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Clusters and crystals are considered within the Born-Oppenheimer approximation. By means of
the one-particle density matrix and the pair distribution a local stress tensor is de6ned with the
divergence equal to the forces exerted upon the nuclei. From the local momentum balance follow (i}
the stress theorem as a generalized virial theorem and (ii} an expression for the stress of a crystal in-

volving integrals over the unit-cell surface. %ithin the Kohn-Sham formalism slightly modi6ed ex-

pressions are obtained rigorously, and the form appropriate within the local-density approximation
is given.

I. INTRODUCI'ION

Two tendencies may be observed in contemporary
quantum chemistry and solid-state physics. On the one
hand there has been much recent interest in considering
the global properties of quantum-mechanical many-body
systems like total energy and the quantities that can be
derived therefrom. ' 4 On the other hand there is a ten-
dency to emphasize and exploit the local point of view in
the study of local properties and fragments of the sys-
tem. The theory of quantum mechanical stress and relat-
ed quantities, whose basis was laid in the years around
1930, " comprises both of these aspects, and has been
of increasing interest in the last few years. Recently the
papers by Nielsen and Martin' ' and by Folland' have
dealt with a variety of problems connected with this to-
pic. These and other * papers also give references to ear-
lier work. In addition surface stress has been treated by
Needs and Godfrey' and Vanderbilt. '

The present paper' extends previous relations for the
hydrostatic pressure of a solid to the general case of
stress, using reduced density matrices ' throughout,
within the many-body Schrodinger equation as well as
the one-particle Kohn-Sham ' description. We thereby
complete the somewhat intuitive considerations given in
Ref. 14 with respect to the transition from the many-
body to the electively one-particle description.

The key quantity is the stress cr of a finite neutral solid
(a cluster) whose nuclei are considered as classical parti-
cles at fixed positions R& with the electrons being in their
ground state. As in Ref. 14, we de6ne cr in terms of the
derivative of the total energy E when a homogeneous, an-
isotropic and in6nitesima1 scaling is imposed upon the
solid, i.e.

with 0, being the volume of the cluster, the o denoting a
dyadic product of two vectors, and the sum running over
the nuclear position parameters.

As regards the electronic many-body subsystem, the
energy E is stationary with respect to first-order changes
in the electronic wave function. This was used by Fock '
to derive by an isotropic scaling the well known virial
theorem of quantum mechanics, which in the case of
Coulomb interactions reads 2T+ V=3@A,. Here T and
V are the kinetic and potential energies, respectively, and

p is the external pressure. Extending this procedure to
anisotropic scalings one obtains a generalized virial
theorem' which mill be referred to as the "stress
theorem". It relates the stress cr to electronic expecta-
tion values of appropriately defined tensor quantities,

T and V, i.e. 2T+V= —trQ, .
In the local approach to quantum mechanical stress

the simplest local quantity is the electron density, whose
associated electric field is well known to yield forces upon
the nuclei through the Hellmann-Feynman theorem.
The density of these forces is related to the local stress
tensor via the local momentum balance Through . a local
stress relation (generalizing a local virial relation derived
earher ) we find an expression for the integral of the lo-
cal stress over an arbitrary volume, which allo~s the fol-
lowing applications:

(i) For a finite cluster integration over all of space leads
to a global stress relation for 2T+V and the generalized
"virial" of the forces grRroFr. With the help of the
Hellmann-Feynman theorem this relation turns into the
stress theorem for o. The interrelation between these
three quantities is shown schematically in Fig. l.

(ii) Choosing the integration volume as the unit cell of
an in6nite crystal the stress o. is expressed by the total
momentum transfer through the unit cell surface. It con-
sists of a "kinetic'* quantum mechanical momentum
transfer and the electrostatic interaction of the unit cell
with its exterior.

These results for the stress are not immediately valid
within the Kohn-Sham one-particle approach, despite its
exactness. Therefore the above program is repeated us-

ing appropriate splittings of the one-particle density ma-
trix and the electron pair distribution. %ithin the local-

1988 The American Physical Society



37

g gl oP/
1

FIG. 1. Mutual relations between stress and related quanti-
ties: Eq. A ("stress theorem") follows from a scaling argument.
Eq. 8 ("stress relation" ) follows from the local momentum bal-
ance. Eq. C follows from the Hellmann-Feynman theorem.

density approximation (LDA) the exchange-correlation
(XC} contributions to the stress are explicitly evaluated,
obtaining agreement with Ref. 14.

