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In this paper a formalism, which leads to the exact solution of the scattering of beams of finite
cross section from an arbitrary rough surface, is presented. With use of the Green theorem, a
rigorous integral equation is obtained for the case where the wavelength of the incident radiation is
comparable to the dimensions of the surface roughness (resonance region). Furthermore, a new ex-
plicit solution for the amplitude of the scattered 6eld is introduced„which reduces to known expres-
sions when the rough surface tends to a smooth surface and the beam is replaced by a plane wave.
The explicit solution is applied to the particular case of gratings. Additionally, reciprocity rela-
tions for thick slit apertures in a rough-surface screen are obtained. These results are expected to be
especially useful for calculating the electromagnetic field enhancement (s polarization) near rough
surfaces and for the scattering of light atoms by nonperfect periodic hard surfaces.

I. INTRODUCTION

Dift'raction by hard or perfectly conducting rough sur-
faces' has attracted considerable attention in recent
years. For instance, in acoustics these hard surfaces are
very interesting because they represent a realistic situa-
tion (perfectly soft 'i or perfectly rigid surfaces}.

In optics, several theories have been proposed for the
scattering of electromagnetic waves by perfectly conduct-
ing rough surfaces: approximate theories for shallow
surfaces and rigorous theories for arbitrary proNes.
In the latter case, due to computer size limitations, the
length of the modulated region must not exceed some
wavelengths ( —10k, ). The phenomenon of "short cou-
pling range" in the resonance region (where the wave-
length and the roughness dimension have the same order
of magnitude) has been shown. ' This phenomenon al-
lows us to make a rigorous computation of the 6eld scat-
tered from. s modulated region of arbitrary width. Be-
sides, problems of inverse diffraction have been
solved' '" (that of finding the surface profile from the
difFraction pattern) showing the limit of resolution in the
resonance region. Grating theories' have been com-
pared extensively with experiments but scarcely for the
case of nonperiodic surfaces. ' Thc reader can 6nd re-
views of di8'raction by rough surfaces in Vsn den Berg, '

Baltes and Huiser, ' Msystre, ' Mats and Halevi, ' and
Marsdudin. "

On the other hand, during the last few years in solid
state physics, great interest hss grown regarding the rela-
tionship between Rsman scattering snd surface polsri-
tons. This relationship is a very important one in the
utilization of surface-polariton Ramsn scattering as a
probe of the characteristics of surfaces and interfaces. ' '

Ushiods ' experimentally found that the surface rough-
ness increased the Ramsn-scsttcring intensity relative to
that scattered by a smooth surface. He also noted that,
due to the fact that thc incident wave wss s beam of finite
cross section, the intensity varied from spot to spot on s

given sample. In other words, the Rsman-scattering in-
tensity of surface polaritons depended on that part of the
surface that the incident laser beam struck.

Reinish and Neviere ' suggested a qualitative ex-
planation of part of Ushioda's results. They used a linear
theory for the excitation of surface polaritons along a
grating, when the incident field was a plane wave. The
existence of an optimal groove depth of the grating, for
which the surface-plasmon contribution to surface-
enhanced Ramsn scattering is the strongest, was shown
numencslly in Refs. 22-26. Reinish and Neviere recog-
nized that such a theory could not bc used for quantita-
tive comparison between their results and the corre-
sponding ones by Ushioda, since this would require a
nonlinear theory with a rough random surface snd a
beam of finite cross section. Later, they treated the prob-
lem of incident plane waves on a grating ruled on a non-
linear medium of arbitrary periodic pro61e. They
found the important result that the dependence of the
surface polariton intensity on the groove depth, of the
nonlinear calculation, was very similar to that found in
the case of linear excitation.

Recently, considerable interest has been placed on the
study of 6elds near irregularities, as a way of getting an
estimate for the expected surface-enhanced Raman
scattering (SERS). From a theoretical point of view it
was found that the ratio G =

~

E jEO
~

(where E is the
electric 6eld near the surface and Fo is the electric in-
cident field} depends on the material used and that this
ratio for gratings is greater than that of smooth sur-
faces. ' The field enhancement of several particular
eon6gurstions has been theoretically analyzed: hemi-
spherical bump, square-wave grating, ' bigrating
sinusoidal, and gratings of sawtooth profiles.

