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The mutual coupling of electronic multistationary quantum systems realized, e.g., by semiconduc-
tor quantum dots is discussed. For local charge-transfer states such coupling can approximately be
described in terms of dipole&ipole interactions: the respective renormalized transition frequencies
allow for optically controlled conditional switching processes. Two coupled subsystems can in this

way perform all the elementary logical operations, including microscopic information transfer. The
appropriate architecture for such a quasimolecular computing system is shown to be the distributed
computation based on local transition rules. As a simple example a microscopic realization of a
one-dimensional one-way cellular automaton with two states per cell and nearest-neighbor coupling
is discussed.

I. IN'lit. ODUCTION

In the preceding paper' referred to as part I in the fol-
lowing, we have shown that it is possible to construct
multistationary quantum systems on the basis of semicon-
ductor heterostructures (cf. also Refs. 2 and 3). Although
the semiconductor is a typical many-body system, it can
be decomposed into quasimolecular subsystems of
effective single-particle transitions which are decoupled
from the rest on an appropriate time scale. By driving
the open quantum system via single modes of the elec-
tromagnetic field, a preparation of such metastable
charge-transfer states is possible. Arranged in an array,
these systems can be used as optically controlled storage
devices in which individual electrons are used to code the
stored information and the reading and writing of the
memory is performed by applying suitable combinations
of light pulses.

So far, this proposed system was but another version of
optical storage based on persistent hole burning, whicb
had to cope with a limited storage time and increased
manufacturing problems. The aim of this paper is to ex-
tend this discussion to the case of locally interacting mul-
tistationary systems. A coupling of the microscopic sub-
systems is necessary in order to be able to construct ele-
ments which are capable of performing logical operations
or, more generally, local transition rules.

On the microscopic level the number of interactions
which could possibly be used for such a task is severely
limited. Due to the low capture cross section a coupling
via emission and absorption of single quasiparticles (i.e.,
photons or phonons) is impossible. Thus the two interac-
tions we consider in this paper are the Pauli exclusion
principle and the Coulomb renormalization of the
(e8'ective) single-particle energies.

This investigation of a speci5c submicroscopic realiza-
tion of computing devices allows us to look for physical
constraints and limitations which are due to this special

(and idealized) implementation. While the early physical
realization of computers has favored the sequential
architecture —storing device (core memory) and central
processing unit (vacuum tubes or transistors) have been
made of dilerent materials —a quasimolecular realization
of a computing device calls for parallel computer archi-
tectures as will be shown below. For devices based on
(conventional) highly integrated electronic circuits the
necessity for new architectures which emphasize near-
neighbor interactions has also already been recognized.

In this sense our approach is somewhat complementary
to the recent interest in novel computer architectures.
Here the motivation has been that the usual sequential
architecture which goes back to the basic design of von
Neumann' does not seem adequate for some classes of
problems brought up recently. The sequential computer,
as it is most widely used nowadays, was basically
designed for "number crunching, " and that is what it
masters almost perfectly. But new tasks, like simulating
complex hydrodynamic systems, image processing or pat-
tern recognition, searches in data bases, or approaches to
artificial intelligence, proved almost impossible to imple-
ment on sequential machines, and if implemented, they
are very time and memory consuming. Instead, new
kinds of computer architectures, the parallel-processing
machines, are promising alternatives for problems of this
kind. In this case the structure of the problem to be
solved is, in some sense, represented by the structure of
the computing device. Up to now, the most advanced
realization of this kind is probably Hillis's connection
machine ' which, however, is stil1 based on convential
electronics.

Our paper is organized as follows: In Sec. II we de-
scribe multistationary systems with several electrons be-
ing influenced by the Pauli exclusion principle. In Sec.
III we discuss the coupling of two bistable subsystems.
In Sec. IV we give a model for a microscopic information
transfer and we show that the basic logical operations
(AND, oR, and NOT) can be performed with two coupled
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subsystems. In Sec. V we extend this discussion to the
case of a linear chain of subsystems, coupled via nearest-
neighbor interactions. %e show that a one-dimensional
(1D) one-way cellular automaton can be simulated with
our microscopic model. Finally, in Sec. VI, we give a
short summary of our results.

Thus if, e.g., a light-pulse combination, P, containing the
fIeguencies A)43 and 6)87 is applied to the attractor state

[1,7j ( [3,5 j ) the electron of level 7 (3) is excited into the
transient level 8 (4) but it cannot relax into the already
occupied level 1 (5). After the end of the laser pulse it
will recombine into its original state 7 (3). The complete
machine table for such a process is given by

II. MUI.TISTATIONARY SYSTEMS
%ITH SEVER%,I.EI.KCTRONS

Let us start from a discrete single-particle spectrum,
corresponding to various localized valence- and
conduction-band states, imbeded in the gap between the
valence-band and conduction-band continuum. Depend-
ing on the position of the Fermi level, the low-
temperature ground state corresponds to a speci6c distri-
bution of holes (or electrons). We extend now the discus-
sion of part I to a situation where there is more than one
electron in the discrete valence-band states: a pure few-
particle attractor state may then be characterized by the
corresponding occupation numbers.

