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Electron-hole scattering and the negative absolute mobility of electrons
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%e study the transport of a quasi-two-dimensional electron-hole gas in a semiconductor quantum
well. The screening in the presence of the electron-hole interaction is carefully considered. The
method of nonequilibrium phonon wave packet, developed by us, is generalized to include the
simultaneous presence of two-dimensional electrons and holes. The occurrence of negative absolute
mobility for electrons is discussed. The mobility of minority electrons and majority holes are calcu-
lated by use of a drifted temperature model for both types of carriers. The mobilities of minority
electrons |'from negative to positive) as functions of lattice temperature and electric field are shown.
Comparison is made with experiment.

I. INTRODUCTION

Recently there has been considerable interest in the
two-dimensional (2D) semiconductor system for which
electrons and holes coexist. ' The photoexcited electron-
hole (e-h) plasma in quasi-2D quantum wells have been
extensively explored. The luminescence measurements
have been used to derive informations about relaxation
of this system. Recent development of spectroscopy
techniques allows to directly study the effects of carrier-
carrier scattering on the carrier relaxation in ultrafast
processes ( & 1 psec). On the other hand, the transport
measurements of photoexcited electron-hole system have
also provided some interesting results. ' Recently,
Hopfel, Shah„WolF, and Gossard found that in a such
system the minority electrons, which are injected by
laser pumps on the p-modulation-doped quantum wells,
can move along the positive direction of external electric
field. The negative absolute mobility of electrons occurs
because of strong electron-hole drag and was first point-
ed out by McLean and Paige.

The purpose of this paper is to theoretically study
transport of an electron-hole system in a quasi-20 quan-
turn well, with emphasis on the screening eS'ect and the
nonequilibrium optical phonon effect in the presence of
electron-hole interactions. %e calculate the mobility of
minority electrons in a majority hole gas and show that
the mobility of minority electrons is negative at low tem-
perature and in a weak external electric field.

In a 20 electron-hole system the interaction between
electrons and holes has a strength the same order as the
electron-electron and hole-hole interactions. The follow-
ing facts, therefore, should be taken into account in the
calculation of the relaxation of a 2D e-h system: (1) The
many body screening elect should be expressed by a
more complex form than that for single type of carriers,
especially, the electron-lattice interaction and the hole-

lattice interaction are coupled with each other through
e-h coupling. (2) The subband energies and subband
wave functions for electrons and holes are determined
under a common electrostatic potential, which in turn is
produced by contributions from the density distributions
of both electrons and holes. (3) The e-h scattering,
which leads to the energy transfer and momentum
transfer between electrons and holes, should be included
in the dynamical equations of carriers. (4) Lattice exci-
tations build up through both electron-phonon interac-
tion and hole-phonon interactions. The emission and ab-
sorption of common nonequilibrium phonons by elec-
trons and holes produce a special mechanism for ex-
change of momentum and energy between two types of
carriers. Since in a quasi-2D system a better description
of the nonequihbrium phonons is in the "phonon wave
packet" representation related to the subband wave
function of carriers, ' a phonon wave packet representa-
tion involving both electron and hole subband wave
functions should be introduced. In our following calcu-
lation (1), (3), and (4) are carefully considered, but (2) is
treated by introducing some approximation for
simpli6c ation.

%'e derive the condition for negative mobility of elec-
trons. Our formula indicates that the negative absolute
mobility for electrons occurs only in the case of minority
electrons and is determined by competition between
electron-hole drag and hole-lattice relaxation. Using the
drifted temperature model for both electrons and holes
and introducing a coordinate transform to the center-of-
mass systems, separately, for electrons and holes, we ob-
tain a set of coupled equations for drift velocities for
electrons and holes, (v„vz), and corresponding carrier
temperatures, (T„T„).This set of equations together
with kinetic equations for nonequilibrium optical pho-
nons have been numerically solved in the cases of weak
electric field and strong electric Seld. Our results show

1988 The American Physical Society



%. CAI, T. F. ZHENG, AND M. LAX 37

that the mobility for minority electrons is negative at
low lattice temperature and in a weak field. This mobili-
ty increases with increasing of lattice temperature or in-
creasing of electric field and then becomes positive.
These results are in reasonable agreement with the ex-
perimental measurements.