Contrary to the case of gratings, Raether showed
theoretically that the roughness could reduce the value of
G. He studied a system with two interfaces (quartz-
silver-vacuum}, using an expression derived for the at-
tenuated total re6ection (ATR) configuration and based

1988 The American Physical Society



SCATTERING OF ELECTROMAGNETiC BEAMS FROM ROUGH. . . 8183

on the effective dielectric function e(co) of silver, Raether
found a 5eld enhancement -50 for the smooth surface
and -30 on the rough surface with RMS height —15 A,
at A, =5000 A. In other words, from the work of Raether
it is found that the enhancement can decrease with
roughness.

Although s-polarized surface polaritons are not known
to exist (experimentally and theoretically) in nonmagnetic
materials, it is interesting to investigate if 6eld enhance-
ment is present with this polarization. The existence of
this resonance could have importance for the enhance-
ment of Raman scattering. Hessel and Oliner predicted
(using an analogy with closed waveguides} that for cer-
tain values h of the groove depth, resonances can be
created in s polarization. Garcia and Maradudin stud-
ied a sinusoidal grating but found no significant field
enhancement (less than a factor of 4). Recently, in
solid-state physics, ' infinitely conducting gratings
have received attention because it was found theoretically
that a silver grating ' ' gives practically the same re-
sults as for a perfectly conducting grating for all values of
h. %'irgin and Maradudin analyzed theoretically the
particular case of an infinitely conducting lamellar grat-
ing. They showed that in the central groove the electric
field is enhanced monotonically with the groove depth at
certain resonance wavelengths. This same perfectly con-
ducting lamellar grating has been studied by Andrewa-
tha, who also obtained resonances.

In conclusion, the Ushioda-Raether results suggest
that, regarding surface-enhanced Raman scattering, it is
interesting to include beams of 6nite cross section in the
study of scattering by rough surfaces. In addition, the
following questions could be raised.

(a) How does the field enhancement depend on the part
of the surface that the incident laser beam strikes?

(b) Are the valleys on a rough surface more important
for field enhancement than the tips as Raether suggest-
ed?

(c) When is the field enhancement decreased by rough-
ness? To our knowledge no study (for s- or p-polarized
waves) has been carried out in these directions.

This is the first paper in a series dedicated to the study
of arbitrary rough surfaces illuminated by beams of finite
cross section. A rigorous integral formalism for the
problem of the scattering of electromagnetic radiation (s
polarization) from a nonperiodic rough surface is present-
ed. The details of the asperities are supposed to be of
the order of the wavelength (A, } of the incident radiation,
i.e., in the so-called resonant region. This formalism gen-
eralizes that of Wirgin and Maradudin (an incident
plane wave on a lamellar grating). As was mentioned
above Raether showed that roughness reduces the field
enhancement compared to a smooth surface for X=5QR
A and h =15 A (h is the rms height): )'i/A. ~~ I. There-
fore this suggests our considering shallow nonperiodic
rough surfaces, for which we find a new' explicit solution
for the amplitude of the scattered Beld. With this explicit
solution and the Rayleigh hypothesis, ' ' it will then be
possible to determine the electric field near the rough sur-
face. In the next paper, with the theory presented here,
we will try to answer numerically the questions raised

FIG. 1. The systems studied in this paper„namely, a finite
number of in6nitely long slits in a rough perfectly conducting
thick screen.