The paper is organized as follows: Sec. II deals with
the many-body formulation. Section IIA defines the
Hamiltonian and distribution functions, and Sec. IIB
defines various ground-state expectation values. In Sec.
II C we give relations for electrostatic force densities and
the connection to the Hellmann-Feynman theorem. In
Sec. II D is derived the local momentum balance for the
local stress tensor, which in Sec. II E is used to derive lo-
cal and global stress relations and the stress theorem.
Section IIF deals with the thermodynamic hmit of an
infinite system, and Sec. II G describes the separation of
the stress into kinetic, Hartree and XC parts. This is re-
quired for the considerations in Sec. III, which briefly ac-
complishes the above procedure for the Kohn-Sham for-
malism. Finally in Sec. IV our results are summarized,
and Appendixes A-0 derive some of the relations re-
quired in the paper.

II.MANY-QQQV THEORY OF STRESS
gN CLUSTERS AND SOLIDS

We first consider an electrically neutral cluster of
atoms (e.g., a large piece of an extended crystal) consist-
ing of a finite number of nuclei and electrons, returning
later to the thermodynamic limit of an infinite system. In
this section the full many-body results for the ground-
state of the electron system are given.

where 8 and i label nuclei and electrons at positions R&
and r;, respectively. Zz denotes the nuclear charge and
e =e /4m co refers to the square of the elementary
charge. In the following A', m,

~

e
~

and e are replaced
by 1 using atomic Hartree units. The Hamiltonian given
by Eqs. (1) and (2) thus describes a system with Coulomb
interactions, but we do not consider more general in-
teractions or magnetic fields in the present work.

We introduce charge densities and charge density
operators for the particles, i.e., the nuclear charge density

p(r) = g Zr5(r —Rr) (3a)

il(r) = g 5(r—r, ) (4a)

and the pair distribution

8(r, ;rz}=g 5(r, —r;) 5(rz —r, ). (4b)

The self-interaction terms are eliminated in Eqs. (3b) and
(4b).

The potential terms in Eq. (2) may be rewritten in
terms of these density operators as

,' f&"—,f&'r2 p(ri', r2) ',
~&2

f'+ = ,' f1 r, fd—r—2 [p(r, )R'(ri)

+ k(r, )p(r2}]
1

~&2
(5b)

(5c)

and the nuclear pair distribution

p(r„r2) = g Z&Z&.5(ri —Rr) 5(r2 —Rr. ). (3b)

The corresponding density operators for the electrons are

A. Hamiltoman and density m«riees

W'thin the Born-Oppenheilner approximation of clas-
sically behaving nuclei the many-body Hamiltonian con-
sists of the kinetic and potential terms, A' = f'+ P', with

with ri2 —r, —r2 and ri2 ——
~
r, 2 ~

. The potential
operator 0' becomes

= —,
' f~ r, f d r29(r»r2)

with the total pair distribution operator 0 defined as
(1)

where Q, denotes the momentum operator and m the
electron mass. N is the number of electrons, and the
denotes an operator quantity. The potential operator is
separated according to the subsystem of nuclei (denoted
by superscript "+") and electrons (denoted by super-
script "—") as

e(r, ;r, ) = p(r, ;r, ) —p(r, )e(r, )

—h(r, }p(ri} + 8(r, ;r2).

The analogous total density operator is

9(r) = p(r) —h'(r).

Note that in defining the operators Eqs. (4)—(8) the gen-
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eral many-body operators are maintained. No expecta-
tion values are introduced up to this point.

written as.(r) = &fi(r)& (10a)
8.Ground-state expectation values

The lowest-energy solution of the Schrodinger equation
P4=E4 defines the electron ground-state wave func-
tion 4=4(r, ,o,;. . . ;rN, o.~}and energy E, where r, and
cr, are position and spin variables, respectively. The en-

ergy expectation value is

E = (eiBie&—= &8& = &f'& + (P'&= T+—v, r2n r;r2 —— N —1 nr,
drn r

(10c)

(10d)

for the electron density and.(.,;., ) = &e(r, ;rz}&

for the pair distribution function. These quantities are
normalized as follows:

where we suppress the explicit reference to @ for con-
venience.

The expectation values of the density operators are
I

The n (r, ;rz) is symmetric with respect to an exchange of
r, and r2.

The one-particle density matrix ' is

1 3 . . . 3ii(r, r ) = y d iz «g@(r,oi', rz, cz,'. . . , r/, og)@ (r', 0/,'rz, ~z, . . . ,r/, og),
(N —1)!

(1 la)

whose diagonal is the electron density

n(r, r) = n(r) .

Note that n (r, ;rz) with a ";"denotes the pair distribu-
tion, whereas n(r, r') with a "," denotes the one-particle
density matrix.

The kinetic and potential energies may be written in
terms of the one-particle density matrix and pair distribu-
tion functions as

2

Xsr r'=r &

E;(r) =

denoting the electric 6eld arising from a unit point charge
at r, .

The total electrostatic force density at a point r is

f(r) = —,
' Jd r, f d rz v(r„'rz) [5(r—ri)Ez(r)

+ 5(r —rz}E,(r)],

(18)

1
3p"

&
r2v r&', r2

~&2

Here the total pair distribution function v(r„'rz) is the ex-
pectation value of Eq. (7).

