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A simple theoretical method for calculating superlattice electronic structures based on the bond-

orbital model is presented. The method combines the virtues of the envelope-function (k-p) and

tight-binding methods. The method contains no Stting parameters; all interaction parameters in-

valved are directly related to parameters for describing bulk bands near the zone center in the k.p
perturbation theory. Subband structures of a GaAs-Al„Gal „As and an InAs-GaSb superlattice
are calculated for illustration.

I, INTRODUCTION

Research interest in the area of semiconductor super-
lattices' has grown tremendously durin~ the past few
years. Many theoretical method s2 ' have been
developed for calculating the electronic structures of su-
perlattices. These theoretical methods can be classified
into three categories: the pseudopotentials, the tight
binding, ' " and the envelope-function (k p) (Refs.
12-21) methods. Among these methods, the envelope-
function approach is most widely adopted because of its
simplicity. With various refinements, 's z' this approach
can become quite sophisticated and can be used to study
many problems such as band mixing, the effects of exter-
nal fields (modulation doping, electric field, magnetic
field, and unaxial stress, etc.), impurities, and exciton
states. The major drawback of this method is that the
boundary conditions become extremely complicated
when many bands are involved. ' ' The tight-binding
method requires more computational effort. However, it
takes the effect of full band structure into account, and
the boundary conditions for connecting superlattice wave
functions across the interface in this model are straight-
forward. The main disadvantage of the tight-binding
model is that it requires many empirical parameters
which are usually determined by tedious Stting pro-
cedures. In this paper, we introduce yet another theoreti-
cal method which is closely related to the envelope-
function and the tight-binding methods. In fact, this
method may be considered as a link between the above
two methods. The method is based on the bond-orbital
model. The computational elort required to implement
this method is comparable to the envelope-function
method involving the same number of bands. In addi-
tion, the method contains many virtues of the empirical
tight-binding method, while avoiding the tedious fitting
procgdul e.

The basic idea of this method is to use a minimum
number of bond orbitals to describe, as accurately as pos-
sible, the most relevant portion of the band structure for
the bulk materials which constitute the superlattice. For
example, to calculate the valence-subbsnd structures of a

GaAs-Al„Ga& „As superlattice, the minimum informa-
tion needed is the energy dispersion of the top four
valence bands near the zone center for GsAs and
Al„Ga, „As. In this case, four bond orbitals per unit
cell (made ofp-like states coupled with spin to form orbit-
als with total angular momentum J=-,') are used to ob-
tain the top four valence bands for each bulk material.
For narrow-gap semiconductors, such as HgTe, InSb,
InAs, etc. , we have to add two s-like bond orbitals (with
spin up and down) per unit cell to describe the lowest two
conduction bands (including the spin degeneracy), since
the superlattice states of interest contain admixtures of
both the valence-band and conduction-band characters.
In cases where the split-ofF band is also of importance, we
also need to include two additional bond orbitals per unit
cell (made ofp-like states coupled with spin to form orbit-
als of total angular momentum J=—,'). We shall assume
that all these bond orbitals are sufficiently localized so
that the interaction between orbitals separated farther
than the nearest neighbor distance can be ignored. All
nonvanishing interaction parameters can then be directly
related to the effective masses or other band parameters
obtained in the k p perturbation theory. The relation is
determined by requiring the band structures of relevant
bulk materials obtained by this method to be identical to
those predicted by the k p theory up to the second order
ln

II. BOND-ORBITAL MODELS

We first consider a valence-band model (VBM), in
which only the top three valence bands (in the absence of
spin-orbit interaction) are included. This model requires
only three p-like bond orbitals (labeled x,y, z) per unit
cell. Here s bond orbital is de6ned ss the proper linear
combination of two atomic orbitsls within s unit cell of a
diamond or zinc-blende crystal which best describe the
valence-band states near the zone center. %e denote an
a-like (a=x,y, z) bond orbital localized at lattice site R
as

~
R,a). The interaction between orbitals

~
R,n) and

~

R', a') for a face-centered-cubic lattice is given by2i
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R ~ )=Ep5aa5, +5a a—, IE„~~ r (1 5— )+[E„„r+E„(1—r2)]5

where E denotes the on-site energy and E „,E„,and E are three independent nearest-neighbor interaction parame-
ters. Here E, denotes the interaction between an a-like orbital at the origin and an a -like orbital located at
(1,1,0)(a/2), a being the lattice constant. The remaining interaction parameters can be related to E„„,E„,and E„by
symmetry. r denote the a component of the twelve nearest-neighbor position vectors in units of (a /2),

~=(+1,+1,0), (+1,0, +1), (0, +l, kl) .