As a simple example we consider a cyclic eight-level
spectrum (Fig. 1). Due to the spin-orbit interaction, as
well as the spatial confinement of the quasiparticles, the
spin degeneracy is Bfted." All levels are thus taken to be
nondegenerate. If the Fermi level is pinned between
states 5 and 7, the T +0 equil—ibrium ground state corre-
sponds to one electron in state 1 and one electron in state
7 denoted by [1„7j. All possible six-electron distribu-
tions on the states 1, 3, 5, and 7 form the set of two-
electron attractor states. Disregarding for the time being
the Coulomb interaction, we can use the "contact in-
teraction" of two electrons via the Pauh exclusion princi-
ple as a constraint to induce a conditional dynamics
based on individual electrons. An electron can only be
switched into another state if the new state is empty.

3
Data Element a

FIG. 1. Cyclic quantum optical model and coupbng scheme
of the attractor states for a multistable element capable of per-
forming a combined AND/OR operation. The system consists of
four single-particle attractor states (1,3,5,7), coupled via four
transient states (2,4,6,8). The localization area of the diFerent
states is indicated. The binary variable a (b) is represented by
the attractor states 1 and 3 (5 and 7).

[1,3j

[1,7j [co~

[3,5j
[3,7j
[5,7j

[1,5j
[1,7j
[3 5j
[1,5j
[1,5}

If two binary variables a and b are locally represented
by the one-electron attractor states 1,3 and 5,7, respec-
tively (cf. Fig. 1), only four out of six possible attractor
states are interpreted:

[1,7j ="a =0, b =0,
[1,5j ="a =0, b =1,
[3,7j ="a =1, b =0,
[3 5j=a=l ~=1

The transition rules for the light pulse P as given above,
reduces to

where a' and b' denote the values of the variables a and b
after the laser pulses have been applied. One easily sees
that a contains the results of the AND operation and b
of the OR operation. The NOT (cf. part I) and this
AND/OR element may be combined to more complex log-
ical elements, e.g., to a semiadder.

The same AND/OR element could have been realized
with the same level structure in a much simpler way, if
the variables a and b were represented by the valence
band states of a single electron (i.e., the Fermi level is
pinned between states 1 and 7):

[ 1 j
="a =0, b =0,

[3j="a =0, b =1,
[5j ="a =1, b =0,
[ 7 j

=" a = 1, b = 1.

Then already a light pulse with a single frequency ~45
would perform the combined AND/OR operation. But
this mapping of the variables onto the attractor states
should be considered as "unfair, " since most of the com-
plexity of the operation is already anticipated by the cod-
ing: In contrast to the previous example, it is no longer
possible to identify the value of each of the variables a or
b independently of the other.
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On the other hand, also the proposed logical elements
based on the Pauli exclusion principle have a serious
disadvantage: they destroy the input data. Since cora-
plex logical operations usually make use of the same data
several times during a computational process, a mecha-
nism is necessary which copies logical information from
one data element into another. It can be shown that the
correlation via the Pauli exclusion principle does not per-
mit a copying mechanism. Thus it is necessary to invoke
another interaction: the Coulomb interaction.

A. Matrix elements

X, 4k(x')4i(x),1
(3.1)

Neglecting the electron spin for simplicity, the interac-
tion matrix element between the two subsystems is given
by12

2

W(ij kl) = Jfd x d x' 4,'(x)4J'(x')
4&660

III. COUPLING OF MULTISTATIONARY SUBSYSrj.MS

We return now to the "few-particle" attractor states as
discussed in Sec. H. Restricting the frequencies of the
optical control, one can hope to realize a situation in
which the electrons are switched only within specific lo-
cal subsets of states. If, due to appropriate barriers, the
electrons are forced to relax only within these same
states, we are led directly to the concept of multistable
cells, for which the number of switching electrons
remains constant. Contrary to the situation studied in
Sec. II, the multistationarity is then a fixed property of
each subsystem.

In the following we consider two bistable subsystems A
and 8 which are separated by a distance R and coupled
via the Coulomb interaction. Each of them is described
by a three-level model with a spatial separation d of the
two attractor states (Fig. 2). All of the transition fre-
quencies ro3„r03z, cost, and cuss have to be different in or-
der for the preparation system to act selectively on sub-
systems A and 8. This can be achieved by a suitable
choice of the material parameters (e.g.„ the aluminum
concentration in a Ga, „Al„As reahzation) in each sub-
system.

I

I

I

I

I

I

I

I

I

I

2 3
P;I PJk — (R P;t )(R Pjk )

4neeoR 3 R 2

(3.2)

R=Re, is the separation vector between the two subsys-
tems, and the dipole (transition) matrix element is given
by

P;, = Jd'x 4,'(x)x@1(x), (3.3)

where the center of the coordinate system coincides with
the center of subsystem A or 8.

The most important matrix element for our purpose is
W(ijji ). It describes the static Coulomb interaction be-
tween the two charge distributions in subsystem A and 8
and causes a renormalization of the energy levels. To as-
sure charge neutrality, we suppose that a positive charge
+e is located at the center of each subsystem. The in-
teraction of the electrons with these positive charges ex-
actly cancels the monopole-monopole and the monopole-
dipole part of W(ijji ) in (3.2), the only remaining term
being the dipole-dipole interaction. To lowest order, the
static dipole moments (3.3) can be approximated by (cf.
Fig. 2)

where 4, is the electronic one-particle wavefunction of
state i and e the relative dielectric constant of the embed-
ding semiconductor material.

For large separation 8 of the two subsystems the over-
lap between the wavefunctions of subsystem A and those
of subsystem 8 tends to zero. Therefore we can neglect
the local exchange interaction. The matrix element (3.1)
vanishes if the states i and I orj and k belong to different
subsystems.