C. Electrostatic force densities

We introduce the electrostatic potential ((}(r) as the
solution of the Poisson equation, i.e.

f(r) = Jd'rz v(r;rz)Ez(r). (18')

Using the definition of v(r, ;rz), Eq. (7), we may separate
the force density as f= f++ f with the nuclear part

f+(r) = f d rz p(r;rz)Ez(r) + p(r)E (r) (19a)

which simply expresses the force on all particles at r in
terms of electrostatic interactions among the particles.
Because of the symmetry v(r, ;rz) =v(rz', r, ) we can write
the electrostatic force density Eq. (18) simply as

((}(r)=Id'»' v(r '), =P+(r)+P (r),
fr —r'f (14) being the force density on the nuclear subsystem arising

from all nuclei and electrons. The electron part f is
which by Eq. (8) is the sum of a nuclear potential P+(r)
and an electronic Hartree potential P (r).

The total electrostatic field is

f (r) = —n(r)E+(r) + Id rz n(r;rz)Ez(r),

E(r) = — =—E+(r)+E (r},BP(r) +
r

E+(r) = Jd r, p(r, )E,(r),

E (r) = —Jd r, n(r, )E,(r)

with

(16a)

i.e., the force density on the electrons at r due to the nu-
clei and electrons. %e may call f the Ehrenfest force
density since it is the force acting upon quantum mechan-
ical particles in analogy with Ehrenfest's theorem of the
force upon a wave packet. Whereas f (r) is a smooth
function of r, the f+(r) consists (due to the discreteness
of the background) of 5-functions,

f+(r) = g Fp5(r —Rp)
f
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with

F = Z [E(r)—Z E (r)], (21}

i.e., the nuclear charge times the total electric field, Eqs.
(16) less the nuclear self-interaction term. Ez(r) is given
by Eq. (17), replacing r; by Rz.

The well-known Hellmann-Feynman theorem states
that for any eigenstate of the Hamiltonian, i.e., especially
for the ground state, the force upon a classical nucleus at
Rp is

a&8&
(

as
j ~

af'~

(23b)

The latter relation may be reexpressed as a statement that
the dyadic product ro f+(r) may have an antisymmetric
part whose integral must vanish identically.

D. Local momentum balance

A local stress (or stress field) is defined, in analogy with
the classical elasticity theory, as a tensor field whose

I

so that f+(r) inay be referred to as the "Hellmann-
Feynman force density".

Since we consider only the electronic ground state of
the system, there can be no net force or torque acting
upon the subsystem of classically behaving nuclei, i.e.,

Jd'r f+(r) = 0, (23a)

Jdir rX f+(r) = 0.

divergence is equal to the force density. In a quantum
system there are kinetic as well as potential stress 6elds,
and following Ziesche and Lehmann we introduce the
(real) momentum fiux density

(24)

In Appendix A it is shown that the divergence of 2t(r)
equals the electron force density, i.e.,

.2 t(r) = f (r).

This result was first given by Pauli for a single electron,
showing the microscopic balance of momentum fiux and
the force density. The quantity —2t(r) is referred to as
the kinetic stress tensor 6eld of the electrons.

The potential stress tensor field is defined as f(r)—
with

vgjr) = —,
' Jd r, J d r2 v(ri, ri)I7I2(r) (26)

1
r/Ip(r) = — [Ei(r)o E2(r) + E2(r)0Ei(r)

4m

—E (r) E (r)1] (27)

where E, (r) is the function (17). Note that —IY,I(r) is the
Maxwell stress tensor of two interacting unit point
charges located at r, and r2 less the self-interaction con-
tribution of these charges:

rvi2(r) = —
I [Ei(r)+E2(r)]o [Ei(r}+E2(r)]——,'[Ei(r)+E2(r)]' I

4m

—E,(r)oE,(r)+ —,'E, (r)' 1 —E2(r}~E2(r)+—,'E2(r)' l I . (28)

(The prefactor so equals I /4Ir in atomic units. ) The diver-
gence of rl, 2(r) is simple to calculate and we find the elec-
trostatic momentum balance

gtr) = - f(r),r

.o(r) = f+(r),
r

(30)

where we have defined

o(r) = —[2t(r)+g(r)]

as the local stress tensor.
Note that it is only the nuclear force density f+(r) that

appeal's II1 Eq. (30). This Is to bc cxpcctcd bccausc Eq.
(25) as a generalized Ehrenfest theorem contains only the
force on the electrons, whereas Eq. (29) involves the total

see Appendix B.
A central result is the local momentum balance, which

is found by adding Eqs. (25) and (29) to give

force density because it refers to all charges of the sys-
tern. Thus the local stress tensor is related only to the
forces on the nuclei which should be compensated by
external forces keeping the nuclei in their given positions,
according to the Born-Gppenheimer approximation.

