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Structural basis of multistationar3 quantum systems.
I. KSective single-particle dynamics
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The structural basis of multistationarity is discussed on the basis of semiconductor heterostruc-
tures on a nanometer scale. It is shown that for an appropriate choice of the system's parameters
the microscopic degrees of freedom decouple into "dynamical" and "passive" degrees of freedom,
which in turn give rise to multistationary quasimolecular subsystems. Separation of time scales and
the selection rules for the pertinent electronic transitions are shown to be controlled by the localiza-
tion behavior of the electron wave function and thus, Anally, by geometrical and band-gap parame-
ters of the semiconductor heterostructure. Selective coupling of discrete electronic eigenstates via
local operators {acoustic phonon, dipole interaction) leads to a "switching" dynamics realized by
electronic single-particle transitions. Three types of attractors can be distinguished and may be
prepared by single modes of the electromagnetic field. The principle uncertainty and the stochastic
nature of the quantum-mechanical dynamics are discussed within the context of simple logical
operations and the storage of information in quantum systems.

I. INTRODUCTION

The technology and architecture of information-
processing systems led to a drastic miniaturization of the
hardward elements by several orders of magnitude.
While the length of a vacuum tube in 1940 was about 10
cm, the typical length of a transistor on a silicon chip has
been reduced to 10 pm in the year 1980 and to 1 pm in
the VLSI circuits of today. By direct extrapolation one
concludes that the "nanometer chip" containing comput-
ing elements of the size of individual molecules will be
developed at the beginning of the next century. Does this
kind of extrapolation make sense in useful technological
terms? Or does there exist an inherent length scale,
below which the constraints imposed on systems capable
of information processing must violate physical laws?'

Open physical systems capable of information process-
ing may be characterized by their repertoire of (address-
able) stationary states. This holds for present-day elec-
tronic devices, the repertoire of which consists of various
current distributions on given networks. Switching in
this kind of multistable systems is performed, e.g., by
changing the voltage at certain vertices. In the last few
years there have been several proposals for alternative
concepts. A kind of "molecular electronics" could be
based, e.g., on polymer chains, for which the switching
may involve nonlinear dynamics (sohtons or solitary exci-
tations ). Switching has been shown to occur in mole-
cules in terms of proton ' and electron transfer. "
As opposed to conventional electronics and also to con-
ventional optical bistability, these states do not involve
any current (and therefore no battery), but at the same
time will keep the switched position only during a limited
time, ~d. In this investigation we will restrict ourselves to
electron transfer processes. They are generally fast, easy

to prepare and to detect; furthermore, the change in a lo-
ca1 charge distribution can be used to incorporate in-
teractions between multistationary subsystems, as will be
discussed in the second part of our work. 'e

A solid is a typical many-body system, the dynamics of
which is generally described by collective processes.
Quasimolecular (i.e., few-body) subsystems can be ob-
tained only if the solid-state material has a nanometer- or
subnanometer-scale microstructure. These include the
generation of localized electronic states due to impurities
or lattice defects's '7 and the confinement of electrons
and holes in localized electronic states of semiconductor
quantum "dots."' ' Castro et a/. ,

' Bjorklund et al. ,
'

and Moerner and Levenson' proposed "molecular" opti-
cal storage elements on the basis of persistent hole burn-
ing (PHB) into the inhomogeneously broadened absorp-
tion lines of impurity spectra in solids. PHB elements
have the disadvantage that the spatial localization of the
elements, their spectrum, and the selection rules for elec-
tronic transitions cannot be controlled during the
manufacturing process. Therefore it would be quite
diScult to construct more complex systems capable of
performing, e.g., simple logical operations or even repeat-
ed read-write operations on an equivalent time scale.
Semiconductor quantum dots, on the other hand, may
provide a more "Aexible" material. Their spectrum and
their selection rules depend on the geometrical parame-
ters of the heterostructure which, in principle, can be
varied within rather broad limits. Preliminary results
have been given in Refs. 18 and 19 and reviewed in Ref.
20.