The paper is organized as follows: In Sec. II the ex-
pressions for screened carrier-carrier and carrier-lattice
(impurities) scattering matrix elements are given. In Sec.
III we discuss the condition for negative absolute mobili-
ty for electrons and derive the set of balance equations
for carriers and the kinetic equations for nonequilibrium
optical phonons. In Sec. IV the numerical results are
shown and a discussion is devoted,

direction), while they are essentially free to move in the
plane [r =— (x, y)]. The wave functions for electrons
and holes can be described by

VI' (r, z) =, exp(ik r.) g(z),1

where )u = e (for electrons), h (for holes) labels the types
of carriers. P~(z) is the corresponding envelope function
in z direction with j=1,2, . . . , I„ the corresponding
subband indices. A is the area of the layer of the sample.
k is the wave vector of the p-type carriers in the 2D
plane. The unscreened electron-electron, hole-hole, and
electron-hole scatterings occur via Coulomb interactions,
which can be described by (J„) X (J„) inatrices,
V~"(q). Their elements are given byII. SCREENED CARRIER-CARRIER

AND CARRIER-I.AI-rICK INTKRACDON

The electrons and holes in a quasi-20 quantum well
are quantized in the direction normal to the 2D plane (z

2%8p8~
[V"'(q)];, , = " FI'; ' (q),

egg A

with the form factor

(2)

FP;" ' (q) = f dz f dz' e ~'' '
' P '(z)g(z)(J'(z')gj(z') .

Here we denote that the first group of sub-indices of sub-
bands (i'i) corresponds to the first sup-index of carriers
(p) and second sub-indices (j'j) to the second sup-index
(v); the same notation rule will be used hereafter.
e„= + e for hole and electron, respectively, and eo is
the static dielectric constant. Here we denote
Q =—( q, q, ) as the 3D momentum exchange. The car-
riers are also scattering with lattice and impurities. The
corresponding unscreened scattering matrix can be writ-
ten as MP, (Q); here L = LO, TO, LA, TA, imp labels,
respectively, longitudinal optical phonons (LO), trans-
verse optical phonons (TO), longitudinal acoustic pho-
nons (LA), transverse acoustic phonons (TA), and im-
purities (imp). The expressions for these matrices will be
listed later.

Since the strength of electron-hole interaction is the
same order as electron-electron interaction and hole-
hole interaction, the dynamic screening e6ect should be
expressed by a more complex form than that in the case
of a single type of carrier. Also, the electron-lattice (im-
purity) interactions and hole-lattice (impurity) interac-
tions are coupled with each other through the electron-
hole interaction. These are shown in Fig. 1 in the ran-
dom phase approximation (RPA). According to Fig. 1(a),
the screened carrier-carrier scattering matrix, V",
satisfies the following equation:

where H" is a diagonal matrix, its elements are the
density-density correlation functions for 20 carriers,
which are given by
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/ X / X / X /
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h e h e h
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FIG. l. (a) Diagrams for screening e8'ect of carrier-carrier
potential in the RPA. The single and double horizontal solid
lines represent, respectively, the unscreened and screened
carrier-carrier interaction, V" and V" . The bubble represents
the density-density correlation function, H". {1)Diagrams for
screening effect of carrier-lattice (inipurity) potential. The
dashed hne represents the phonon (impurity) line. The point
and circle vertex represent, respectively, the unscreened and
screened carrier-lattice scattering matrices, M and M.
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f.", —f'I
11&;(q, a)) = 2

%co + E;". „q —E;"h + i5

with f;"h the distribution function of ri-type carriers in
the (i, k) state; E;"h ——E;" + A k /2m„ is the energy
of the state, with E;" the energy level of subband i (we
use parabolic subband approximation). %co represents
the energy exchange in the corresponding scattering pro-
cess. If we define a [(J,) + (Jh) ]X[(J,) + (Jh) ]
carrier-carrier potential matrix, V, as

y CC yCh

Vhc Vhh

and de6ne

&h

yCC @eh

t/ hc yhh

V= [1 —VII] ' V.