Equation (30) specifies how to calculate atomic forces
[i.e., f+(r) defined by Eq. (20)] from the local stress ten-
sor cV(r). The first derivation of the stress as the sum of a
kinetic stress and a Maxwell stress, Eq. (31), was present-
ed by Feynman, ' and a form valid for general many-
body interactions was given by Nielsen and Martin. ' Re-
garding the stress fields as defined in Eqs. (24), (26)—(28),
and (31), we remark that this is in no way a unique form,
since the curl of an arbitrary tensor 6eld may be added
without a8ecting the physical force. This ambiguity or
arbitrariness of the stress field is discussed also by Nielsen
and Martin' and is related to the ambiguity of the elec-
tromagnetic energy density discussed by Feynman. ' '

As a final remark, the momentum balance (30) can be
considered as a rigorous relation between the one-particle
density matrix (or momentum distribution), the pair dis-
tribution function, and the electron density.
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K. Local and global stress relations

Several interesting results follow from Eq. (30). Firstly,
integration of Eq. (30) over an arbitrary volume Q with a
surface S gives

f der f+(r) = f dS cV(r)

which is the force exerted upon the fragment 0 of the
cluster. The fragment could be chosen to include only a
single nucleus, thus giving the force F& on that nucleus in

a way complementary to the Hellm ann-Feyn man
theorem (21) and (22}.

Secondly, there is a local stress relation

2T+ V = 3pQ„ (39)

where we have used trT= T and trU= V with the expec-
tation values (12) and (13}. This result is also known as
the Uirial theorem. It has been derived in a fashion simi-
lar to the present one in Ref. 20.

2T+& = —eQ,

derived by Nielsen and Martin' using a scaling argument
[see their Eq. (7)]. An alternative derivation restricted to
Coulomb interactions is given in Appendix C. Forming
the trace of Eq. (38) y1elds tlie pressure p as

~ cr(r)o r —f+(r)o r, (33) F.The thermodynamic limit

which is found by multiplying Eq. (30) dyadically by r
and using 8/Bro r= l. Integrating Eq. (33) over Q gives

f d r o(r) = f dS F(r)or —f der f+(r)or, (34)
0 S 0

which is the stress relation for the fragment Q of the sys-
tem.

If Q is taken as all of space and the system is finite the
surface integral vanishes because o(r) as defined by Eq.
(31) decays sufficiently rapidly. Then we have the global
stress relation

with the tensor quantities defined as (kinetic and poten-
tial energy tensors, respectively)

T = fd r t(r) = fd r n(r, r') ~. . . (36a)

In the thermodynamic limit of an infinite crystal (i.e.,
Q, ~ ~) all quantities have to be calculated per unit cell,
i.e. integrals and expectation values refer to the unit cell
volume Qo ——Q, /N„where N, is the number of unit cells.
The limit must be taken in a special way to ensure that
the surface integral in Eq. (34}remains zero and thus that
the above results hold. The infinite crystal must be built
by adding unit cells one by one, always maintaining a
finite cluster which grows in such a way that Q„N, ~ 00

but with Q, /lil, remaining finite. The cluster must
remain electrically neutral and have a vanishing macro-
scopic electric field. All extensive quantities have to be
divided by N„ the number of unit cells, before taking the
thermodynamic limit, i.e.,

rtr, ~ rgr
no &, ~o

Equation (37) takes the form

U = fd r g(r) = ,'fd ri fd—r2v(r„r2)
r)2

1
3 8

Q ' Bai=1
(37')

(36b)

and the nuclear force Fr given by Eq. (21). On the right-
hand side (r.h.s.) of Eq. (35) the symmetry property (23b)
has been used. Eq. (36a) is obtained from Eq. (24) by par-
tial integration, and in Eq. (36b) the result (83) has
been used. According to the Hellmann-Feynman
theorem (22) the r.h.s. of Eq. (35) can be written as
—gr Rroilg/QRr.

The stress of a finite system (a cluster) occupying a
volume 0, and being in equilibrium with external forces
is defined in terms of the change of E due to a homogene-
ous, anisotropic and infinitesimal scaling as

1 8
o = QRro E.

e

Comparison with Eqs. (34) and (35) shows that the stress
de6ned from the total energy agrees with the mean local
stress defined as fd ro(r)/Q, Note that o(r.) is essen-

tially nonzero only within Q, . From Eqs. (35) and (37)
follows the stress theorem

where e is the energy per unit cell and the a, denote the
lattice translation vectors.