Our aim is to describe specific multistable quantum
systems and their surroundings within a microscopic
model based on physically realistic materials and interac-
tions. This allows a detailed discussion not only of the

1988 The American Physical Society



STRUCTURAL BASIS OF. . . , I. . . .

switching dynamics, but also of the preparation process
and the role of "external" degrees of freedom. Although
the reference to speci5c interactions may seem a less
"general" approach, compared anth previous investiga-
tions of the physical foundations of information process-
ing, '2' 2~ it has several advantages.

(1) It offers the possibility of discussing constraints
arising from the fact that there are only a limited number
of basic (microscopic) types of interactions realized in na-
ture. This may be seen as a complementary a roach to
the search for "minimal" dynamical models 2s which
are consistent with the formalism of classical or quantum
mechanics and are capable of processing information.

(2) It allows the investigation of the question how mul-
tistationarity and complex dynamics can be achieved.
This is especially challenging for systems with only a few
degrees of freedom.

(3) It may lead to experimentally testable conse-
qucnccs.

This paper presents the 5rst part of our work. Here we

are mainly concerned with the physical realization of
multistationarity and the coupling to the preparation sys-
tem, the measurement system, and the surroundings. We
will investigate systems with switching states connected
by single-electron transitions, where an (effective) single-
particle theory is suScient. In the present case, efFective
single-particle dynamics should thus not only mean (ap-
proximate) independent-particle behavior, but, further-
more, a reduction of the relevant state space to states
which differ by just a single electron transfer excitation.
More general switching dynamics, which makes use of
several interacting electrons, and the physical realization
of logical operations will be the topic of the following pa-
per 14

This first part is organized as follows: Section II will be
concerned with the separation of the microscopic degrees
of freedom into "dynamical" and "passive" degrees of
freedom, resulting from a separation of time scales for
difFerent pathways in the system's state space. As an ex-

ample, we will treat a three-dimensional semiconductor
hetcrostructure on a nanometer scale. In Sec. III we wi11

shortly present our concept of multistability in open
quantum systems and introduce some terms used in the
following discussion. The switching dynamics of an ele-
mentary multistationary system and the coupling to the
preparation and the measurement system will be dis-
cussed within a quantum optical mode1 in Sec. IV. In
Sec. V, 6nally, we investigate some consequences for ele-

mentary "single electron" information processes.

II. HIERARCHICAL STRUCTURES
AND DECOUPLING OF STATE SPACES

A. Syeetrum and eigeaf'unetions

Figure 1 shows the real-space model structure of a sin-
gle multistablc element as proposed in Ref. 18. %C de-
scribe the model structure by a simple CS'ective-mass
envelope-function model ' fol each band. For 18018ted
bands the one-particle wave function P„i,(r) near the
band edge is split into a slowly varying envelope function

p
—doped layer

FIG. 1. Real-space model structure of a single multistable

element. Three blocks of difFerent semiconductor materials A,

8, and C and ~ith vndth S in the x-y direction are embedded

into a coating material D. A p-doped layer serves as a source
for holes.

P„&(r) and the Bloch function u„o(r) at the band edge:

(2.1)

where b is an appropriate normalizing constant. The en-
velope functions g„i,(r) are nearly constant within a unit
cell and satisfy the efFective-mass equation

(2.2)

within each semiconductor material j. pi, (r) denotes the
envelope function for a quasiparticle in the band ii wjth
momentum k, E~ denotes the bulk band-edge energy, and
m„~ the efFective mass within the material j, and U(r) is a
slowly varying external potential, e.g., a space-charge po-
tential or a Hartree term. The interfaces between the
three central blocks are modeled by abrupt steps.

Figure 2 shows spectrum and eigenfunctions for the
lowest-lying conduction-band (CB) and valence-band
(VB) states of a double-quantum-dot model structure for
different band-gap parameters (for details of the calcula-
tion see Appendix A). The electronic spectrum consists
of a discrete section, characterized by the quantum num-
bers k„, k„„and ~. The envelope functions for the CB
and VB states in a single quantum dot (same materials A,
8, and C) are both delocalized over the whole structure
[Fig. 2(a)]. An additional structuring of the CB and VB
band edges leads to localized VS states, while the CB
states are still delocalized over the quantum dot [Figs.
2(b)-2(d)). This effect is most distinct for a small band-
offset parameter P [Fig. 2(b)], but could be realized for a
higher band-offset parameter, too, if the difkrence be-
tween the efFective CB and VB masses is sufficiently high
[Fig. 2(c)]. Within the pertinent model structure P de-
scribes the ratio between the CB and VB discontinuities
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roundings. Neglecting correlations, this can be done by
describing the surroundings as external reservoirs:
"matter" reservoirs (e.g., the phonon system) and the
photon-field reservoir (vacuum}. Coupling to these reser-
voirs leads to transitions between the electronic eigen-
states of the heterostructure: interband transitions, in-
terwell transitions (i.e., transitions between eigenstates
with different localization behavior within the same
band), and intrawell transitions. In the following we will
show that the difkrent types of localization are the
structural basis for largely difFerent time scales.

