vac. Sci. Technol. B 2,
1267 (1985).

143 B. Mann, Atomic Structure Calculations, I: Hartree-Fock
Energy Results for Elements Hydrogen to Lawrencium (Na-
tional Technical Information Service, Springfield, VA, 1967).

15W. A. Harrison, Phys. Rev. B 25, 5835 (1981).

16W. A. Harrison, Electronic Structure and the Properties of
Solids (Freeman, New York, 1980).

I7R. Enderlein and W. A. Harrison, Phys. Rev. B 30, 1867
(1984).

18C. K. Shih, W. E. Spicer, W. A. Harrison, and A. Sher, Phys.
Rev. B 31, 1139 (1985).

19G. B. Bachelet and M. Scheffier, in Proceedings of the 17th In-
ternational Conference on the Physics of Semiconductors, San
Francisco, 1984, edited by D. J. Chadi and W. A. Harrison
(Springer, New York, 1985), p. 755.

204 Erbil, W. Weber, G. S. Cargill III, and R. F. Boehme,
Phys. Rev. B 34, 1392 (1986).

2IM. Scheffler (private communication), based on the method
described by M. Scheffler, J. P. Vigneron, and G. B. Bachelet,
Phys. Rev. Lett. 49, 1765 (1982).

22F. Sette, S. J. Pearton, J. M. Poate, J. E. Rowe, and J. Stéhr,
Phys. Rev. Lett. 56, 2637 (1986).

23S. Froyen and A. Zunger (private communication).

243, C. Mikkelsen and J. B. Boyce, Phys. Rev. B 28, 7130 (1983).

25J. A. Van Vechten, J. Electrochem. Soc. 122, 423 (1975).

26R. W. Grant, J. R. Waldrop, S. P. Kowalczyk, and E. A.
Kraut, J. Vac. Sci. Technol. B 3, 1295 (1985).

271C. Kittel, Introduction to Solid State Physics, 5th ed (Wiley,
New York, 1976), p. 100.