In order to calculate the remaining nonlocal Coulomb
interaction matrix elements we expand 1/

~
x —x'

~
and

find, up to dipole&ipole contributions

e e~
W(ijkl)= 5p5;I+ 3 (5;IR Pjk —5jkR P;I)

4n ee

A =
+(d/2)e, for i =2, 5

P;;= 0 fori =3 6
—(d/2)e, for i =1,4.

(3 4)

FIG. 2. Quantum optical model and coupling scheme for two
interacting bistable subsystems A and 8. The localization area
of the difFerent states is indicated. R is the distance bebveen the
two subsystems and d the separation of the two attractor states
within one subsystem.

In doing so, we have assumed that the centers of the elec-
tronic charge distributions coincide with the spatial
centers of the quantum dots and that the static dipole
moments are oriented parallel or antiparaHel to the sepa-
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ration vector R. Thus we flnaQy get for the matrix ele-
ments W(ijji) = W(jiij )

~~ El=4, 5

W(1441)= W(2552) =— ~ 2g 2

82reeoR

W(1551)= W(2442) =+
Seed+

(3.5)

S. Coulomb renorm&i~tkon

Neglecting the dynamical part of the Coulomb interac-
tion and applying firs-order perturbation theory, the en-
ergy renormalization of, e.g., the levels i =1, 2, and 3 in
subsystem A is given by (3.5). Due to the different locah-
zation areas of each state the energy renormalization is
distinct for each level and depends on the occupied state j
of subsystem 8 (Fig. 3). Therefore the transition frequen-
cies in subsystem A depend on the state of subsystem 8
and vice versa (cf. also Fig. 2)

co3,. =A@3,(j); i =1,2 and j=4,5

ro6; co6, (i); ——i =1,2 and j =4, 5 .
(3.6)

For the splitting of the excitation energies we 6nd from
(3.5)

e 1
]]ihco=Ra)3](4) —Acu3](5) =

4neeoR
(3.7)

Taking 8 =100 nm and the material parameters for
the semiconductor structure of part I (i.e., d =16 nm and
@=12) we get A b,co=0.03 meV. Thus we can distinguish
between several energy scales: transition energy, 10

All other matrix elements (involving the states 3 and 6)
vanish.

The second term in (3.2}gives the leading order contri-
bution to the matrix elements W(ijki} and W(ijjl) and
describes a situation where the electron in one subsystem
makes a virtual transition from state k to j (l to i) while
the other electron stays in state i (j). This process
violates the energy conservation within the one-particle
picture and can therefore be neglected for small interac-
tion energies.

Finally, the leading term for the dynamical part of the
Coulomb interaction matrix element W(ijkl) with i+l
and j+k is given by the third term in (3.2). It describes
the transition of an electron from state I to i, while the
other electron makes a transition from state k to j. If /

and j are excited states (e.g. , I =3 and j=6) andi and k
are not, this corresponds to a transfer of the electronic
excitation from one subsystem to the other. This process
is similar to the excitation transfer mechanism in molecu-
lar dynamics sometimes denoted the Foerster efFect. '

As long as all of the transition frequencies in the two sub-
systems are nondegenerate, the direct Foerster efFect is
not important since we have virtual transitions only. But
if any two of the excitation energies in subsystems A and
8 happen to be the same, the Foerster process may lead
to real transitions and can no longer be neglected in gen-
eral.

FIG. 3. Coulomb renormahzation of the energy levels in sub-
system A due to the presence of subsystems 8 {energy axis not
to scale). The localization area of the diFerent states is indicat-
ed and the conditional transition frequencies are given.

meV; band-gap discontinuity, IO meV; level splitting
(Ace» —Aco32), 10' meV; Coulomb renormalization, 10
meV.

In part I we have seen that two three-level systems
with a relative separation in frequency space of
hv/vp 10 may be selectively switched by using light of
moderate intensity. Since a typical laser bandwidth can
be as small as hv/v=10, ' it is possible to use the
splitting (due to the coupling to subsystem 8) in the exci-
tation energies of subsystem A to induce a conditional
dynam]cs ln subsystem A. Irrad]at]on with light of fl"e-

quency r0»(4) and small enough bandwidth brings the
electron in subsystem A into state 2 only if subsystem 8
is in state 4. If 8 is in state 5 the laser pulse will practi-
cally have no influence on the electron in subsystem A.

On the other hand, if we want to switch subsystem A
from state 1 to 2 irrespective of the state of subsystem 8,
we have to use two pulses of frequencies co3](4) and
co3](5) or one pulse with an average frequency of
3] 2 [~3](4)+]03]( 5 )] and a bandwidth larger than the
frequency sphtting hm.

C. Resonant excitation transfer

In order to estimate the inhuence of the dynamic part
of the Coulomb interaction, we neglect the angular
dependence and calculate an absolute upper bound
W&& ~

W(ijkI)
~

for the dynamic Coulomb matrix ele-
ment. From (3.2) we get

8 2
3 IPul IP,k I

~ (3.8)
@nero g3

Rewriting the transition dipole matrix element (3.3) as'

P,] —— Id x4;(x)V@](x)
ltd 6)II

we can estimate the magnitude of P,] by using the optical
dipole transition rates calculated in part I.

Since the overlap between states 1 and 2 (or 4 and 5, re-
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spectively) is small, we have neglected the optical dipole
transition between these states compared to acoustic-
phonon scattering (cf. part I). To the same extent we can
neglect the matrix element $V(1542}on the time scale rd
The attractor states 1,2 and 4,5 are thus stable with
respect to an excitation transfer from one subsystem to
the other via the Foerster process.