For the infinite system the stress o times Qo is equal to
the left-hand side of Eq. (34) when the volume Q is taken
as the unit cell volume Ao. Let us furthermore assume
that the nuclei occupy, for a given form of the unit cell,
their equilibrium positions so that Fr ——0. The case of
nonzero forces would require an averaging procedure, as
described by Nielsen and Martin. ' From Eq. (34} we
have

crQD = f d r o(r) = f dS cr(r)or
Qo So

= f [dS o(r)orj„
$0

where So is the unit cell surface. In the last step we have
introduced the symmetrization [aob], =—,'(ao b+boa) in

order to enforce symmetry in the individual terms of o.
The kinetic part —2t(r) of n(r) is inserted into the sur-

face integral, and the potential part —q(r) can be
transformed as shown in Appendix D to give
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(41)

The first term is connected vvith the momenturo Aux
through the unit cell surface So. The second term is due
to particles inside Qo interacting with particles outside
the unit cell Qo. Interactions between particles entirely
inside or outside Qo do not contribute to the stress o
given by Eq. (41). One may rewrite this term using Eq.
(84).

n(r, ;r2)—:n(r, )n(r2) + nxc(r&', rz). (42)

Taking into account Eq. (7), this allows the separation of
ggr), Eq. (26), into Hartree and XC parts. The Hartree
part is

ViH(r) = — vi (r) —gvir(r) (43)

where g is the Maxwell stress due to the total electro-
static field (15), i.e.,

vi (r) = [E(r)OE(r) —T)E(r)i 1]. (44)

Prom g are subtracted, as in Eq. (28}, the nuclear self-
interaction terms yz given by Eq. (44) with E(r) replaced

I

G. Exchange and correlation part of the electrostatic stress

The local stress tensor cV(r) given by Eq. (31) is the full
many-body result for a system with Coulomb interac-
tions. The kinetic stress —2t(r) is related to a one-
particle quantity, whereas the potential stress —ggr) is
related to the pair distribution and therefore contains ex-
plicitly what is referred to as exchange and correlation
(XC) terms.

The electron pair distribution n(r, ;r2) may be split into
a product Hartree term and a remainder XC term as

by the electrostatic field due to the 8th nucleus, Er(r)
given by Eq. (17) substituting r, by R& and adding a fac-
tor Z&.

The XC part of

ager�

} is given by

r)x~(r) = ,' Jd—'r,f&'r, n„c(r„r,)r7„(r) (45)

in analogy with Eq. (26).
The total stress tensor field can therefore be written as

cr(r) = —[2t(r)+riH(r)+vixc(r)).

The vYH(r) is the simplest to calculate because it only re-
quires knowledge of the electron density n(r), in addition
to the given density of nuclei p(r}. The kinetic term t(r)
requires the one-particle density matrix n ( r, r '

) which
contains many-body effects. In principle n(r, r '} is deter-
mined by the self-energy operator X(r, r';s), which has
recently been calculated approximately in the so-called
GW approximation by Hybertsen and Louie, 29 Godby
et al. ,

o and others. " Experimental determination of
n(r, r ') is discussed in Ref. 32. As regards the XC term
fxc(r), little is known about the nxc(r„'r2) and conse-
quently we cannot comment at present upon the feasibili-
ty of actual calculations.

An additional remark concerns the contribution of the
Hartree term v70(r) to the stress Pr, which is contained in
the last term of Eq. (41) through the Hartree term of
v(r„'r2), which is given by v(r, )v(rz). For calculational
reasons it may be appropriate to reextend the integration
over rz to all of space, which leaves Eq. (41) unchanged
because the integrand is antisymmetric saith respect to an
interchange of ri and rz. Since the integration volumes
overlap in this case, one has to take care of the cancella-
tion of the self-interaction divergences again. Accom-
plishing this, the vYH is given by

d r r7&(r) = — g Zz ro
no

R~ GOO

+ f d r n(r) ro tr+ —,
' 1 P(r)

Qo Qr
(41')

arith

4(r) = f d r2 v(r2} (41")

I

(denoted KS),

[-,'p'+ V{r)+Vxc(r)]4'k(r) = &krak(r) (47)

This form is appropriate for the application of the Ewald
technique because P(r) has the crystal periodicity.

III. DENSITY-FUNCTIQNAI. THEORY AND THE I.DA

%ithin thc dcnslty-funct10nal thco1 y an cScctivc
one-particle equation was derived by Kohn and Sham "

for the one-particle orbitals )I)k with eigenvalues sk.
Whereas V(r)= —)I){r) arises from the electrostatic po-
tential P=)I)++4 due to nuclei {P+)and electrons (P
Hartree) as given by Eq. (14}, the second term Vxc(r) is
an CS'ective XC potential. The total energy is

E = TKs+ VH+Exc[n(r)],
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where TKs is tile kllietic eilergy of the oiie-particle wave
functions,

Bl
vs(r) = —f+(r) + n(r)E(r) (53)

and VH is the Hartree potential energy,

VH = V++ —fd r n(r)[P+(r)+ —,'P (r}] . (49b)

in analogy with Eqs. (29) and (19).
With these definitions the local stress tensor (31) is par-

titioned into KS and XC parts as F(r)—:FKs(r}+Fxc(r)
with

Here V+ + is the nuclear electrostatic energy (5a).
Exc[n(r)] is a functional of the exact charge density
which is

OCC

n(r) = y I yk(r) I

'

The XC potential is the functional derivative of Exc,

FKs(r) = —[2txs(r)+rvH(r)] .