The top three valence bands (in the absence of spin-orbit interaction) of a typical zinc-blende or diamond crystal can
be obtained by diagonalizing the tight-binding Hamiltonian

H (k)=E 5 + ge'"'tE„,r r ~ +[(E,„EJ—)H+E (1 +)—]5 I . (2)

—X3k„k

E„—A, ,kJ —A2k

—A3k k,

—A.3k k,

E„—A, ,k, —A.2k'

A. k3—„k
—A,,k„k,

H(k)=

Taking the Taylor expansion over k and omitting terms higher than the second order„we obtain

E„—A, ,k„—A,2k —A,3k, k,

where

E, =E,+8E„„,
ki (E„E——„)a /2—,

iE2 ——(3E „E„)a/2, —

k3 ——E a

i R, uM ) = g C(ao;JM)
i R,a)X

where J =—'„—,', M = —J, . . . , J, and I, cr =—,', ——,
'

denote the electron spinors. The coupling coeScients
C(a, cr;JM) are given in Table I. By including the spin-
orbit interaction, we obtain the tight-binding Hamiltoni-
an in the new SOBO basis as

Comparing H(k) with the k p Hamiltonian for the
valence bands, we have

HJMJ'M'(k) (J 2 )~5JM, J'M'

+ g C (ao;JM)C(a'o; J'M')
(L —M)=A, i, M =Az, X=Aq, (4) Ia, o, ,o

where L, M, and N are k p band parameters defined in
Ref. 24. The above equations provide a one-to-one
correspondence between the band parameters L, M, and
N (measurable by the cyclotron-resonance experiment2 )

and the bond-orbital interaction parameters E„„,E„~,
and E . The on-site energy E~ plays the role of adjusting
the energy position of the valence-band top (E„).

For most semiconductors of interest, the spin-orbit in-
teraction is important, Thus we choose the proper linear
combinations of the product of the electron spin and the
three p-like orbitals as the new bond-orbital basis. The
spin-orbit coupled bond orbitals (SOHO's) can be written

xH. .(k),

where b, is the spin-orbit splitting. Taking the Taylor ex-
pansion over k and omitting terms higher than the
second order in k, we immediately obtain the Kohn-
Luttinger Hamiltonian. There is a one-to-one
correspondence between the t.uttinger parameters, y&,

y2, and y3 and the bond-orbital interaction parametersE, E„„,and E . The relations are given in Table II in
the column labeled VBM.

Next we consider a model for describing the coupling
of the lowest conduction band and the top three valence
bands. %e shall refer to this model as the coupled

TABLE I. Coupling coeScients for p-like states coupled to the electron spin.

(x, —')

—1/&2 —i /&2

(x, —2) (y ——')

0
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TABLE II. Relations between bond-orbital parameters and
k p parameters. Ho=A /2moa', Xi„——4eV.

VBM

valence-band states is of importance. In this model we
include one s-like and three p-like bond orbitals per unit
cell. In addition to the tight-binding matrix elements
given in (1), we also have

E„y ——6y3Ro
E„„=(y (+4yq)g o

E- =(r i
—Sr2)&o

Ep ——E„—12y)Ro

Es'. ——Eg (12y2ao —X„,/8)/32
E.y =673R o —16E,'. /E,
E„„=y (&o —16E,„/(3Eg )+Xg( /24
E„=E„+XII/8
Ep =E„—12E +XI,I /2

PPl o 2 1Ro+64E2
~r g g+

(R,s
~
H

~
R,s ) E fi„,„+E fiR. „

(8)

conduction-valence-band model (CVBM). Such a model
is needed for treating superlattices like InAs-GaSb and
Hg Te-CdTe, in which the mixing of conduction-band and

where
~
R,s ) denote an s-like orbital located at R. Tak-

ing the Taylor expansion over k and omitting terms
higher than the second order in k, we obtain the Hamil-
tonian in the sp basis

H(k)=

E, —E„a k

i4Es ~k

i 4E,„—

akim

—l4E ~Ok

i 4E,„ak,
E„—A, ,k„—A.2k

—A,,k„k

Ak3, k—, ,

i 4E,„ak
—A, ~k„ky

E„—A, ,k —A,2k

—A, 3k k,

i 4E»ak,
—X3k„k,
—A~k kg

E„—A, ,k, —A, 2k

(9)

where E„A,i, Az, and A3 are defined identically as in (3 ), and E, =E, +12E„. If we block diagonalize the matrix H(k)
so that the conduction band and the valence bands are decoupled, the new Hamiltonian matrix correct to second order
ln k reads

