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Interpolation formula for the energy of a two-dimensional electron gas
in the lowest Landau level
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The energy per particle of a two-dimensional electron system in the lowest Landau level is studied

making use of the particle-hole symmetry. An accurate interpolation formula for the dependence of
the energy on the 5lling factor is given; the formula is compared with the results of 6nite-size calcu-
lations performed in the spherical geometry.

One of the main problems in the theory of the fraction-
al quantum Hall elect (FQHE) is the determination of
the ground-state energy E per particle as a function of
the 611ing factor v. According to current-day theories,
cusps in E(v} are needed in order to explain the plateaus
of the Hall conductivity. Furthermore, if we denote by
ET(v) the energy per particle of the lowest translationally
invariant state, and by Ewc(v) (WC denotes Wigner crys-
tal) the energy per particle of the lowest state having
crystalline order, it is generally believed' that there ex-
ists a liquid-solid transition below a certain value v, of v,
i.e., E„,(v) ~ E,(v) for v ~ v, .

A crude empirical formula for the energy E(v) has
been suggested by Laughlin. ' Assuming e /ao to be the
energy unit, where ao (Ac/e——B)' is the magnetic
length, Laughlin's formula reads

E(v) =0.814&v(0.23v ' —1) .

Levesque, Weis, and MacDonald have proposed a for-
mula that gives a better interpolation of the energy of the
I aughlin states:

E(v) = —0.782 133v v(1 —0.211v +0.012v' ) .

However, none of these formulas satis5es the relation

and let 2S+1 denote the number of available single-
particle states on the sphere. It can be proved that for
the case of a completely Slled Landau level (N =2$+1)
the energy per particle is given by

2"-' (2$+1)~
v (4$+1)!~

(4)

In the case of the spherical geometry the particle-hole
symmetry relation (3) holds with v=N/(2$+1), and
E(1) substituted by Es(1). Of course taking the thermo-
dynamic limit of relation (4) we recover the well-known
result

From (3) it follows that the function

G(v) =v[E(v) —E(1)]—E(1)v(v—1 )=v[E(v) vE(1)]—

is symmetric with respect to the exchange v~1 —v',

therefore it is reasonable to try an expansion of the form

G(v)= g ak[v(1 —v)] /

k=0

v[E(v) —E( 1 )]=(1—v)[E(1 v) E(1)]——(3)
We have

which follows from the particle-hole symmetry of the Srst
Landau level. Furthermore, these formulas give poor re-
sults for v= —,'. Formula (1) gives E(—,

' )= —0.49 and for-
mula (2) gives E(—,')= —0.485, while a recent result is

E ( —,
'

) = —0.469+0.005.
The proof of the relation (3) holds for all popular

geometries that have been used in the theory of the
FQHE, viz. , the square with periodic boundary condi-
tions, the sphere, or the disk in the limit of a large num-
ber of electrons.

In our numerical calculations we have used the spheri-
cal geometry. ' I.et X denote the number of electrons,

E(v }= 6 (v)/v+E (1)v

= E(1)v+ao/v+a&v ' (1—v)' +a2(1 —v)

i/2( 1 )3/2+
3 (8)

On the other hand, we know that for small v the sys-
tern behaves like a %igner crystal; thus for small
v the energy approaches the expression E (v)—
—0.782 133v' . %'e set ao ——a

&
——a2 ——0 and a3 ——

—0.782 133, and we obtain the following zero-order ap-
proximation to the energy per partic1e:

E (v) = —(m/8)' v —0.782 133v'/ (1—v}
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which does not contain any free parameter. This formula
has the correct behavior near v=0 and v=1. However,
it does not produce accurate results when v lies in the
middle of the range 0 ~ v ~ 1. In order to improve the ap-
proximation, we add two terms of the expansion (8), i.e.,
we consider the correction:

E, /iV
-().2

E, (v}=a4v(1—v) +a5v (1—v)

The expression

E(v) =En(v)+E&(v)

(10)

v= —,', E = —0.409 73

v= —,', E = —0.3277

v=-'„E = —0.431 .