In the case that only the lowest band for electrons and
holes are occupied, it can be straightforwardly written as

The screened carrier-carrier potential matrix can then be
solved as

( 1 VhhIlh) yee+ VehIlh yhe

yhc

ych

l

VeeIle) Vhh+ Vhelle Veh

( 1 VeeIle) ( 1 Vhhllh ) Vehllh VhelIe (10)

MC —L
1 + V"II'

yhelIe

VchIIh

yhhIIh

According to Fig. 1(b), the screened matrices for
carrier-lattice (impurity) interactions, M" ", are given

M,'., o( Q ) = i H,'., ( iq,—)—, (12)

ational function, we estimate that the peak of g", (z) for
the lowest subband is located near 0.51. In the following
calculation, therefore, we assume that holes are also
bound by a quantum well of width 1. Under the as-
sumption of infinite square well structure the form fac-
tors F (q), F""(q), and F'"(q) have the same structure.

Finally, we list the unscreened matrices for carrier-
lattice (impurities) scattering. ' The electron-LO-phonon
scattering occurs via polar Frohlich interaction:

Here we denote M" and M" as column vectors
with component indices (j'j }. We notice that this kind
of coupling between electron-lattice interaction and
hole-lattice interaction must also be included even in the
30 electron-hole system.

In the case that electrons and holes coexist, the elec-
trostatic potential, which induces a self-consistent
heterojunction structure, is common for both electrons
and holes and is produced by both electrons and holes.
Therefore the electrostatic potential energy is repulsive
for electrons, when it is attractive for holes. This situa-
tion appears in the p-modulation-doped quantum well,
where electrons are a minority. In this case electrons can
only be bound by a quantum well structure, whereas
holes can be bound by the self-consistent heterojunction
well. The existence of minority electrons, on the other
hand, weakens the potential which binds holes. This
difFerence between envelope function of electrons and
that of holes, generally speaking, can affect the strength
of electron-hole couphng through the form factor F'"(q)
in Eq. (3). A detailed analysis depends on the parameters
of carrier density, n„nh, and the width of quantum
well, d. In the recent experiments, d = 112 A,
n, —3X10' cm, and n„= 1.6X10" cm (for
double heterojunctions in a quantum well}. Using a vari-

Mh —Lo( g )JJ —i(E )'
P

(D,K )vari

+ i &z
H"1( iq, ), (—14).

(2pr „)'"
where D,E = ( —,

')' 1,/a„with 1, the optical deforma-
tion potential constant and a, the lattice constant. p is
the mass density of the crystal, E the correction factor
due to p-type wave functions for holes and existence of
light holes. " The hole-TO-phonon (2 branches) scatter-
ing occurs via the deformation potential interaction:

(D,E }A

(2pfio) )'

The electron-LA-phonon scattering occurs via 10th de-
formation potential and piezoelectric interactions:

with o, the Frohlich coupling constant,
a = [2ne Ar0Lo(1/e„— 1/eo)]', with agio the fre-
quency of LO phonons and e„ the high frequency
dielectric constant. Here we de6ne

H(';(p) = f 1z P '(z)e «'g'";(z) . (13)

The hole-LO-phonon scattering occurs via both polar
and deformation potential interactions:

r
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Me
—LA(q)

8%8e ig+ l
eoQ' 2pULQ

]/2

[q„q,e, (g) + q, q„e,'(Q) + q, q, e„(Q)] H,', , ( —iq, ) . (16)

The hole-I-A-phonon scattering occurs also via the deformation potential and piezoelectric interact1ons:

Mh —LA(q)
J J

' 1/2

[q.q„e,(Q) + q, q„equi(Q) + q, q, eI(Q)] H,"', ( —iq, ),
eoQ 2Pi'L

SfMe i4Me —TA(q) y eoQ'
[q„qsej~, (Q) + q, q„ejs(Q) + qyq, ej„(g)]H;( iq, ).—

The electron-TA-phonon scattering occurs via the piezoelectric interaction:
' lt2