They fu1511 the momentum balances

Br
~ Fzs(r) = f+(r} + n(r)Exc(r),

8
Br

Fxc(r) = —n(r)Exc(r) .

(54)

(55a)

(SSb)

5Exc[n (r)]
sn(r)

(50)

A partitioning of the true density matrix n(r, r ), Eq.
(1 la}, is suggested by the form of TKs as

Equation (55a) follows from the sum of Eqs. (52) and (53),
and Eq. (5Sb) is a consequence of Eqs. (30) and (55a).
From the XC momentum balance (55b) follows in analo-

gy to Eq. (33)

n(r, r') =—gPk(r)Pk(r') + nxc(r, r')
Fxc(r) = 'Fxc(r)or + n(r)Exc(r)'r

Br
(55c)

=nKs(r, r') + nxc(r, r') . (51)

which can be considered a local and dyadic generaliza-
tion of the Averill-Painter relation

2Txc+ Vxc ———fd r n(r) r Exc(r),

~ 2t&s(r) = —n(r)[E(r)+Exc(r)] (52)

following directly from Eq. (47) as shown in Appendix B.
In addition to the electric field (1S) the XC electric field

Exc(r)=BVxc/Br appears. This result is analogous to
the momentum balance (25) whose r.h.s. [given by Eq.
(19b)] also consists of an uncorrelated Hartree tenn and
an XC term, according to the splitting (42). Similarly
there is an electrostatic momentum balance for the Har-

I

This allows writing the exact kinetic energy as
T= T~s+ Txc where T and Txc are given by Eq. (12) us-

ing the density matrices n(r, r') and nxc(r, r"), respec-
tively. Similarly the exact potential energy is written as
V= VH+ Vxc through the partitioning (42) of the pair
distribution function.

Since the KS equation (47) is derived variationally
from the true total energy (48), there is a momentum bal-
ance condition for the KS kinetic stress tensor density
txs(r) [given by mserting n„s(r, r ') into Eq. (24)],

fd r [Fzs(r)+Fxc(r)] = FQ, .

Taking the thermodynamic limit we obtain the result

(57)

of Ref. 33.
We have thus shown that the local stress tensor F(r) is

given within the density-functional theory as the sum of a
local KS stress FKs(r) given by Eq. (54) and a local XC
stress Fxc(r) determined by Eq. (55b) for a given form of
the XC potential Vxc(r). Having solved Eq. (55b) it fol-
lows that all results in Sec. II have analogous expressions
within density-functional theory.

For example, the force upon a fragment 0 of the sys-

tem is given by Eq. (32) as

f d r f+(r) = f dS [Fzs(r)+Fxc(r)] . (56)
0 S

The r.h.s. consists of a KS kinetic term and a Hartree po-
tential term, and additionally a local XC term evaluated
on the surface S. Similarly the stress theorem (38}has a
term from the XC stress

g00 = —Re n (r r')dSKS

f d3, f d3„, („,)„(,),o rp + [dSor], F (r){3 1

+0 "—+o ~r& ~r2 ~ iz
(58)

analogous to Eq. (41).
Up to this point our analysis rests upon rigorous rela-

tions. For practical calculations we now describe the cor-
responding results within the local-density approximation

(LDA)2 which assumes the form for the XC energy

Exc[n(r)] = f d r n(r)exc(n(r)), (59}
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where axe(n) is the XC energy per particle in a homo-
geneous electron gas of density n. Thus the XC potential
and the XC 6eld are given by

V«(r) = nexcLDA d h

. n =n(r}

n(r)E xc(r) = n nextLDp Bll (r } d
Br

n =n(r}

%ith the operator identity

d d z d
drt dn

Eq. (55b) takes the form

(61)

~«(r) = —n .«(n)~DA
1

n =n[r}
(63a)

being in agreement with the stress of a homogeneous elec-
tron gas, o (n) = nz[da—"(n)ldn ]1,and with the idea of
the local nature of the LDA. As the 6nal expression we
rewrite Eq. (63a) as

o'xc (r) = rz(r)[&xc(ri(r)) —Vxc (r)] 1 . (63b)

When this expression is inserted into Eq. (58), agreement
is obtained with the results of Nielsen and Martin' [their
Eq. (30)] for the LDA stress tensor, and we have thus
provided a rigorous basis for their results.

Formulas for the stress tensor cr of finite clusters as
well as homogeneously strained infinite crystals are de-
rived:

(i) From the many-body Schrodinger equation follows
via its local momentum balance (30) the stress formula
(41), which requires the knowledge of the one-particle
density matrix n(r, r ) and the electron pair distribution
n(r»rz).