E, +(A,4
—E„a )k

E„—(A,)+A,4)k2 —X2k2

—(A,3+A,4)k„ky

—(A,3+A,4 }k„k,

—(A3+ A4)k„k„

E„—(A, &+A,4)ky —A,2k

—(A3+Aq)krak,

—(A3+ A4)k„k,

—(A,3+k&)krak,

E„—(A, l+ ky)k, —A.2k

(10)

where A4=(4E,„a) /E, and Es=E, E„denot—es the
band gap. Comparing (10) with the k.p theory of Ref.
24, we then obtain

(L —M)=A, i+A4, M =Az,

N =A3+A4, —
A4 E„a——

where m, denotes the conduction-band effective mass.
Note that in the above equations, the bond-orbital pa-
rameters are not uniquely related to the k p parameters
because we have four equations but five unknowns (E„,
X„A.2, A, 3, and A,4). Thus we need to impose an additional
constraint. One obvious constraint is to require the ma-
trix element describing the coupling between the
conduction- and valence-band states near I to be the
same as that given in the k-p theory, i.e.,

(E» „E„)= Xhi/=80—.5 eV . (12)

TABLE III. Comparison of 16E~/Ro (8o ——A /2moa ) pre-
dicted the CVBM and (2/mo) ( (S

~
P,

~
X) ) predicted by the

k. p theory (Ref. 27). The units are eV.

Material
i ( iSPi )Xi

band tends to cross the heavy-hole band at some finite
wave vectors. To ensure that such crossing does not hap-
pen, we impose the constraint that the energy difference
between the heavy-hole band and the light-hole band at X
(denoted Xs&) obtained by the CVBM to be approximately
the same as the value predicted by the empirical pseudo-
potential theory. In the CVBM it can be shown that this
energy diff'erence (Xi,&) is just 8(E„E„„).For mo—st
semiconductors of interest, this energy difference is about
4 eV. Thus we choose the constraint

I', 4E,„a = (S
/ P„/X),

where (S
~
P„~X) is the momentum matrix element

de6ned in Ref. 27. Although this constraint is quite
physical, it sometimes leads to spurious valence-band
structures in the CVBM. In particular, the light-hole

GaAs
AlAs
InAs
GaSb
HgTe
CdTe

15.9
7.98

20.1

17.6
19.3
13.7

25.7
21.1

22.2
22.4
18.0
20.7
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A comparison of 16E /Ro (Ra=Pi /2moa2) predicted
in the CVBM and (2/mo) [ (S

~
P„(X)

~
predicted in

the k p theory for a number of semiconductors is
shown in Table III. %'e found that with this constraint
(E~ E—~) =0.5 eV, the condition i 4E,„a=(fi/
mo)(S

~ P„~X ) is still approximately satisfied for
narrow-gap semiconductors (e.g., InAs and HgTe) in
which the coupbng between the conduction and valence
band is important.

Finally, we include the spin-orbit interaction in the

CVBM. We define the s-like spin-orbit coupled bond or-
bitals located at R as

i
R, co )=

i
R,s)X

The P-like SOHO's are just
~
R, uxc) as defined in (5).

The tight-binding Hamiltonian correct to the second or-
der in k [in the basis (co, /2, c0, /z, u i/2,
u i/2, u i/2, Q $/i, u i/i, u i/2)] can be wrltteil as3/2 3/2 3/2 1/2 1/2

R'

S/&3

—V'2/3S

R'

T»

T'/&2

P'+ Q'

—B' /+2
V'2C'

S/&3

Pl Ql

&3/2B'

Pl Ql

&3/2B'

v'2Q'

—B'

p'+ Q'

—B'/+2

+2/3S

—a'/v 2

&3/2B'
V'2C'

p'+6

+3/28'

V'2Q'

—B' /+2

P'+b

(13)

8'=E, —E„a k, S = i2&—2E,„a(k„+ikl),
T =i8E,„ak, /&6, P'=E, [E„„—(E—„E„„)/3]a—k

Q'= (E„E„„—)a (k ——3k, )/12, 8'=E„a (k„ik )k, /—v'3,
C'= —[(E„E„„)(ky k—„)/4+—iE„k„k ]a /v'3 .