above. In addition, we will deal with the p polarization.
In Sec. II, we discuss the field diffracted by a finite

number of infinitely long slits in a rough-thick screen (see
Fig. I). Following Wirgin and Maradudin, we assume a
perfectly conducting screen, but differing from them, we
have a rough surface and a beam of finite cross section.
The thick slit has been studied in optics for a long time,
but to our knowledge, this is the first time where screen
roughness is treated. In solid-state physics, we know of
only one paper dedicated to surface wave attenuation
on a slit in a thick smooth screen. In this section, we ob-
tain some reciprocity relations. In Sec. III, we present
the case of a rough surface without the slits. We propose
a new integral equation, obtained rigorously, for the
scattering of beams of finite cross section from arbitrary
rough surfaces (for the case where the wavelength of the
incident radiation is comparable to the dimensions of the
surface roughness). We get a new explicit solution, based
on the Kirchhoff approximation (KA}, which reduces to
known expressions when the rough surface tends to a
plane mirror and the beam is replaced by a plane wave.
The approximate solution is applied to the particular case
of gratings. A recent review paper on KA was presented
by virgin in Ref. 44.

The results of this paper could be interesting in the
scattering of light atoms from a crystal. This scattering
plays an important role in studying the chemistry and
crystallography of surfaces, because the atomic beams do
not penetrate the top crystal layer. The surface is as-
sumed to be a hard wall. The comparison between theory
and experiment shows us that this model is able to de-
scribe a real situation. ' Two-dimensional periodic sur-
faces, the one-dimensional corrugation consist-
ing of a periodic distribution of atomic steps separated by
close-packed terraces (occurring when a crystal is cut at
an angle), and surfaces with attractive potential
have been studied. Only recently has the problem of a
nonperfect periodic hard surface (empty sites, surface
steps, and adsorbed atoms) been treated by several au-
thors. ' ' Regarding these last cases our theory can be
applied to obtain some qualitative results.
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II. ROUGH THICK SCREEN

A. Formulation of the problem

%e study the electromagnetic field diffracted by a finite
number of infinitely long slits in a rough, perfectly con-
ducting, thick screen (Fig. 1). The screen is placed in the
vacuum and the position of a point in space is given by its
Cartesian coordinates X, 7, and Z. Our system is invari-
ant under translation in the Z direction. %e distinguish
three regions, denoted as region I (Z&a), region II
( —a (Z (a ), and region III (Z ( —a ), shown in Fig. l.
The slits are illuminated by a beam of 6nite cross section,
independent of the Z coordinate, with the wavelength
A, =2m/k (k =co/c). The complex representation of field
quantities is used; the complex time factor exp( icor )—is
omitted from now on.

Let us consider an s-polarized wave, i.e., Ez is the only
component of the electric field and must be null at the in-
terfaces. The total field E must satisfy the Helmholtz
equation

V E+k E=O.
Let F~ and F„, be the maximum and minimum of the

system, respectively (see Fig. 1). We assume that the to-
tal 6eld E can be Fourier analyzed as a function of X
(I'& I'I or Y( I' ):

E(X, I')= f P(a', 1')e' da' . (2)

and satisfying the conditions under which Green's
theorem of unbounded domain is valid. %e can represent
U and V in a plane-wave expansion as

U(X, I')= f" U„(a-)e"" I'"-da

U„+ a' e' '~+~~)da' (3)

V(X F)= f V (a')e' 'da'

y+ ~r ~i(a'X+P'Y)

if a & I' & Y'I (4)

U(X, F)= f U (a')e' ~"'da'
"

Ub+ a' e" 'X+I "du',

V(X, I)= f" V„(a)e-"'x ~"da

+ y+ ~ i (a'x+p'F)

if —a ( I'( I', (6)

where (p') =k —(a'), with p' or p'/i positive. In re-
gion II we have

f (UV V —VV U)dXdI'=0.

Changing Eq. (7) by means of Green's formula, we obtain
t

V U
S de dn

B. The Cadilhac-Maystre lemma UdV VdU
dI' dI' dX

In 1980 Cadilhac proposed an important lemma valid
for gratings which, later, was extended to rough surfaces
by Maystre. 5 This Cadilhac-Maystre lemma (C-M lem-
ma) has permitted the obtaining of reciprocity relations
and analytical expressions for the diffracted field from ar-
bitrary rough surfaces. ' The theoretical point of view
in this paper is based on an application of this lemma to
the system we are discussing here.