8. Time scales

Interband transitions define the relaxation time r„. For
direct semiconductors with a large band gap, r, is deter-
mined by optical decay. For the transition probability of
a spontaneous electronic transition from a (discrete) CB
level into an unoccupied (discrete) VB level we get '

Ae co
wg'„i, ——,g f 1M„'f'„„„1dD, (2.3)
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(2.4)

where co denotes the resonant transition frequency be-
tween the initial and the final state and eg„denotes the
polarization vector of the light mode with momentum q.
As shown in Appendix B, Eq. (2A) is controlled by the
overlap integral:

Length (nm)
2

Ionf, n't' ~ f&nPn'~'dz (2.&)

FIG. 2. Spectrum and envelope functions for different band-

gap parameters. The figures on the left show the (bulk) VB and
CB edges {"double-well potential" ) and the discrete energy lev-
els near the band edge. The localization behavior of the en-

velope function is indicated by the length of the horizontal bars.
In the VB the discrete electronic states below the band edge of
material 8 are not resolved. Th|„ figures on the right side show
the envelope functions of the two highest VB states and the
lowest CB state, respectively. The parameters of the model
structures are d& ——4 nm, d& ——12 nm, d& ——4 nm, and (a}
Evs ——0 meV, Esvs ——0 meV, Evcs ——0 meV, P=O; (1) E„"s=0
meV, Evs =100 mcV, Evcs =10 meV, P=O; (c) Evs =0 meV,
Evss ——100 meV, Evcs ——10 meV, P=0.8; (d) Evs ——0 meV,
Evs ——100 meV, Evcs ——1 me V, P= 1.8; (e) Ev"s ——0 meV,
Evss ——100 meV, Evs ——10mcV, P=3. ph

QJ g is=

where X„„(z)describes the z dependence of the envelope
function (cf. Appendix A).

The corresponding time scale for the inter well pro-
cesses, the relaxation time rz, is determined by electron-
phonon scattering processes and can be estimated by con-
sidering the first-order intraband deformation-potential
scattering by longitudinal-acoustic (bulk) phonons for the
VB states. This will give the appropriate time scale for
low-temperature and acoustically-well-matched materi-
als, when optical-phonon scattering and scattering by
slab and interface modes can be neglected. The transition
probability for a phonon-induced transition is given by

D2

f q[n(q)+ —,
' + —,

' ] 1M„"j",„„8 pU az

P=(EcB—E~ca)i(Evs Ega), which we—have set equal
for the materials j=B,C. A small effective mass of the
CB electrons leads to a high kinetic energy and therefore
to a much lowcI "cffcctlvc barrier E„[E„„—

E„(k~,ky )] within thc C—B than within thc VB and Is
responsible for the difFerent localization behavior.
DNerent localization behavior for a high band-ol'set pa-
rameter occurs only within a sma11 range of the geometri-
cal and band-gap parameters and is a resonance elect
[FIgs. 2(d) and 2(c)].