The hole-TA-phonon scattering occurs via the piezoelec-
tric interaction and its scattering matrix elements can be
written in a similar way. In Eqs. (16)—(18), UL and UT are
the longitudinal- and transverse-sound speeds; "„is the
acoustic phonon deformation potential constant for p
type carriers; e,4 is the piezoelectric constant; e (Q) and

ei(Q) are unit polarization vectors for longitudinal and
transverse modes, respectively. The carrier-remote ion-
ized doped impurities scattering can be described by'

Mil; ™(q)= (N, )'/ (2ne„e„)exp( —qs)Hfl;(q)//(eoq),

III. DYNAUMICAI. EQUATIONS
FOR CARRIERS AND PHONONS

%'e first briefly discuss the condition for negative ab-
solute mobility of electrons in the region of weak electric
field where the conductivity is linear. In the steady state
we have the force balance equation for electrons:

n„e„E —F" "—F" "=0, (20)

where E is the external electric field, F" represents the
frictional force due to the carrier-lattice interaction, and
F" represents the frictional force upon the p-type car-
riers due to the carrier-carrier interaction with the v-

type carriers. It is obvious that F" = —P" ". In
the region of linear conductivity we have

(21a)

F" " = n.„n„/I" (v„—v„),
where v„ is the drift velocity of p type of carriers, 3"
represents the contribution to the resistivity (per carrier)
from p-L scattering, and A" " relates to the contribu-
tion to the resistivity (per carrier p) from p, -v scattering
normalized to per carrier v. Their expressions will be
discussed later. From Eqs. (20) and (21) we immediately

(21b)

with er the charge of impurity, Nz the density of impuri-
ties, and s the undoped spacer distance. The trapped
holes on the Ga, „AI„As side due to photoexcitation'
can also be modeled as a kind of impurity with a density
of trapped holes, WH, and the effective distance of layer
of trapped holes from a layer of carriers, sH.

obtain the expression for the mobility for electrons, p,,:
(n n—) ~'-h+ ~ h-L

ge —Lgh —L+ ge-hge —L+ ge —hgh —L

Equation (22) indicates that for electrons a negative ab-
solute mobility is only possible when n, & nh (Th. e
corresponding statement for hole mobility could require
nh & n, )It is d. etermined by the difFerence between the
density of electrons and the density of holes, and the
competition between electron-hole drag and hole-lattice
scattering. At low temperature and under a weak electric
field, the former dominates and the mobility of electrons
is negative. When the lattice temperature or the electric
field increase, the latter tends to dominate and the mo-
bility of minority electrons becomes positive. Equation
(22) reduces to Eq. (3) of Ref. 4 in the limit when

n, g& n&.
The carrier dynamics is described by a semiclassical

nonlinear Boltzmann equation. We do not attempt a nu-
merical solution of the kinetic equation, but simply make
a standard ansatz on the form of the distribution func-
tions of carriers. We assume that the distribution func-
tion of each type of carrier, f/h, can be described by a
drifted Fermi-Dirac distribution at carrier temperature
T„and with drift velocity v„. We also separate the
center-of-mass motion of each type of carrier from its
relative motion. The 2D momentum for p-type carriers
in the relative coordinates is defined as
irik = i)'ik —m„v„and the distribution function in the
relative coordinates, f,.h, is a Fermi-Dirac function at
temperature T„. The exchange of momentum and ener-

gy in the relative coordinates can then be written as

E" —E", , = i'( co .——q v —) . (23)

A set of coup1ed equations for the rate of change of drift
velocities of center-of-mass and the rate of change of en-
ergies in the relative coordinates for each type of carrier
can be derived from Boltzmann equations for the car-
riers. ' %e obtain

Bn„m„v„(t) = e„n„E —g F" L(t) —F" "(r), (24)
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BE"(t)
Bt

BE~-"«)
F", which represents the frictional force due to e-h
scattering, with v a difFerent type of carrier than p, is
given by