Let U(X, I') and V(X, Y') be two bounded solutions (for
large F) of the Helmholtz equation, defined in region II

I

dV dU
dI' d I' dX,

where s is the curvihnear coordinate on S (interface be-
tween the vacuum and the screen) and n is the inward
normal to the metallic screen. After applying the
Parseval-Plancherel theorem to the right-hand side of Eq.
(g), the expression of the C-M lemma adapted to our sys-
tem takes the form

f U- ——V ds =4@i f P'[Uz+(a')Vi, ( —a') —Ui, (a')Vi+( —a')]dc'
S t&

deaf

—oo

—4mi
'

Ub+ a' Vb —a' —Ub a' Vb+ —u' da' .

This expression relates the complex amplitudes (Ul, ,

Ui, , Vi,*, and Vi, ) and the boundary values of U and V.
In the following, we will obtain general results with

physical meaning by choosing appropriate fields as U and
V.

C. General relations

%hen the slits are illuminated by the incident 5eld E'
which propagates downwards, the plane-wave expansions

of the generated total field E are

E(X, I')= f A(a')e" ~"'da'

+ f r(a')e' + 'da'„7 & I' (10)

E(X, I')= f t(a')e' ~"'da', I'( I'

where the incident beam wave E' (incoming wave) is
identified with the first integral of Eq. (10), the scattered
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A (a') =5(a' —a),
r(a') = —5(a' —a)+R (a'),
t (a') = T(a') .

(14a)

(14c)

III. ENERGY CONSERUATION

Let U(X, F) be the total field E previously defined by
Eqs. (10) and (11). Identifying terms in Eqs. (3) and (5)
with Eqs. {10)and (11),we have

T

field (outgoing and evanescent waves) with the second in-

tegral of Eq. (10), and the difFracted wave (outgoing and
evanescent waves) with the right-hand side of Eq. (11).

If we let the incident beam be equal to the plane wave
exp[i(aX —pI')], we then have

E(X y) ei(ax —Pr) ei(ax+Jr)

+ f" R{a')e"'x+t""'da', ro I {12)

E(X Ir)= f T(a')e' ~"'da' I'& F (13)

where we write the specular incident (rejected) wave ex-
plicitly. By comparison of Eqs. (10) and (11)and {12}and
(13), we obtain three relations that can be used to go from
beam expressions to plane-wave expressions:

It is important to notice that the evanescent waves are
not involved in this relation.

%hen we apply the relation we have just found to the
particular case where A (a') = A "(a'), i.e., they represent
the same incident field, we obtain the classical theorem
for the conservation of energy for a beam wave:

f p'
~

r(a')
~

da'+ f p'
~

t(a')
~

da'

= f P'
I
a(a')

(

'da' (19)

and using the beam-plane wave transformation relations
[Eqs. (14)], we obtain for an incident plane wave the fol-
lowing equation:

{T(a'), T(a') }+{R (a'), R (a') }—2P Re[R {a)]=0 .
(20)

IU. RECIPROCITY RELATIONS

A. For re8ection

We had previously set E and E" as the total fields gen-
erated by incident beam waves (propagating downwards)
with amplitudes A and A", respectively. Now we will
take U =E and V=E" (previously, we had treated the
case where U=E and V=E""). In this case the C-M
lemma reduces to the general reciprocity relation for
re6ection:

A (a'), a'E J
Ug (a ) '0 (.15a) (r(a'), & "'(—a') }= (r "(—a'), & '(a') } . (21)

U„+(a') =r{a'),
Ub+(a') =0,
Ub (a') =t(a'),

(15b)

(15c)

and

A (a') =5(a' —a) (22a)

Now, if the incident fields are plane waves with ampli-
tudes

where J=[ k, k]. No—w, let the slits be illuminated by a
second incident field E"' with amplitude A" also propa-
gating downwards. We choose the complex conjugate of
the total field E" generated by E'" as V(X, I'). In this
case,

3 "(a')=5(a' —a"),
then, we get

P"R( —a")=PR "(—a) . (23)

V
—

( p} r ( a )y a EJ
0, a'6J (16a}

Under this simple form, the physical interpretation is
clear. We illustrate this final result in Fig. (2) with
u =k sin8 and a"=k sin8".