I

~xc (r) = — n e«(n), (62)
'B ~D&&& 8

n =n(r}

fiom which we obtain the particular solution (see end of
Sec. II D)

(ii) From the one-particle Kohn-Sham equation follows
via its local momentum balances [Eqs. (55)] the stress for-
mula (58), which requires for a given form of the XC-
potential the self-consistent solutions of the Kohn-Sham
equation and the solution of the equation for the local
XC stress, Eq. (55b). In the local-density approximation
this solution is given by Eq. (63b).

Corresponding pressure formulas arise simply by forming
the trace of the mentioned stress formulas.

Consequences of these results are as follows:
(i) A force sum rule for the nonrelaxed surface of a

semi-infinite crystal follows from the trace of Eq. (35) in
the thermodynamic lifnit.

(ii) The local momentum balances (25) or (30) can be
viewed as relations between the one-particle density ma-
trix n (r, r ) and the pair distribution n (r},rz ) in addition
to the normalization conditions (10c) and Ref. 36.

(iii) The Kohn-Sham momentum balances (52) or (55a}
relate the Kohn-Sham density matrix nKs(r, r') to the
XC-potential of the Kohn-Sham equation.

(iv) The local stress relation (55c) for the XC parts of
the momentum Aux and the Maxwell stress tensor is a lo-
cal and tensor generalization of the (global and scalar)
Averill-Painter relation.

(v) Finally is emphasized (as in Refs. 14 and 20) the
possibility to calculate Hellmann-Feynman forces (which
drive relaxations in clusters, around point defects, or at
surfaces and interfaces} from surface integrals around in-
dividual nuclei [see Eq. (56)] or between parts of the clus-
ter or crystal under consideration.
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APPENDIX A: LOCAL MOMENTUM BALANCES
OF THE SCHRODINGER

AND KOHN-SHAM EQUATIONS

The equation of motion for the one-particle density
matrix is given by

(N —1)!
j

Jd rz . Jd r}v(H' H}4(r„o„—rz, oz, . . . , r}v,o}v)

+ j(r, r ') i I1 rz [——n(r, r ')p(rz)+n(r, r ', rz)][})})z(r') —Pz(r}], (A 1)

where the abbreviations Pz(r) = 1/
~

r —rz
~

and

j(r,r'} = n(r, r'}
2

(A2)
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(the one-particle {lux density matrix) are introduced. The quantity n(r, r', rl) is given by Eq. (1 la) replacing the opera-
tor fd'ri by the factor (N —1). In the first term of Eq. (Al) is used the identity

t

—i( —,'p' ——,'p }n{r,r'} = P"+8 n(r, r') =
Br Br 2

j(r, r'} .Br' r
(A3)

For r =r from Eq. (Al) the continuity equation Bj(r}/Br=0 arises. Application of p before setting r '=r immediately
gives the momentum balance (26}. This is seen from the definition (19b}of f (r) and from

T

po + j(r I') = + ~ ~ o + p p n(r r')
Br Br 2 2 Br Br 2

+ —,'po j(r)

2t(r), (A4}

where the definition (24) of t(r) and the continuity equa-
tion are used.

Starting with the KS equation (47) and using the
definitions (51) of the KS density matrix nzs(r, r ') and a
rewriting similar to Eq. (A3), the equation of motion for
the KS density matrix results:

f 3 r, or,
d r iI,I(r} = Ez(ri)or, + Ei(ri)orz ——

P'
12

In the last step the definition (17) of E,(r) is used. An
equivalent form of Eq. (83) is

+ jKs(r r }r' r

—nxs(r, r')[VKs(r') —Vxs(r)] = 0, (A5)

a a '1
r10 + r2

Bri Bfg rii
12 12

3
"12

(84)

where Vws(r) abbreviates —P(r )+ Vxc(r). For r '=r the
continuity equation i3jws(r)/Br=0 arises, which implies
that also jxc has to obey the continuity equation. Now Q
is applied and afterwards r' is set equal to r. With
BVKs(r)/Br=E(r)+Exc(r) and with a rewriting similar
to Eq. (A4) the KS momentum balance (52) results from
Eq. (A5).

APPENDIX 8:THE EI.ECTROSTATIC
MOMENTUM BAT ANCE

From the definition of IIiz(r}, Eq. (27), it follows that

a
Br IV,I(r) = —[5(r—r, )EI(r) + 5(r —ri)Ei(r)] .