For the other matrix elements we Snd (using R =100
nm and the material parameters of the semiconductor
structure of part I) the upper bound 8'f =10 meV.
This corresponds to a time scale' for the excitation
transfer from one subsystem to the other of the order of
rf =100 nsec. This time is about an order of magnitude
larger than the optical relaxation time for dipole transi-
tions from the transient state 3 to the attractor states 1 or
2. But for a reliable preparation of an attractor state, the
switching time T (that is, the length of the light pulse} has
to be several times the optical relaxation time. Thus, if
any two of the transition frequencies in the two subsys-
tems are equal, the Foerster process will be important. It
limits the switching time and thus gives a lower bound
for the error probability of the system. This effect will be
even large for smaller separations R of the subsystems.
On the other hand, if the difference of the transition ener-
gies in the two subsystems is much larger than the matrix
element W&, the Foefster process can be neglected since
it induces virtual transitions only.

IV. I.OUI CGMPUTATION

Attractor state

Ilj
I2I

Information variable

a=0
a=1
b=0
b=1

A. A model for microleoyie information transfer

On the relevant time scale, each of the subsystems A

and 8 of Sec. 111 is capable of storing and processing in-
formation. Again, this is based on a one-to-one mapping
of the attractor states to values of suitably chosen infor-
mation variables. For example subsystem A (8) can store
the value of a binary variable a (b):

Information which might have been present in variable a
is obviously destroyed after this process.

Translated into the physical picture of our model sys-
tem, it means that the electron in subsystem 8 has been
prepared —by a suitable combination of light pulses —in
one of the two attractor states 4 or 5. After the informa-
tion transfer process (ITP) the electron in subsystem A

has to be in the attractor state 1 or 2, depending on
whether the electron in subsystem 8 is in state 4 or 5 and
regardless of the state of subsystem A before the ITP.
Thus, the information which is present in subsystem 8
will, after the ITP, also be available in subsystem A.

In order to realize such a process we use the fact that
the information about the occupied level in subsystem 8
is already present in subsystem A through the nonlocal
Coulomb interaction. That is we use the conditional dy-
namics of subsystem A in order to get a correlation be-
tween the states of subsystems A and B. After irradia-
tion with two simultaneous laser pulses of duration T and
frequencies co,2(4) and to»(5) subsystem A will be in state
1 (2) if 8 is in state 4 (5). Thus we have copied the infor-
mation content from subsystem 8 to A.

The time T, together with the optical relaxation time
r, of the semiconductor material used, determines the re-
liability with which the copying process is performed.
The larger T becomes, that is, the longer it takes to copy
the information, the smaller is the error probability; how-
ever, T is constrained by T «re. Otherwise the original
information in 8 may already be lost.

Similar ideas have been used by Haddon et al. ' to
propose information processing within single molecules.
But, contrary to us, they did not consider a speciSc cou-
pling mechanism and thus could give only formal results.

B. Channel capacity

Information theoretically, ' ' subsystem A (and simi-
larly subsystem 8) can be viewed as an information
source characterized through an alphabet & = I a;; i
=0, 1] and a probability distribution P(a;).

The information I(a; ) is a measure for the degree of
uncertainty which is removed by the knowledge of a spe-
cial realization a; of the information source. Using one
"bit" as the unit of information, we have

This can be considered as a "fair" coding, since each
variable is represented by a separate subsystem. The
value of each variable can be inscribed independently of
the value of all the other variables.

As we have already pointed out, in a computational se-
quence it is frequently necessary to copy the value of one
variable into another. The truth table for a process
where the content of variable b is copied into a variable a
is given by

I(a;)=—log2P(a;) . (4.1)

In the same way we can describe the two subsystems A

and 8 together with the ITP as an information-
theoretical channel which is characterized through the
receiver alphabet A =ta;; i =0, 1), the transmitter al-

phabet 8 =Ib;; i =0, 1I, and a conditional probability
distribution P(a,

~ b~ ).
The transinformation I(bj, a, )is a measure for . the

transmitted information. Since P(b ) is the a pnori and
P(bj

~
a;) the a posteriori probability for finding b at the

The entropy I ( 3) of the information source is defined
as the mean information gain per measured state

I( A) = Q P(a; )I(a, )=—Q P(a, )log&.P(a, ) . (4.2)
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transmitter when c; is measured at the receiver, we have

P(b ia;)
I(b, ;a; ) =log& (4.3)

P(a; ibj)= QP(b, )P(a;
i b;)log2

k,J

and the channel capacity is given as the maximum tran-
sentropy for aB possible probability distributions P(b& ):

C =max I I(8;A ) J .
P(b. )

(4.5)

Neglecting the small difFerence between the optical re-
laxation rates from state 3 to 1 and from state 3 to 2 our
coupled system can be characterized by the following
conditional probabilities:

P(ao
I bo }=I—P P«i I bo) =P»

P(ao
i bi)=P, P(ai

i
bi)=1 —P,

(4.6)

where p is the noise probability of the channel, approxi-
mately given by

p =-,' exp( —T/v, } . (4.7)

Thus we have a microscopic physical realization of a
binary symmetric channel and find for the channel capa-
city

C= I+P log2P+(I —P)log2(1 —P) bit/ITP . (4.8)

Using a typical relaxation time and choosing T in such
a way that the noise probability P =0.05, we fmd for the
channel capacity per unit time

O'=C/T= 10 bits/sec . (4.9)

For the dissipative optical switching process the channel
capacity per unit time is obviously hmited by the optical
relaxation rate. Thus, to be sure, the channel capacity
(4.9) is about two orders of magnitude smaller than maxi-

The transinformation is symmetric with respect to inter-
cliailglng transmitter and fcccivcf alld I(bpa; )=0 if al is
statistically independent of b ..