A "'(—a'), a'6 J

+(,}
t "~(—a'), a'C J
0, a'6 J.

Vi+(a') = r"'( —a'), a'fK J
P

0, a'EJ
t"'( —a'), a'6 J

r

(16b)

(16c)

(16d)

B. For transmission

U(X, 1') continues to be the field E, but V(X, I") will be
the total field E" generated by an incident beam wave
E'", propagating upwards with amplitude A ". The C-M
lemma then gives the general reciprocity relation for
transmission,

After applying the C-M lemma [Eq. (9)] to the functions
U and V, the left-hand side results in zero and we are left
with the general relation

(r(a'), r "(a')}+(t(a'), t "(a') ) = ( 3 (a'), 3 "(a') ), (17)

with the notation

I g[D ~i QD&

(f(a'),g(a')}= f P'f(a')g*(a')da'.
FIG. 2. Reciprocity relation for reAection.
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{t "(—a'), A '(a') }= {t( —a'), 3 "'(a')},
and for incident plane waves [Eqs. (22a) and (22b)],

(24)

(25)

V. SURFACE CURRENT

To obtain a relation between the surface current J, and
the scattered amplitude r( —a"), we take V(X, I") as a
downward incident field exp[i (u "X P"—I') ] and
U(X, Y), again, as the total field E [Eqs. (10) and (11)].
For the amplitudes of Vwe get

In Fig. 3, we illustrate this result. A closely related rela-
tion, an aperture in a smooth screen, was obtained by
Levine and Schwinger.

It must be emphasized that the reciprocity relations,
Eqs. (23) and (25), are valid even if the system (Fig. 1) is

not symmetrical with respect to the F axis.

VI. ROUGH SURFACES

The purpose of this section is to find solutions for the
scattering of beams of finite cross section by rough sur-
faces and to study the particular case of diffraction grat-
ings. A rigorous integral equation is obtained for the
case where the wavelength of the incident radiation is
comparable to the dimensions of the surface roughness
(resonance region). We show that the Kirchhoff approxi-
mation leads to a very simple formula which gives precise
numerical results for shallo~ surfaces. The approach we
follow is to make the slits disappear, hence our system be-
comes a rough surface (Fig. 4). Then, we can apply the
results of Sec. II to rough surfaces, as long as we impose
the condition that the transmission amplitudes t and t"
become equal to zero.

A. Rigorous integral- equation

If r ( —a" ) =0 in Eq. (29) we have that

Vi, (a')= Vb (a')=5(a' a")— (30)

and

Vl+(a') = V~+(a') =0 . (27)

Then, after applying the C-M lemma, we obtain the scat-
tered amplitude as

(28)

Similarly a relationship is obtained between J, and the
transmitted amplitude t( —a"), when we take V(X, F) as
an upward incident field exp[i(a "X+P"I') ] and U(X, F)
asE

These expressions [Eqs. (28) and (29)] relate the ampli-
tudes r and t to the surface current J, . It is not surprising
to see that r and t can be derived from the surface current
since J, actually generates the diff'racted and scattered
fields.

This integral equation, with the unknown J„is the main
result of this paper and is valid for an arbitrary surface
height. %e notice the simple and nonsingular Kernel.
Other integral equations (derived by using the Green
theorem) for the scattering of an incident plane wave
have been reported in the literature. They contain a
singular Kernel which complicates their study.

The problem is to determine J, when the amplitude A

of the incident beam and the rough surface are known.
For instance, the incident wave might be a Gaussian
beam or have another spatial structure. The numeri-
cal solution of Eq. (30) and answers to the questions
raised in the introduction to this paper will be the subject
of a future report.