To make connections between the bond-orbital interaction parameters and the k p parameters, we block diagonalize
the matrix H(k) so that the conduction band and the valence bands are decoupled. The new Hamiltonian matrix
correct to second order in k reads

R
0
0

H(k)=
0
0
0

0
R
0

0
0
0
0

0
0

P+Q

0
—a"'/~2

—&zc"

0
0
8

P —Q
0

i/2gt I

i/ 3 /2g t i e

0
0
C
0

P —Q

&3/2S"
i/2Q it

0
0
0
C

—8
P+g

&2C"'
—a"/~/2

0
0

—8"/&2
i/2gii

I'"+5
0

0
0

—~2C"
&3/28"
—v 2g"

—a"'/v'z
0

P"+6

(14)

where

R =E,—E„a k + 2+ A,~k /3,E+6
I' =P' —A,4k /3,

Q =Q' —A,q(k —3k, )/6,

g =g'+g~(k~ ik )k~/i/3,

C =C'+ A,4(k„ik„) /i/ 12, —

P"=P' A~k 2/3, —
Eg+5

Q"=Q' — il~(k —3k, )/6,
g +

B"=8'+ A~(k„ikl)k, /v 3, —

C"=C'+ A4(k„ik ) /&12 . —
z, +a' "
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Comparing the above matrix with the corresponding re-
sults of the k p perturbation theory, we then established
a one-to-one correspondence between the set of bond-
orbital parameters [with the constraint (12)] and the set
of k p parameters. Such a relation is given in Table II in
the column headed CVBM.

For systems with large spin-orbit splitting (b, }, we may
eliminate the two split-off states u &&& and u I&& by set-
ting 5= ~. It is worth pointing out that at k„=k =0,
states with difkrent quantum numbers of J, are decou-
pled [see (9)] and the present model becomes extremely
simple. If we set 5= oo and k„=k =0, the present mod-
el becomes essentially identical to the two-band model
used in Refs. 13 and 28.

We now apply the bond-orbital models discussed in
Sec. II to superlattices. An appropriate bond-orbital
model is chosen for each participating material in the su-
perlattice. The interactions between any two bond orbit-
als located in the same material are taken to be the same
as those for the bulk. The interaction between two bond
orbitals located in two diff'erent materials (i.e., the in-
teraction across the interface} may be taken, for conveni-
ence, to be the average of the corresponding matrix ele-
ments in the two participating bulk materials. Since
different choices of the interaction across the interface
lead to diFerent boundary conditions in determining the
superlattice wave functions, the results will depend on
how such interaction parameters are selected. In cases
where sufficient experimental data are available for cer-
tain physical quantities that are sensitive to the boundary
conditions, these interaction parameters across the inter-
face may be appropriately treated as empirical parame-
ters. Once the interactions among all bond orbitals in the
superlattice are deffned, one may proceed in several ways
to calculate the electronic structures. For small-period
superlattices, one can obtain all the electronic levels by a
direct diagonalization method (the slab method). ' For
large-period superlattices, one can use the reduced Ham-
iltonian method ' (applicable for any tight-binding mod-
el) to obtain the electronic levels in any desirable energy
range. Because of the simplicity of the interaction matrix
in the bond-orbital model, we find that the most con-
venient and powerful method to use is the transfer-matrix
method. ' Such a method can be applied to general sit-
uations in which the interaction parameters between
bond orbitals vary from one atomic layer to another
within the period of the superlattice. Thus, superlattices
under external fields (electric, strain, modulation doping,
etc.) and superlattices with composition variation (e.g.,
saw-tooth superlattices) can all be treated in the same
way.

We describe the transfer-rmtrix method briefly below.
For ally kiild of supeilattice witli period d, tile superlat-
tice state with wave vector k=(ki„q}can be written as

X—1

()~
I. 1=0

where C(/) is a column vector whose components are the
coefficients C (/) and H'+', H' ', and H' ' are matrices
with elements

H'+'(/)=(ki, /, L;a (
H

~ ki, /+1, L;a'),
H' ' (/)=(ki, /, L;a

~

H
~ ki, /, L;a') —E5, ,

H.'-„&(/)=&k, /, L; [H [k, / —I,L;

We deffne a transfer matrix T(/) as

—[H' + '(/)] 'H' '(/) —[H' + '(/)] 'H' '(/)
T(/) = 0

Then we have

C(/+1)
C(/)

C(/)=T(/) C(/ 1 )
~

L

Repeatedly applying (17) for / from 1 to N, we obtain

C(X+1) C(1)
C(N) + C(0) (18)

where T~=T(N)T(N —1) T(2)T(1). From the
definition of the coefficients C(/) in (1S), we see that
C (/ +N) =e'v C (/). Thus

C(1}, C(1)
C(0) C(0) (19)

Since T~ is a function of the energy E, the eigenvalue
equation (19}can be solved to ffnd the dispersion relation
(E versus q).