The transentropy I(8;A ) of the channel is defined as
the mean transinformation per ITP

I(B;A }= g P(a;bj )I(bj;a; )

mal transfer rates of macroscopic technical channels (e.g,C'=10 bits/sec for an optical transmission line ').
However, the ITP we have described here serves a
dilerent purpose than usual transmission lines: It
renders it possible that information processing units, real-
ized on a quasimolecular level, are able to communicate
with each other directly (and in parallel).

C. General transition rules
for interacting yairs of bistable subsystems

The ITP we have described in the last chapter is only
one example of a class of functions a'= fz(a, b) which
map two variables onto one (two input, one output chan-
nel). Table I shows the complete set of the 16 possible
functions fz(a, b) for binary variables a and b.

In order to realize such a function with two coupled
subsystems A and 8 we have to change the state of one of
them (e.g., of A) depending on the previous state of both
subsystems A and 8 (transition rules). That means we
have to perform a transformation & ~A'= fz( A, B) [or
on the alphabet level a ~a'= fz(a, b)] Thus the «igi-
nal state of A (and in some cases, as we will see, also of
subsystem 8) is lost. The realization of the functions is
irreversible. We can, in general, not reconstruct the orig-
inal values a and b from the final ones a' and b.

The function N =0 (N =15) describes the resetting of
the variable a to the value 0 (1) (wRITE operation) and
can be performed through two simultaneous light pulses
of frequencies co32(4) and co3$(5) [co3i(4) and co3i(5)].
N =3 is the identity operation (no light pulse necessary)
and in N = 5 we can identify the ITP described in the pre-
vious cllaptcf. Thc function N = 1 cofresponds to a logi-
cal AND (conjunction) and the function N =7 to a logical
OR (disjunction). They can be realized by one laser pulse
of frequency oi32(4) or oi3i(5), respectively.

Special consideration needs the function N = 12, which
corresponds to the logical NOT (negation). In order to
realize it, we first have to copy the variable a onto vari-
able b; that is, we have to apply two laser pulses with fre-
quencies oiss(2) and ois5(1). After the copying process,
we can perform the negation by two light pulses of fre-
quencies ai»(4) and co33(5) (cf. Table II). In this case the
input of both variables a and b is destroyed.

By using different combinations of laser pulses it is pos-
sible to generate all but two of the 16 functions in Table
I. Table III gives the logical meaning of a11 the functions,

TABLE I. The 16 possible functions a'= f~(a, b) for binary variables a, b, and a' are shown. The
diFerent functions can be labeled by a decimal number X from 0 to 15 which is chosen in such a way
that the four-digit binary representation of F corresponds to the entry in the u' column of the corre-
sponding functIon.

0 0 0 0 0 0 0
0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1

1 0 0
1 0 0
1 0 1

0 1 2 3 4 5 8 9 10 11 12 13 14 15
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0 0
0 1

1 0
1 1

0 0
A@66(2) ] 0 0
a)65( 1 )

'

1 1

1 1

1 0
a)3](4) 1 0
a)32(5) 0

0 1

together with the combination of light pulses necessary to
realize them. For some of them (N =4, 8, 12, 13, and 14)
the negation operation is needed and thus we do not only
switch in subsystem A but also in subsystem 8. Only the
two functions N =6 and N =9, which cannot be
represented as a simple binary sum (or product) of the
two variables or their negation, cannot be realized with
only two coupled bistable subsystems.

Since we can realize the elementary logical operations
AND (conjunction), oR (disjunction), NoT (negation), and
the copying process, it is possible to calculate any logic
function by a suitable combination of coupled bistable
systems. Especially it is possible to realize the function
N =6, the logic xoR (exclusive disjunction or binary ad-
dition modulo two}. Haddon et al. s have shown, that the
addition modulo-two function can be realized with three
coupled binary subsystems only, when the dynamics of
each subsystem depends on the state of the two others.

Thus it should, at least in principle, be possible to con-
struct a universal computer based on adequately connect-
ed bistable subsystems. This leads to a sequential compu-
tational dynamics as it is used in most present day com-
puting devices.

The sequential architecture implies the separation of
the computing system into a complex processor and a
passive memory. Thus it necessitates interactions be-
tween distant subunits which can hardly be realized by
the special physical realization we are considering: The
Coulomb renormalization can only be used for spatial

TABLE II. Logical table and laser-pulse sequences [cf. Eq.
{3.6)] for the negation process a'=a.

a' b'

separations of the order of 100 nm or less. For larger
separations the interaction is too weak to allow a save
selective switching of the subsystems. Since the number
of possible interactions on a submicroscopic level is quite
limited, the only possibility would be to use the interac-
tion with the macroscopic preparation and measurement
system in order to establish the necessary information
flow between subsystems which are further apart. But
this does not seem very reasonable since then most of the
advantages of using a quasimolecular reahzation of a
computing device would be lost.