The electronic subsystem must now be coupled to oth-
er degrees of freedom of the heterostructure and its sur-

X5(E„&—E„k.kluq)d q

(2.7)

~here p denotes the density, U the sound velocity, D, the
deformation potential, q the phonon momentum, and
n(q) the Bose-Einstein distribution for the occupation of
the phonon modes. The integral is over the first Brillouin
zone (BZ). The upper sign corresponds to phonon ab-
sorption and the lower sign to phonon emission process-
es. %e assume equal density, sound velocity, and defor-
mation potential within the whole heterostructure and we
use the long-wavelength limit ~=uq of the dispersion re-
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lation. Again (cf. Appendix C)„ the transition rate is
found to be (approximately} controlled by an overlap in-
tegral:

2I iX„'„i iX„„.idz (2.8)

Figure 3 shows the overlap integrals according to Eq.
(2.5) and (2.8) between the highest VB states (1 and 2) and
the lowest CB state (3), depending on selected geometri-
cal parameters of a model heterostructure. For small
values of the parameters d~, Eva, d„c, and Eva —Eva
the selection rules are determined by symmetry, especial-
ly for d„c=0 and E„"u—Eva ——0, where the whole
structure has re8ection symmetry with respect to a plane
in the middle of the barrier 8. Transition 3-1 is allowed,
since both envelope functions are symmetrical, while the
transition 3-2 is forbidden. For dz ——0 and Eva ——0 the
symmetry is slightly broken, but the irdluence of the sym-
metry selection rule is still visible. Going to higher
values of the shown parameters, the effective barrier in-
creases, which leads to an increased localization of the
envelope functions. Therefore integral 3-1 increases,
while the integrals 3-2 and 2-1 decrease. Due to the
different effective masses, the VB states will be localized
for much smaller values of the parameters than the CB
states. This leads to a parameter window where one may
achieve a difference of several orders of magnitude be-
tween the overlap integrals 3-1 and 3-2 (equal magnitude)
and the overlap integral 2-1. Contrary to the selection
rules for transitions in atoms and molecules, the selection
rules (2.5} and (2.8) for transitions within a complex het-
erostructure are in general not determined by symmetry,

but by the spatial localization behavior of the envelope
functions. It will be shown in the next section that such a
time-scale spreading is a prerequisite for multistabihty.

Table I shows the transition rates (2.3) and (2.6}for the
parameters of a spcci6c materia1, the ternary semicon-
ductor Ga& „AI„As (for details of the calculation see
Appendixes B and C). Due to the selection rules (2.5) attd
(2.8), the transitions 3-1 and 3-2 are allowed, while transi-
tion 2-1 is forbidden for the pertinent choice of the
geometrical parameters and the Al concentration. While
the transition rates are very sensitive to changes in the
parameters describing the band-gap structure in the z
direction, the lertgth in the x and y directions does not
severely change the relaxation rates 3-1, 3-2, and 2-1.
The interwell scattering rate between electronic eigen-
states deeper in the VB is, of course, much greater than
the scattering rate 2-1. This is especially true for transi-
tions between eigenstates with light-hole character. Since
they must be described by a much lower effective mass,
the corresponding envelope function is much more delo-
calized, and the scattering rates are comparable with or
shorter than the optical decay time (depending on geome-
trical and band-gap parameters). If the double quantum
dot has trapped just one hole, the contribution of the
light-hole states and the more delocalized heavy-hole
states to the total scattering rate between the two VB
wells decreases exponentiaQy for low temperatures. In
the limit T~0 K it will be zero, since then all excited VB
states are unoccupied.

Up to now, time-scale spreading has been discussed for
a semiconductor system with high band-offset parameter
[Ga, „Al,As is hkely to be an example, 1 &P& 6 (Refs.
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FIG. 3. Overlap integrals as a function of geometrical and band-gap parameters. 1 and 2 denote the highest VB and 3 the lowest
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TABLE I. Rates in units of s ' for the transitions 3-1 and 3-2
and the transition 2-1 in a quantum dot structure, realized
within the Ga, A)„As system with bandgap offset P. For a
rough estimate of the time scales, the transition rates are given
for interband transitions vrith spontaneous emission of photons
(3~1,3~2) and for intraband transitions under emission of
acoustical phonons (2~1). The geometrical and band-gap pa-
rameters are d„=dc ——4 nm, 1 ——12 nm, x„=0, xz ——0.2,
xc ——0.01, and T =10 K. S is the quantum-dot width in the x-y
directions. Material parameters are taken from Refs. 33 and 34.
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35-37)]. In heterostructures of this kind the occurrence
of spreading critically depends on the large difFerence in
the effective masses between the electron and heavy-hole
states. Semiconductor materials with a lower band oiFset,
on the other hand, are much better suited: Time-scale
spreading may be feasible in this case even for equal
effective masses, since a high barrier within the VB leads
to confined VB states, while the much lower barrier in
the CB would not destroy the delocalization of the en-
velope function.