IV. RESULTS

We shall illustrate the use of the method by calculating
the subband structure of GaAS-A1~Ga] ~AS and InAS"
GaSb superlattices. For GaAs-Al„Ga, „As systems, we
shall use the valence-band model (VBM) (with infinite

where L labels the superlattice unit cells (SUC's, / labels
the atomic layer within a given SUC, and N is the num-
ber of atomic layers per SUC. Here an atomic layer con-
tains all bulk unit cells in a lattice plane perpendicular to
the growth direction.

~ ki, /, L;a } denotes a Bloch sum
of a-like bond orbitals in the /th atomic layer in the Lth
period associated with the in-plane wave vector kI~. Sub-
stituting %'z into the Schrodinger equation yields

g e''i~~ g C~(/)(H E)
~

—ki, /, L;a }=0, (16)
L /=1

where H is the Hamiltonian for the superlattice and E is
the energy of the superlattice state. Projecting (16) in
bond orbitals located at atomic layer / leads to an equa-
tion relating the coefficients at layer /+ 1 to those at lay-
ers / and / —1, viz. ,

C(/+1) = —[H'+'(/)]-'[H"'(/)C(/)

+H' '(/)C(/ —1)],
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band dispersion along the growth direction is expected to
be small and the subband dispersion along [PM] (with k,
at zone center) should be quite similar to that along [$01]
(with k, at zone boundary). In the present case, we have
substantial dispersion in the growth direction, and the
[PM] and [@1]subband dispersions are quite diiferent.
In particular, the first light-hole band (LHI) has positive
curvature along [$01],but negative curvature along [PN].
Note that the LH1 band typically has positive curvature
in GaAs-Al„Ga& „As quantum wells with thickness
greater than 50 A. ' Another interesting feature is that
the HH3 and LH2 bands cross at some finite k„. thus, the
HH3 band has higher energy than the LH2 band along
g'00] and the opposite is true along [$01].

As another example, we show in Fig. 3 the subband
structure of a (10,10}InAs-GaSb superlattice along [$00],
[00$], and [$01]. The wave vectors are again measured in
units of mid. The band parameters for bulk InAs and
GaSb are taken from Ref. 27. The band discontinuity b,E
(valence-band maximum of GaSb minus conduction-band
minimum of InAs} is taken to be 0.1 eV. Because this is
a type-II superlattice, the superlattice states in general
contain admixtures of bulk conduction-band and
valence-band states. However, for the (10,10) case, the
mixing of the conduction and valence band is rather
weak, because the superlattice conduction and light-hole
states are still well separated in energy (larger than 0.4
eV). In the wider-thickness case, the mixing can be much
stronger. The valence-subband structure is qualitatively
similar to that of the GaAs-AID, Ga09As superlattice
shown in Fig. 2, with the exception that in the InAs-
GaSb superlattice the LH1 and HH2 bands cross at some
finite k„causing a reverse ordering of LH1 and HH2 in
the [P)1] direction. Comparing Fig. 3 with a previous
calculation" within the empirical tight-binding model,
we find that the major difFerence between the two calcula-
tions (besides the difference in bulk band parameters) is
the lack of spin sphtting in the present calculation. In
the present bond-orbital model, the superlattice has
re6ection symmetry with respect to the center of the
InAs or GaSb layer, whereas in the tight-binding model
(and the realistic system) the re6ection symmetry does
not exist. For larger superlattice unit cell, the effect of
the asymmetry and thus the spin splitting would be great-
ly reduced. Furthermore, we note that for wave vectors
along the growth direction the heavy-hole-derived states
and light-hole-derived states are completely decoupled in
the bond-orbital model (also in the k.p model); thus a
heavy-hole subband and a light-hole subband can cross
each other, as can be seen in the middle panels of Figs. 2
and 3. However, in the more tight-binding model, the
heavy-hole and light-hole subbands are coupled for a gen-
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2 l 0 0.5 I l 2
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FIG. 3. Subband structures of a (10,10) InAs-GaSb superlat-
tice obtained in the CVBM.

eral value of q (the z component of superlattice wave vec-
tor); thus anticrossing behavior is expected (see Fig. 13 of
Ref. 34}. This qualitative difference is due to the
artificially high symmetry of the bond-orbital model
which treats the crystal as if it is the underlying Bravais
lattice. For finite value of k„ the realistic zinc-blende
crystal has a symmetry group C2„whereas the face-
centered-cubic lattice has a symmetry group C4„. For
the C2„group, there is only one double-group irreducible
representation; 6 thus, no two subbands should cross each
other. For the C~„group, there are two double-group ir-

reducible representations; thus, crossing of two sub-
bands of difFerent symmetries is possible.
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