U. DISTRIBUTED COMPUTATION

A. Linear arrays of interacting subsystems

A different computer architecture, which reduces the
need for communications with the macroscopic environ-
ment, is based on a cellular structure and can be charac-
terized as distributed computation. Mathematically, a
cellular automaton (CA) consists of identical cells or pro-
cessors, arranged in a regular lattice (1D, 2D, 3D, . . . ).
Each processor has a finite number of discrete states and
the array evolves in time in discrete steps according to lo-
cal transition rules, being the same for each cell.22 23

Thus we consider a cellular structure in which quasi-
molecular multistable elements are repeated many times
and coupled via the Coulomb interaction. The time evo-
lution is attained by repeatedly switching the elements
according to local transition rules through appropriate
light pulses. The locality of the interaction is achieved by
the I/R dependence of the frequency splitting (3.7).
Different transition rules can be realized by different
combinations of light pulses. Due to the finite relaxation
time 2.„one time step has a finite duration and subsystems
whose dynamics is coupled cannot be switched simultane-
ously.

As an example we consider a quasimolecular 1D CA

TABLE III. Logical meaning of the functions N =0 to 15. Also given are the corresponding laser
pulse sequences [cf. Eq. {3.6)] to have f31 realized by two coupled subsystems. The light-pulse combina-
tions in [ ] can be applied simultaneously [symbols used: conjunction, .; disjunction, +; and nega-
tion, ( . )].

0
1

2
3

5
6

8
9
10
11
12

13
14
15

f31«»)

0
a-b
a.b

a.b=(a+b)
b
(a.b)+(a-b)
a+b
a-b =(a +b)
(a-b)+(a.b)
b
a+b
a
a+b=(a b)
a+b =(a-b)
1

Laser-pulse sequences

[~32{4),~32{5)]
A@32(4)

co32(5)
no pulse necessary

31«» [6366(2»6363( I)l [~31{4).6332{5)l
[~31{5»6332«) l
not possible
a)3)(5)
~»{~» [~~{&»~63(I)l [~31{4»~32{5)]
not possible
[~31{4)~32(5) l
u3&(4)
[~~{2),~63( I)1, [~»{4),~32{5)]
A@32(5) [CO66(&) CO6S{1)], [&31(4),&32(5)]
~32{4) [~64{2)~63( I)l [~31(4) ~32{5)l
[~»«»~31(5)]
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FIG. 4. (a) Linear arrangement of alternating subsystems A

and 8, coupled through nearest neighbor interaction. Two sub-
systems A and 8 form one cell I' of a 10 one-way CA. (b) One
time step of the CA, consisting of two switching processes: 6rst
all subsystems A are switched (step 1) and then aB subsystems 8
are switched (step 2 ).

with nearest-neighbor interaction. The basic physical
subunit is the bistable quantum-optical switch described
in detail in part I. We need at least two subsystems A

and 8 which can be switched with separate frequencies.
They are arranged alternatingly on a linear chain [cf. Fig.
4(a)]. One time step consists of first switching all subsys-
tems A;, depending on the state of the neighboring sub-

systems 8;
&

and 8; (which are kept constant while sub-

systems A; are switched) and then switching all subsys-
tems 8;, depending on the state of the neighboring sub-

systems A; and A;+, (which are kept constant while sub-

systems 8; are switched}.
Thus we have to extend the considerations of Sec. III

for two interacting subsystems to the case of a linear
chain, with a conditional dynamics for each subsystem
that depends on the nearest neighbors only. Equation
(3.7) gives the splitting of the transition energies of a sub-
system A; due to the influence of a subsystem 8;, a dis-
tance R, apart from A, . Another subsystem 8;, (on
the opposite side) a distance Rz away from A, will fur-
ther split the transition energies, so that, in general, we
will have four distinct frequencies for each transition
(Fig. 5). Introducing the asymmetry parameter 5

8)+82
we can distinguish between several cases: for 5~1 only
the influence of the closest subsystem remains. We have
two transition frequencies for each switching process as
in the case of two coupled subsystems. For 5=0, that is
for a symmetric arrangement (R, =R2) of the three sub-

systems, two of the four transition frequencies are degen-
erate. Thus only a restricted conditional dynamics is pos-
sible. Nothing but totalistic transition rules can be real-
ized. For the special case

(2)1j3
5— -0.115 (5.2)(2)i/3+ 1

FIG. 5. Splitting of the transition frequency co» in the sub-
system A due to the inhuence of other subsystems. One subsys-
tem 8, a distance 8& away, yields a splitting proportional to
1/8 &. A second subsystem 8, a distance 82 away, will further
split the transition frequencies (proportional to 1/R2) and so
on. For a conditional dynamics with nearest-neighbor coupling
only, a frequency band of bandwidth Lo has to be applied in or-
der to suppress the influence of subsystems which are further
apart. hu is the separation of the four selective frequencies.

we get four equidistant transition frequencies with the
separation in frequency space given by (3.7) and R being
the larger of the two distances R, and R2.

In an inflnite linear arrangement of subsystems obvi-
ously not only the left and right nearest neighbor 8,
and 8; will have an influence on the transition frequen-
cies in A, , but also all the other subsystems. Since we do
want to switch subsystem A; only dependent on the state
of its nearest neighbors and independent of the state of all
the other subsystems, we do have to apply a frequency
band instead of a single transition frequency (cf. Fig. 5}.
The bandwidth 5' is given by the frequency splitting of
all but the two nearest neighbors. For small asymmetry 5
it can be approximated by

e d " 15'= (5.3)
2'ircEQR „2 il

where R is the average distance between two subsystems.
For 5=0.115 (equidistant transition frequencies} we

find 5co=0.6b,Qi. The bandwidth 5' of the irradiated
laser pulse is smaller than the separation h~ of the tran-
sition frequencies. Thus it is possible to switch subsystem
A; dependent on the state of the neighboring subsystems
8;, and 8; and independent of the state of all the other
subsystems.