(81)

Application of the operator ,' Jd r, Jd—rlv(r, ;rI) im-

mediately gives the electrostatic momentum balance (29)
because of the definitions Eqs. (27) and (18'). On the oth-
er hand, with the identity (i3/Br)0 r= 1 the integral

APPENDIX C: PROOF GF THE STRESS THEOREM

The stress theorem (38) can be derived by two alterna-
tive methods. Firstly, it may be proven by considering an
infinitesimal homogeneous and anisotropic stretching of
the wave function. This is a generalization of Fock's
method and has been accomplished in Ref. 14. Second-
ly, it may be proven by evaluating the commutator of the
Hamiltonian with the generalized virial operator
g;r;og;. In the following the essential equivalence of
these two approaches will be sho~n directly. The point is
that the generalized virial operator is in a sense the gen-
erating operator for an infinitesima scaling of the wave
function as shown below. Having done this, we will
prove (38}using the second approach.

To avoid derivatives with respect to tensor quantities
we will describe the scaling of the wave function by
r;~r, '=r,-+A. e r; with A. being a scalar variable and a
an arbitrary constant and syrnrnetric tensor. The correct-
ly normalized wave function is (reference to the spin vari-
ables is omitted)

fd'r Iv„(r) = fd'r or II„(r) (82) @i(r,, . . . , r~) = det(1+A, P} i~4(r, ', . . . , rN') .

can be rewritten by means of a partial integration and us-

ing Eq. {81)as
%ith this wave function we form the expectation value of
the unchanged Harniltonian
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and consider the derivative with respect to A, for A, =O
(note that 4z 0 is the unstretched wave function 4).
%ith the help of

[see Eqs. (36b) and (84)] and using that 8 depends upon
the nuclear positions only via the potential energy P' we
5nd

det( 1+A, B = tra,
A, =O

2T+ V = —QRro
BRr

(C12}

= ig r; FP;4(r„. . . , rN )

Applying the Hellmann-Feynman theorem (22) on the
r.h.s. gives finally the stress theorem (38).

we obtain

(C3) APPENDIX D: PROOF OF EQUATION (41)

Using Eq. (29) for the potential stress tensor field f(r)
one can write

f [roggr)dS], = f„d r |ger) —[ro f(r)], I

f d r —,
' f d r, f d'rz v(r„'r2)I, z(r)

00

(Dl}
(C4)

with the definition
Taking into account that 1);Fr, —r, Ffl, = —i trF, the last
relation turns into I,z(r) = ivz(r) —[ro I5(r —r, )Ez(r)

+ 5(r—rz)E~(r) I ], ,

For 4 being an eigenstate of 8 the two sides of Eq. (CS)
have to vanish. Setting the l.h.s. to zero gives the stress
theorem', whereas setting the r.h.s. to zero gives

and v7, z(r) defined by Eq. (27). The forces in the tensor
I,z(r) can be expressed by the potential 1 lr, z. Using Eq.
(84) it becomes

I,z(r) = wiz(r) + —,'[5(r—r, )+5(r—rz)]

(C6} 1
X ri

~
+

r2
(D2)

showing the desired equivalence.
To derive the stress theorem from Eq. (C7}we consider

first the commutator

i 8,gr;oQ, = gP, o 1' —g r, o t)'.a a
Br;

(C9}

the generalized virial theorem reads

2T — zr, f') =0,
Br,.

(C10)

the trace of which is the usual virial theorem. To specify
Eq. (C10) for our problem we have to insert the concrete
form of f', Eq. (2). With

because F is an arbitrary symmetric tensor. Together
with the torque sum rule (23b) the last equation yields

with

I
r or12 12

w, z(r) = T)iz(r) ——,[5(r—r, )+5(r—rz)]
~12

(D3)

The first term in Eq. (D2) does not contribute to Eq. (Dl)
for the following reasons. First, fd r wiz(r)=0 is a

consequence of Eq. (83), and hence for a finite cluster the
tensor Seld

w(r) = ,' fd r, fd—rzv(r, ;rz)w, z(r) (D4)

fd r w(r)~ f d'r w(r),
Oo

(DS)

has the same property, J'd rw(r)=0. On the other
hand, in the thermodynamic limit of an extended periodic
crystal w(r) becomes a tensor Seld possessing the crystal
periodicity. This is true because the total pair distribu-
tion v(ri, rz) becomes a crystal periodic function and be-
cause this property is transferred to w(r) through w, z(r),
which depends according to Eqs. (D3) and (27) upon r,
and r2 only via the chfkrences r —r1 and r —r2. Therefore
we may write, as in Sec. II F:

8gr, o + QRro (Cl 1) and hence f n d r w(r) =0. Finally, the last term of Eq.
(D2) contributes to Eq. (Dl) a term
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X rto
Br)

B 1
r20 ~ra, r&2

f d'r ,' —fd'r, f d'rz v(r, ;r2)I,z(r)

r) d r'2 v r)~r2
Qo

where Jtt d r 5(r—r;)=1 for r, COO and =0 otherwise

has been used. The integrand is antisyrnrnetric with
respect to an interchange of r& and r2. Therefore r2COO
does not contribute and on1y the integration over the re-
gion outside Qo remains nonzero, i.e., we may restrict r2
as r2E-( ~ —Qe).
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