%'e are mainly interested in the scattering of an in-
cident beam whose intersection with rough surfaces is
finite. In this case, J, is zero at sufficiently large distances
from the border of this intersection and, because of this,
the integral [Eq. (30)] will have a finite domain of integra-
tion and this simpli6es its numerical treatment. To And

the scattering field, we have to solve this integral equa-
tion and put the result in Eq. (28). To ensure the accura-
cy and reliability of the 6nal numerical solution, we could
perform checks on the energy conservation [Eq. (19) with

FIG. 3. Reciprocity relation for transmission. PIG. 4. The rough perfectly conducting surface.
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t =0] and reciprocity relation for reflection [Eq. (21)].
However, we must remember that these checks are neces-
sary but must never be considered as suScient.

If the incident beam wave is the plane wave
exp[i(aX —PI")], we obtain the following result from Eq.
(30):

6(a"+a) = — '„ f J,.e""~+P""ds;
4~p"

with simple analytical expressions. To the author *s

knowledge, the KA has only been studied when the in-
cident 6eld is a plane wave. In this section, the KA is ap-
plied to beams of 6nite cross section.

After subtracting Eq. (29) from (28), with i( —a")=0,
we find that the domain of integration is reduced to the
interval [a,b] (modulated region, see Fig. 4), simplifying
the numerical calculation. Substituting Eq. (32) in this
result we have

this is the expression for the extinction theorem. The re-
sult is the same as the one obtained by Rogers ' in 1984
and this agreement gives us con6dence in our integral
equation.

r( a~~ )
i f (ei (a"x p"-r) e i(a"x+p"Y)

)
2%'

X ds —A ( —a"),dE'
Bpl

(33)

B. Kirchhoff apyroximatiou (rough surfaces)

Approximate theories have been proposed to avoid
difBculties in a rigorous treatment for the scattering of
waves from rough surfaces, see Fig. 4. The best known
and most often used is the Kirchhoif approximation, also
known as the physical-optics and Beckmann approxima-
tion. ' This method assumes that, at any point on the
surface S, the total field E and the incident field E' are re-
lated by

dE dE'
GPl

The important practical consequence of this approxima-
tion is that it avoids the difficulty of calculating the
superficial current J, from an integral equation [see Eq.
(30)], and enables the determination of the scattering field

where n is the inward normal to the metallic screen.
On the other hand, the incident beam is represented by

E'(X, I'}= f A(a')e'" P 'da'
—k

(34)

so that we get

y) g ( i} (a f+0 } i(a'I —p'F)d
k (1+j 2)l/2

(35)

where f is the rough proSe and f=df /dx
If we combine Eqs. (33) and (35), changing the order of

integration and realizing integration by parts, we obtain

r( —a")= f 2(a')I(a', a")da' —2( —a"—), (36)
—k

rl i ~« i(a"+a')x a (a +a } a (a +a } I'(p'+p")I—+ „„,+e
a 2ml3"(P'+P") 2mP" (P" P') — 2mP"

a'(a" +a')
2m@"(P'+I3" )

+ i (p"—p')f P' a'(a" +a')
2mP" 2mP" (P"—P')

(37)

This result, expressed in the form of a simple integral,
gives a new explicit solution for the amplitude of the scat-
tered field. We notice that, in Eq. (37), the integrad has
no pole when P"=P'. This expression has been obtained
directly from the KA without any further approximation.
If we assume that there is no corrugation present, i.e.,
f(X}=0,then the right-hand side of Eq. (37) disappears
and, by Eq. (36) we reproduce the expected solution for a
Aat surface.

The explicit solutions [Eqs. (36) and (37)] are expected
to be useful in order to understand the result that rough-
ness can reduce the field elihancement. Raether showed
experimentally this result for h/A, =0.003, i.e., for shal-
10)J surfaces.

Next, for the particular case of plane waves, it will be
shown that the new formalism gives accurate results for
h /)(. ~0. 1 (far from Raether's ratio=0. 003). We assume
that the height (h) of the surface roughness f (X) is
small. Then, from Eq. (36), we can deduce the scattering
Geld to the lowest order in h. The calculation can also be

(38)

We are assuming that
~

l3'f (X)
~

&&1. In practical terms
this means that the maximum height (h) of roughness
should be much smaller than the wavelength k:

Therefore, from Eqs. (37) and (38), we obtain
I

I(a', —a" ) = f f(X)e' + )AX (40)

The Eqs. (36) and (40) are the expressions of the lowest
order in f (X) in the KA. We see that I(a', —a") is pro-
portional to the Fourier transform off (X).