Since we have subsystems with identical transition en-
ergies separated by a distance (R i +R2 ), we have to con-
sider the elect of the resonant energy transfer on the dy-
namics of our CA. %e can distinguish between two
cases.

(1) The identical subsystems considered have the same
local neighborhood. Then their transition frequencies
will be equal within the range of the bandwidth 5'. Thus
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all subsystems are and ought to be switched if the corre-
sponding frequency band is applied. The resonant energy
transfer gives merely an additional channel for the relaxa-
tion process, but it does not alter the final single-particle
attractor state, which is equal for all identical subsystems
with the same local neighborhood.

(2) The subsystems have a different local neighborhood.
Then their respective transition frequencies are out of
resonance and the excitation energy transfer due to the
Foerster process may be neglected.

['

l
I ~ l

P,

a'+ t ~a'+ t
I I

f

I

I'

i+2 ~i+2
L ~ll ~~~~ I

8. Dynamics of a j.o one-may cellular automaton

By suitable programming the quasimolecular 10 cellu-
lar structure described in the previous chapter can be
used to simulate any 1D one-way CA with two states per
cell and nearest-neighbor coupling. Each cell P; of the
CA consists of two subsystem A; and 8, , the states of
which are correlated [Fig. 4(a)] so that we have only two
states per cell. One CA time step consists of two switch-
ing processes [Fig. 4(b)].

(1) All subsystems A; are switched, depending on the
state of the neighboring subsystems 8;, and 8;. Since
the states of A; and 8; are correlated, the new state of A;
depends only on the old state of subsystems A; and A,
But because, in contrast to only two coupled subsystems,
8; keeps the information about the old state of A, during
the switching process, all 16 transition rules (cf. Table I)
with two input variables (old states of subsystems A; and
A;, ) and one output variable (new state of A, ) can be
realized by corresponding light-pulse combinations.

(2} All subsystems 8; are switched, depending on the
state of the neighboring subsystems A; and A, +,. In or-
der to get a new state of the CA we copy the state of A;
into 8, independent of the state of A;+,. This can be
performed by four simultaneous light pulses of frequen-
cies co~(A;=2, A;+i ——1), a)si(A;=2, A;+, =2),
cu6~( A; =1, A;+, ——1), co6~( A; =1, A;+, ——2), and respec-
tive bandwidths Scan.

As a result the new state of cell P; depends on the pre-
vious state of itself and the left neighbor cell P;

(5.4)

Since the minimum size of a laser spot is Hmited by its
wavelength to about 10 pm, individual subsystems with
the same frequency spectrum cannot be addressed sepa-
rately. But this was necessary for a preparation of the in-
itial configuration of the CA. One can think of two alter-
native ways to accomplish this.

(1) By applying an inhomogeneous electric field the
transition frequencies of identical subsystems are made
different, so that each subsystem can be addressed indi-
vidually in frequency space. Then the initial state of each
subsystem can be prepared simultaneously (parallel input,
selectivity in frequency space).

(2) We start the linear arrangement of subsystems A,.

and 8; with a bistable subsystem C as the left neighbor of
A, [Fig. 6(a)]. Subsystem C has to have transition fre-
quencies which are weH separated from the ones of A;
and 8;, so that C can be switched independently of all the