X5[E,.& + E,
" —. E,",z, —. E,", . + Rq (v„—v, )], (26)

F" = g AqA" ~(q, t) . (27a)

where the term irtq (v„—v„) appears in the last 5 func-
tion because the energies E for electrons and holes are
defined in different coordinates, and ra = (E,.&—E,"..z. ) jR. The last term in Eq. (25) represents the ener-

gy loss rate in relative system due to e-h scattering and
can be obtained from Eq. (26) by replacing iilq by
E".-„—E".,-„,.ik i'lr"

F" in Eq. (24) represents the frictional force due to
carrier-lattice (impurity) interaction (L = LO, TO, LA,
TA, imp) and is given by"

I

The rate of change of energy due to carrier-lattice (im-
purity) collisions, BE /Bt in Eq. (25), is given by

BE" "(t) = g (RcoL —Rq.v„)A" (q, t), (27b)

with aii the frequency of corresponding phonons (and

ro; ~
= 0). For carrier-acoustic-phonon scattering (L

=LA, TA), the nonequilibrium phonon effect is not im-

portant, and A& "in Eq. (27} is given by

with to = t0L —q'v& aild li (Tt ) the equihbrlum occll-
pation number of L-type phonons at the lattice tempera-
ture, TL', coLA

——uLQ and toT~ ——vTQ denote the fre-
quency of longitudinal- and transverse-acoustic phonons,
and

IP, '*'(q, to) = —g g f,~q(t)[1 —f,.",q, (t)]
gl

the case that electrons and holes coexist. ' In the plane
wave representation the one-body density matrix is non-
diagonal in the component q, due to strong spatial inho-
mogeneity introduced by carrier confinement. The opti-
cal phonon density matrix is then expressed by
ttq(q„q, ', t) (L = LO, TO). The phonon kinetic equa-
tion is given by

X 5i I
i p 5(E'i E'li I T RCl7)

Bnq(q„q,', t) Bnq(q„q,', t)

Bt

For carrier-impurity scattering (L = imp), we have

(29) Bnq(q„q,', t)

, c—L
(31)

pP —lmP
~
MP, ™(q,—q.v„)

~

l's t

The first term on the right hand side of Eq. (31) denotes
the contribution from phonon-phonon collisions. Here
we use a single relaxation time ansatz,

XI,i'I+'(q, —q.v„) . (30) Bnq (q„q,', t)

Bf L—L
The screened scattering matrix elements M in Eqs. (28)
and (30) are calculated by Eq. (11), in which the un-
screened elements have been listed in Sec. II. The same
screening calculation is performed for carrier-optical-
phonon scattering. For carrier-optical-phonon scatter-
ing (L = LO, TO), the effect of a nonequilibrium popu-
lation of optical phonons is important and needs to be
included. ' %e generalize the description of hot phonon
dynamics in quantum well structures proposed by us to

(32)

The relaxation time, ~ (Tt ), is an experimental parame-
ter assumed independent of wave vector. ' The second
term on the right hand side of Eq. (31) represents the
contribution from carrier-phonon collisions, which in-
cludes the contributions from both electrons and holes,
and is given by
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Bn "(q„q,', t)

Bt

MP; "(q, q„co) Mf; '(q, q,", co)
[5 „,+ n "(q,", q,', t)]

e —i (E,~~ —E~~, —fico)

M, , "(q, q„co) Mf, '(q, q,", co)
ns(qg, qq, t)

e y i(E,~- —E~„. y-%co)
(33)

with co = coL —q v . The operator P(q„q,') acts on any function I"(q„q,') as PI (q„q,') = F*(q,', q, ).
Ai' (q, t) for L = LO or TO in Eq. (27) is then given by

A~' L(q, t) = g g g MP, '(q, q„co)M,"'; "(q, q,', co)
l, l ig qz

&& III',.'+'(q, co)[5, ~ nsL(q„q,', t)] —I~, ' '(q, co)n~(q„q,', t)j . (34)

As pointed in Ref. 5, the phonon kinetic equation for
n& (q„q,', t), is an integral equation in q, and cannot be solved

easily. We perform a change of representation by introducing the "phonon wave packet. "Generalizing the procedure
in Ref. 5, we define