If the incident beam wave is the plane wave e'
we get, from Eqs. (36) and (40), the scattered field R (a"):

readily generalized to higher orders in h.
The exponential functions in Eq. (37} can be approxi-

mated as follows:
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~ n
g ( ~~) iP f I(X)ei{a —a )xdX J

d~'gi d ei{a"x P—"'Y)ds i{a"x —P"'i')

5 dpi 5 dn
(42}

This equation was also obtained by Maystre et aI., not
by using the KA but, by using a rigorous treatment.
They compared their numerical results with calculations
performed using rigorous integral theories. Such com-
parison showed that the simple equation for R(a") gives
results accurate for Ii lA, ~0. 1 (see Fig. 7 in Ref. 5). We,
then, expect that our more general equation [Eqs. (36)
and (37)] will give good numerical results for slightly
rougher surfaces (far from Raether's ratio=0. 003).

In conclusion, we have shown that the KA is capable
of yielding accurate results, at least to first order in
roughness. %'e have also applied the KA to the case of
p-polarized waves following the same scheme as above
and have obtained good results to first order in rough-
ness. This does not imply that the application of KA
always leads to good results. For instance, if we substi-
tute Eq. (32) directly in Eq. (28) and use the following re-
lation:

C. KirchhoiF apprmimatiou (perio{hc surfaces)

The expression for I(a', —a"), Eq. (37), has the form

I(a', —a")= f e' + )x{t)(a',a",X)dX, (43)

where {I) is a periodic function, with the period being
equal to the groove spacing d of the grating. After the
variable change X'= —nd+X, we obtain

we obtain a new expression for r( —a") in the s-
polarization case. And, if we treat the p polarization (for
a perfectly conducting rough surface) similarly to the s-
polarization case, we can show that the new expressions
do not depend on the polarization (see Ref. 5). Hence,
this procedure fails even for very shallow surfaces.

I(a', —a")= g f e" + ' P(a', a",X)dX
tedn= —00

f e"' +'' {()(a' a" X)dX
0

i (a"+'a')nd
{e'

T 00

I(a', —a")= e' + ' {()(a',a",X)dX g {5 a"+a' — n
d

If we substitute Eq. (44) in Eq. (36), we finally obtain

QG —i(2 /d )Xr( —a")= g A — —a" e " ""r ' P( —2nn/d —a",a",X)dX —A( —a"),
d d 0

(45)

2nP"(P'+P" ) 2n13"(P" P')— 2c.P"
a'(a" +a')

2~P"(P'+P" }

+ i (p"' —p')f(x) P' a'(a" +a')
2~P" 2~P"(P"—P'}

The above expression for r( —a") will be useful in the
analysis of the scattering of a Gaussian beam by a grating
(in the resonance region). A scalar study of this problem
was carried out by Bar-Isaac and Hardy. It is interest-
ing to investigate if some of the results of the scalar study
are also applicable in the resonance region. Our last ex-
pression for r( —a") provides a means of investigating
that. %ork in this direction is in progress in our group.
In the lowest order in f (X), Eqs. (45) and (46) can be re-
duced to

r( —a")=—g A
rr

JI = —00

—A( —a"),



37 SCATTERING OF ELECTROMAGNETIC BEAMS FROM ROUGH. . .

where P is evaluated in —2n n /d —a".
Maystre et al. have studied the particular case of an

incident plane wave on a grating, and their results agreed
with a rigorous integral theory. %hen we apply our ex-
pression, Eq. (47), to the particular case of incident plane
waves, we find that Eq. (47) is reduced exactly to the ex-
pression obtained by Maystre [see Eq. (28) in Ref. 5t.
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