Step 2

I

~~~a ~~~~~I

r

I
' ai+t ~ai+t
laeew ~~~~~~~~ l

FIG. 6. (a) Arrangement of subsystems for a serial input.
The linear chain of subsystems starts with a subsystem C, dis-
tinct from the subsystems A and 8 which form the chain. (b)
One time step in the initial preparation of a CA: Srst the state
of C is copied into A& and the state of 8; &

into A; (step 1),
then subsystem C is prepared in a new state and the state of A;
is copied into 8; {step 2).

other subsystems. Thus, by alternatingly performing a
preparation of subsystem C and then copying the state af
C into P, and of P;, into P;, we can transform a tem-
poral sequence of preparation states of subsystem C into
a linear spatial arrangement of states of the CA (serial in-

put, selectivity in time}.
The same procedure can be applied to measure the

final configuration of the CA. On the right end of the
linear arrangement we put a bistable subsystem D, the
state of which can be measured as described in part I.
Thus, by shifting the configuration of the CA one cell to
the right each time step and measuring the state of sub-
system D, the spatial sequence of CA states can be
transformed into a temporal sequence of states of the
macroscopic measurement apparatus.

Figure 7 sho~s the evolution of the 10 one-way CA
far difFerent transition rules as given in Table I. For the
bidirectional 1D CA the evolution has been classified by
Wolfram~ into four classes: (1) The evolution leads to a
homageneous final state; (2) the evolution leads to a set af
separated simple stable or periodic structures, which may
also be shifted one cell to the left or right each time step;
(3) the evolution leads to a chaotic pattern which (in
some cases) shows self-similarities; (4) the evolution leads
to complex localized structures which are sometimes
long-hved.

Obviously the 10 one-way CA with two states per cell
and nearest neighbor interaction is not complex enough
to provide an example for a class-4 CA. One example for
each of the remaining three classes is given in Fig. 7. The
most complex behavior (class 3}is found for the addition
modulo-two rule (N =6) and the complement thereof
(N =9). Both rules lead to growing structures from a
single seed and their spatio-temporal patterns show tri-
angular self-similarities resembling those found by
%'olfram22 for the bidirectional 10 CA.
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FIG. 7. Time evolution of a 10 one-%'ay CA %'1th t%0 states
per cell (a blank denotes 0 and + denotes 1) and nearest-
neighbor coupling for different transition rules as given in Table
I. The initial con6gurations are generated at random vnth equal
probability for each state. For simplicity, periodic boundary
conditions are used.

C. Extensions

The simple 1D one-way CA described above already
shows a rather complex behavior, but not complex
enough to be used as a universal computer. To increase
the complexity (and fault tolerance), extensions in several
directions are possible.

(1) The number of CA states per cell can be increased.
Possibly the Pauli exclusion principle can then be used as
a further interaction within a subsystem.

(2) The subsystems can be arranged and coupled within
a 2D array.

(3) The interaction range can be extended to next-
nearest-neighbor interaction or further.

(4) Thc Inherent stochastic llaturc of thc tl'allslt1011
rules can be exploited (e.g., for stochastic simulations).

Albert et a/. have shown that a 1D one-way CA with

14 states per cell and nearest-neighbor interaction is cap-
able of universal computation. This is not a lower bound,
so that probably even fewer states per cell may be
suScient to perform the same task. 1D CA's with two
states per cell and next nearest neighbor interaction al-
ready show the complex behavior of class-4 CA's.
%'olfram conjectures that CA of this class are capable
of universal computation. For 2D CA's, e.g., the "game
of life" by Conway, it was also shown that they are cap-
able of universal computation.

Alternatively, by relaxing the de5ning constraints of a
CA, the behavior of our quasimolecular 1D cellular
structure can be made more complex, Since the transi-
tion rules of the system are determined by the frequencies
of the applied laser pulses, the rules can easily be changed
after each time step, either systematically (e.g., periodi-
caHy or dependent on the outcome of a measurement on
the system) or at random. Thus a much more complex
behavior of our system seems to be possible.

Finally, we can drop the restriction that the states of
A; and 8, have to be linked together: Then both subsys-
tems A; and 8, carry information independently of each
other. First, all subsystems A; are switched, depending
on their previous state and the state of their nearest
neighbors

A;(1+1)=F,[A;(t),8; 1(t),8;(1)] . (5.5a)

Then all subsystems 8; are switched (possibly with a
different transition rule)

%'e have demonstrated that multistationary quantum
systems can be coupled together either via the Pauli ex-
clusion principle or—probably more promising —via the
Coulomb interaction. Using the Coulomb interaction, we
have shown that the basic elements (AND, OR, NOT, and
cOPY), necessary to build a universal computer, can be
realized by means of semiconductor heterostructures. In
this sense, there seem to be no fundamental physical laws
which might invalidate the concept of quantum cornputa-

8,(t+1)=F,[B,(t), A, (1 +1),A., +,(1 +1)] . (5.5b)

+y starting with switching A;, the two subsystems A;
and 8; are not treated symmetrically, since the new state
of 8; depends on the already switched state of the neigh-
boring subsystems A; and A;+, . This corresponds to
two interwoven 1D symmetric CA's with two states per
cell and nearest-neighbor coupling, where two CA's are
switched alternatingly. In some cases this arrangement
might be favorable as, e.g., for simulations of the 1D Is-
ing model. 2s

Similar to the case of two coupled subsystems, not all
of the possible 256 transition rules (three input, one out-
put channel) can be realized with the special physical
realization of a CA we are considering here. The reason
for this is the Suite relaxation time, so that rules, which
difFer only in the previous state of the subsystem to be
switched, cannot be applied simultaneously.
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tion. But in order to reduce the necessary interactions
with the macroscopic preparation and measurement sys-

tem, it seems more appropriate to use a parallel instead of
the usual sequential computer architecture. The subsys-
tems are then coupled locally and resemble the structure
of a cellular automaton. In this respect it does not seem
reasonable to build a quantum computer as a universal
machine, but rather as a special purpose computer, which
utilizes the inherent physical properties of a quasimolecu-
lar realization of an information processing machine,
such as parallelism and the inherent stochastic nature of
the microscopic dynamics. The quantum computer
might be complemented and controlled by a conventional
computer, since both systems and the optical control
(semiconductor laser) could be fabricated of the same ma-
terial, e.g., Ga& „Al„As, and might such be integrated
on the same chip.

Other physical systems might as well be used as a sub-
microscopic realization of a corn.puting system, such as in
the molecular electronics based on organic molecules as
proposed by Carter. ' In such a realization, the
Coulomb interaction might as well be used as a coupling

mechanism between difFerent subunits (molecules). The
requirements are that the subunits show multistationarity
on a certain time scale and that the switching process is
accompanied by a charge transfer, so that the dipole mo-
ments of the molecules are diferent in diferent metasta-
ble states.

It is obvious that in any case the structural basis of the
required complex dynamics needs more detailed theoreti-
cal and experimental investigations. Though biological
systems are working examples of molecular complex sys-
tems, it presently remains an open question whether
manufacturing processes of the near future can really be
controlled down to the molecular level in all three dimen-
sions.
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