Np,"',J(q, t) =
g g MP, '(q, q„co)nq(q„q, ', t)MJ"'J "(q, q,', co)

q

g M, ; '(q, q„co)MJ"'J "(q, q„co)
ig

(35)

The set of kinetic equations for N(' J'J(q, t) is given by

BE)~"',J(q, t) BNI';"'J~j(q, t)

Bt

N/l;"' ' (q, t) —n (Tz )

+L
(36)

c)N(';"'J'J(q, t)

Bt
= —XX

G,', ,",(q, m) cp,",",,(q, m)

XI n Ip&'+'(q, co) [ 2 + Milt'&". &(q, t) + %pi "'(q t)]

—&Ipi' '(q» [ NA~'A(q t) + &pi";I'J(q t)]

—i [ Jp, '+'(q, co) ~ J» i'' '(q, co) ] [ N~', ,(q, t) —Np,"',"'J(q, t)]),

6,"';"'J"J(q, co) —= QMP, "'(q, q„co) Mi'J (q, q„co) . (38)

In Eq. (37) IP,' ' is given by Eq. (29), and

JPt' '(q, co) = —g pffft(t) [ l —f/', (t)] 5~, q~ P
E~ E~, + Am

(39)

A" (q, t) in Eq. (34) is now replaced by
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A" (q, r) = QGpp';;(q, co)(Ip, '+'(q, co)[1 + Np/';";(q, r)] —Ip, ' '(q, co)N/'i', L{q, t)J .
2

(40)

We notice that A', for example, in Eq. (40), which is related to the energy and momentum loss rate of electrons
due to e-L scattering, is only concerned with the diagonal elements of matrix N " [we define a (J„) X(J )2 matrix
N"" ", with elements Np, 'J ~(q, r)]. The latter, however, couples with other matrices ¹"',N"', and N"" via
Eqs. (36) and (37). Therefore, even in the case that only the lowest subbands for electrons and holes are occupied, a
set of four coupled equations for L-type phonons needs to be solved. This reflects the fact that each type of phonon is
emitted and reabsorbed by both electrons and holes, and exchange of nonequihbrium phonons provides a special
mechanism for exchange of the energy and momentum between electrons and holes.

Equations (24) and (25) for electrons and holes and Eq. (36) for LO and TO phonons consist of a set of coupled
equations for T„Th, v„vh, and distribution functions for nonequilibrium LO and TO phonons. In the following cal-
culation we assume electrons and holes are nondegenerate (Fermi temperature T„= 8.9 K for holes when
nh ——1.6X10" cm ', and T, = 11.6 K for electrons when n, = 3X10' cm '). The distribution function for each
type of carrier in its relative coordinates then is Maxwellian:

wc„n„ri'
(41)

with C„= [ g, exp( E/'Ik&—T„) ] . Under this assumption the following quantities have the analytical expres-
S10118:

Rell";;(q, co) =
' 1/22m„C„n„

[sgn(il )D(g )exp( E/l Ik—z T„) —sgn(i)+ )D(g+ )exp( E/'Ikz T—„)], (42)
k~ T„ fiq

7lnl~'
ImIP;;(q, co) =-

Here D(x) is Dawson's integral

D( )=xexp( —xe) f d( exp(('),)x
~

0

1/2
" " [exp( —i) )exp( EP Ikz T„) ——exp( —2)+ )exp( Ef'Ikz—T„)] .

m„
2fi2q 2k~ T„

%c also have

$2 2
A'co + (E(' —E/') k

2m
(45)

It''"'{q co) = P?l p

2irk~ T„

1/2
C„n„ 2

i}lq
exp( —y+)exp( E/'Iks T ),—p (46)

Ptl p
2A' q2ks T„

2 2

fico + (EP —E/') k
27tl p

(47)

J," +'(q, co) + Ji'' '(q, co) = ReIP;;(q, co) .