(12)

%e make a least-squares fIIt of these three data in order
to determine o«and a5. The results are

o.4,
——0.55 and u5= —0.463 . (13)

We can compare the energy curve Eo(v)+E, (v) so ob-
tained with our Suite-size calculations on the sphere (N
electrons on a sphere of radius R). Since the polynomial
part of the Laughlin and Halperin wave functions [whose
energies are given by (12}]are translational invariant, and
since translational invariance in the plane maps to rota-
tional invariance on the sphere, we limit ourselves to a
set of states on the sphere with a total angular momen-
tum of zero. This set of states and the corresponding en-
ergies are shown in Table I. In Table I we denote by F.,
the value of the energy multiplied by the size correction
factor' f =(p~/p„) '~, where p~=N/(4nR )=N/
(4m 5) is the areal density and

p„=(1/2m)[N/(2$+1)]=v/2m .

To give an idea of the accuracy of the finite-size calcula-

with suitably chosen values for az and a5 fits with good
accuracy all data known on FQHE states. For instance,
let us consider the following set of very accurate re-
sults FIG. l. Ground-state energy per particle vs v. The curve

corresponds to the interpolation formula E =Eo+E&, with
a4=0. 55 and a, = —0.463. Circles are for v= —,', —,', and 2 [see

Eq. (12)]and triangles for the values of v given in Table I.

a4 ——0.683 and o.5 ———0.806 . (14)

Figure 2 shows the energy curve (11) corresponding to
these values of a~ and a„ together with the data of the
numerical calculations.

So far we have used only energy values corresponding

tions on the sphere, we recall that the value of E(—,'),
computed by putting ten electrons on the sphere, is
—0.410628 (see Ref. 7); this result is to be compared
with the value (12), obtained by means of Monte Carlo
calculations. 9

In Fig. 1 it is shown that the energy curve (11) with
O,z

——0.55 and o;5———0.463 and the data of Table I are in
good agreement. The particle-hole symmetry relation (3)
is used in order to obtain the whole set of data, i.e., also
those for v» —,'.

Of course, we can improve our least-squares fit by tak-
ing into account all the data (i.e., the three values for
v= —,', —,', and —,

' and those of Table I). The resulting
values of o;4 and a5 are

TABLE I. Ground-state energy values for N electrons on the
sphere.

—0.2807
—0.3517
—0.3619
—0.3782
—0.4268
—0.4290
—0.4474
—0.4587
—0.4659
—0.472

0.142 857'
0.230 769
0.25
0.272 727
0.36
0.363 636
0.428 571
0.454 545
0.470 588
0.5

6
6
8
6
9
8
6

10
8

12

'The case N =6, 2S+1=36 corresponds to a Laughlin state
with v= ~. Consequently, we have computed the size-

correction factor using the value p „=(1/2m )—,'.

I",/N.
—0.2

FIG. 2. Same as Fig. 1 with a4 ——0.683 and a5 ———0.806.
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to translationally invariant states. On the other hand, it
is known that„at least in the Hartree-Pock approxima-
tion, the following formula, 3

ECDw = —0.782 133&V(1 —0.372V —0.013V ) 1 (15)

reproduces quite well the energies of a charge-density
wave with hexagonal symmetry for v ~ —,'. In Ref. 3 it was

found that curves (2) and (15) cross at v-0. 1; this result
holds unchanged using our interpolation formula in the
place of Eq. (2). However, this result should not be taken
as a true prediction of the v value corresponding to the
liquid-solid transition; indeed our zero-order approxima-
tion (9) behaves like a Wigner crystal for small v, and the
expression (15) does not take into account the correlation
energy. Our formula E =Eo+E, must be considered as
a sort of "backbone energy" of the FQHE states. It

might be of some interest to know that the energies of all
the translational invariant states that we have considered
fulS1 our formula, and no macroscopic cusp appears.

Of course, more detailed questions about the existence
of small cusps cannot be answered at this level of approx-
imation.

Finally, we notice that there is a slight inconsistency in
the derivation of our formula, since all the data employed
in order to determine the coeScients a4 and a5 are ob-
tained from variational wave functions corresponding to
different finite-size systems; therefore there is not a single
value of E(1) which fulfills the particle-hole relation (3)
for all these systems. However, it can be seen that the
consequent numerical error is negligible. For instance, in
the case of the spherical geometry, we can use
E(l)= —(n/8)'~ in the place of Es(1) due to the rapid
convergence of the sequence (4). Similar arguments hold
for the Monte Carlo calculations by Morf et al. '0
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