The following integral in Eq. (26) is given by

g f ".

y( —f",„.)5 . 5[E,"„+E E,",
„. . E', .-. +f—iq. .(v-„—„)]——m Cn„1/2

exp( —g„)exp( Ej Ikz T„), —

vrith

+fiq. {v„—v„)
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In the case of a weak electric 6eld applied, we can ex-
pand Eqs. (46) and (49) to first order in the drift velocity
and substitute them into Eqs. (26) and (27a). The expres-
sions for A" and A" " in Eq. (21) are then obtained
directly.

2.0

1.2—

O"'cm ~

10'Ocm '

%e have solved numerically the above set of coupled
equations describing the dynamics of carriers and optical
phonons in nonequilibrium steady state in a GaAs-
Ga, Al„As quantum well. The subband wave func-
tions for electrons and holes are obtained by assuming
that the carriers are bound in an in6nite high square
quantum well with well width d = 112 A. For simplici-
ty, we only consider here the case where the carriers oc-
cupy the lowest subband, separately, for electrons and
holes. The parameters used in calculation are listed in
Table I. The density of carriers is chosen as
n„= 1.6&10" cm and n, = 3/10' cm . The
density of impurities (with undoped spacer distance
s = 294 A) n; = 3 X 10' cm is chosen so the hole
mobility at 4.2 K is p„= 5.38X10 cm /V sec (a
Fermi-Dirac distribution function for holes is assumed at
4.2 K). The efFect of trapped holes in the Ga, „Al„As
side is not included in the present calculation.

The mobilities for both carriers, p, and pz, in a weak
electric field are shown in Fig. 2 as functions of lattice
temperature, TL. The mobility of minority electrons is
negative at low temperature. With an increase of lattice
temperature this mobiHty increases, except in a region of
very low temperature, until it reaches a positive value.
The value of this mobility is determined by the competi-
tion of e-h scattering and hole-lattice (impurity) scatter-
ing as shown in Eq. (22). In the region of very low tem-
perature contribution to A" in Eq. (22) mainly comes
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FIG. 2. Mobility of electrons, p,„and mobility of holes, p&,
as functions of lattice temperature, TL, in a weak electric field.

Data for electron mobility come from Ref. 4.

from hole-impurity scattering, which is unsensitive to
the change of temperature. Kith increasing temperature
the hole-phonon scattering incorporates and overcomes
the effect of e-h scattering; it causes the mobility of elec-
trons to increase and become positive. The presence of
hot optical phonons induces an increasing of hole mobil-
ity in a weak electric 6eld' and, hence, a decreasing of
mobility of minority electrons.

Figure 3 shows the weak field mobility of electrons
(solid curves) and holes (dashed curves) as functions of

TABLE I. Parameters for carrier-lattice interaction.

Value

n =1.6x101cm ~
h

15K

(mev)
ficuT (meV)

Ple
771 I

60

d, (eV)
a, (A}

p (gcm )

x, '
vL (cm/sec)
UT (cm/sec)
:-, (eV)
:-h (eV)

e,„(V/cm)

36, 2
33.3

0.067m o

0.6m 0
10.91
12.91

41
5.65
5.36

1

5.29~ 10'
2.48 x10'

7
3.5

1.41&& 10'

CJ
4P

~ 2-
04
E

O

-1
0 10

ne (10~oem ~)
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'mo is the free electron mass. Only heavy holes are considered.
For a better match the value of hole mobility (Ref. 4) at 77 K,

p(77 K) = 3700 cm /V sec. Also, the effect of the overlap in-

tegral for polar optical phonon scattering should be weaker
than that of the deformation potential.

FIG. 3. Mobility of electrons, p,, (solid curves), and mobility
of holes, p& (dashed curves), as functions of density of elec-
trons, n„at dN'erent lattice temperature, TL ( in a weak elec-
tric field ).
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electron density n, at diferent lattice temperature. The
mobility of electrons increases with an Increase of elec-
tron density. The slope of the electron mobility Bp, /Bn,
decreases with an increase of lattice temperature. The
mobility of holes can also become negative when the
electron density is larger than the hole density. ' At low
temperatures, when A' ~~ A' "(n, —n„), the
crossover points for hole mobility are close to n.h

——n,
as shown in Fig. 3. Kith an increase of temperature,
A ' L will be enhanced due to electron-LO-phonon
scattering, it is predicted that the crossover points will
vary with temperature.

The non-ohmic mobilities of electrons and holes are
shown in Fjg. 4 as functions of electric field. The carrier
velocity and the temperature of hot carriers are also de-
picted, respectively, in Fig. 5 and Fig. 6 as functions of
electric 6eld. The hot hole temperature and nonlinear
velocity of majority holes with electric field behaves as
the usual result of nonlinear transport. The minority
electrons, however, move along the positive direction of
the field in a weak electric field and reach negative max-
imurn velocity at a certain value of the field, then slow
down and turn back in the opposite direction upon in-
creasing the field. With increase of the electric field the
hole temperature increases and then enhances the resis-
tivity due to hole-lattice scattering, which overcomes the
hole-electron drag. The electron temperature increases
faster than the hole temperature with field. Reabsorption
of nonequilibrium phonons enhances carrier heating and
the hole mobility decreases faster than obtained when
phonons are in equilibrium, so the electron mobility in-
creases faster with field in the presence of hot phonons.
The different effects of hot phonons between strong and
weak 6elds, as anticipated, are due to the competition
of reabsorption of energy and momentum from hot pho-
nons.

0.5

0A—
n = 1.6X10~~crn ~

h
- 50x)Q cm ~

0.5

0
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ONS

-0.2
0 0.5

I E I (k V/cm)
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$.0

FIG. 5. Velocity of electrons, v„and velocity of holes, v,„as
functions of electric field.

Although the order of magnitude and the trend of
electron mobility with TI and E obtained by our calcu-
lation are in agreement with experimental measure-
ments, a quantitative discrepancy between both results,
however, exists. One reason is that in the experiments
the determination of drift velocity of electrons is based
on measuring the luminescence image spatial profiles.
The density of electrons inside the image spot is not uni-
form. Also, the concentration of electrons decays in an
exponential manner during the measurement. As shown
in Eq. (22} and Fig. 3, the drift velocity of electrons is
sensitively related to the density of electrons. Hopfel
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'l.6—
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o
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FIG. 4. Mobilities of carriers as functions of electric field,

~

E
~

. Data for electron mobility come from Ref. 4.
FIG. 6. Electron temperature, T„and hole temperature, Th,

as functions of electric field.
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et aI. analyze their photoexcitation data by assuming a
constant drift velocity. This is a reasonable approxima-
tion in the case that n, ~~ nh, however, it is not easy to
quantitatively estimate the effect on the mobility p, due
to the spatial and time change of electron density. On
the other hand, some crude approximations and a large
number of parameters, whose values are only approx~-
mately known, are included in our calculation. In view
of the approximations in our theory, as well as the possi-
ble uncertainties in the experimental results, agreement
between theory and experiment is reasonable.

In summary, we have studied the transport of a
quasi-2D electron-hole gas. The formula for the screen-
ing e8'ect and the e8'ect of' hot phonons, derived in this
paper, are also useful for treatment of various relaxation
phenomena in 2D e-h gas, such as time dependent pro-
cesses in photoexcited electron-hole plasma. %e have
calculated the mobility of minority electrons and majori-
ty holes. The negative absolute mobility of electrons
occurs in the low temperature and the weak electric
field. This result is in reasonable agreement with the ex-

periments by Hopfel et a/. For simplifying the numeri-
cal computation, we use the drifted temperature model
and nondegenerate assumption for carrier distribution
functions. %e also assume carriers only occupy the
lowest subband in an in6nite square quantum well. The
above assumptions seem to apply in the region of the
present parameters of temperature, density of carriers,
and strength of electric 6eld, although they certainly in-
duce some quantitative deviations. In the 20 quantum
structure, the e-h couphng should sensitively depend on
the density of carriers and width of the quantum well, as
we discussed in context. The subject of the effect of
electron-hole interaction on the carrier relaxation needs
to be further explored.
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