We note in passing that similar relaxation dynamics
can be realized also by means of macromolecules. "
Though these materials are less well characterized right
now, they ofFer an interesting alternative to the
manufacturing process: Approaching molecular length
scales, the difficulties with present days structuring tech-
niques (e.g., electron beams combined with masks) may
become prohibitive, so that direct chemical synthesis
could be preferable. Furthermore, the quasi-linear chain
molecules offer new possibilities as regards to connectivi-
ty and topology.

III. MUI.TISTAMI.rf. Y AND 8%H'CHING
IN OPEN QUANTUM SYSTEMS

In the last section we have introduced a specific struc-
ture model implying different classes of localized states
which, in turn, give raise to different time scales in the re-
laxation behavior within the electronic subspace. %c are
now going to show that this behavior gives rise to multi-
stability and can be exploited for switching processes if
the quantum system is coupled to an appropriate
preparation device. For this purpose wc consider the dy-
namics of an open quantum system I, described by a
Hamiltonian uo and the coupling to surrounding reser-
voirs. uo is defined to act on a small, selected subspace
of the total state space describing the many-particle sys-
tem of the nanostructure solid-state system. Each state
of the quantum system I is speci6cd by a reduced density

matrix p, and its motion in state space (which is spanned,
e.g., by the independent elements of the reduced density
matrix) is governed by a generalized master equation:

dp l [u ~]+ dp
p (3.1)

The last term, the incoherent motion, is usually responsi-
ble for the irreversible decay of any initial state into the
thermal equilibrium state, defined by the reservoir pa-
rameters. This asymptotic limit, however, does not ex-
clude more complex behavior on shorter time scales: The
quantum system I will be said to exhibit multistationarity
on a time scale t ~~vz, if there is a set of states p, which
show at most coherent dynamics:

~Ps' = ——[ O, p, ] for t «wq, (3.2)

4

„'[u,+u, ,+u-, .;]+",p (3.3)

where uo and uo denote the coupling to the
preparation and the measurement system, respectively.

i.e., which are not affected by fast incoherent relaxation
processes. If p, describes an eigenstate or a statistical
mixture of eigenstates of uo, then uo and p, commute,
and the quantum system I remains stationary. If, on the
other hand, P, describes a coherent superposition of
eigenstates of uo, then uo and p, no longer commute,
and the quantum system I follows periodic or quasi-
periodic orbits in state space. We call these stationary
states and (quasi)periodic orbits in state space the (quan-
tum) attractors. of I.

I.et us denote the time scale of the fastest relaxation
process by v, . In the regime t «~, the dynamics is
coherent, and every possible state p is an element of an
attractor manifold. For much larger times than the
slowest relaxation time vz (t ~~rz), on the other hand,
the only attractor is the thermal equilibrium state. Non-
trivial attractors therefore exist only on a time scale
v, &pt ~&~&, and critically depend on an appropriate
time scale spreading (~, &&rz) of the incoherent relaxa-
tion processes [otherwise (3.2) could not be fulfilled]. The
respective basin of attraction and stability heavily leans
on dissipation (cf. Ebeling for classical systems). If the
number of fast "dissipative, " i.e., incoherent, relaxation
channels is large,

'

there exist only a few attractors, but the
corresponding basins of attraction are large. As will be
discussed within Sec. VB, this has consequences for the
preparation process: the broader the attractor basins, the
less critical is the preparation of attractors against small
changes in the preparation system. The attractors of I
may be characterized by the expectation values I n} of a
set of relevant observables. In what follows, we do not
consider the possibility of having additional stationary
states when the system is externally driven.

The open quantum system I is now coupled to an exter-
nal (macroscopic) preparation system u» and to a (mac-
roscopic) measurement apparatus u . The time evolu-
tion of I is then described by
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We will assume that for specific ("idle"} states of P~,
the set of attractors p, (as discussed above) is not
changed. In general, however, depending on the state of

("driving force") only a subset of all possible attrac-
tors remain attractors of the total system, too. Perform-
ing a switching process means driving the system from an
initial attractor of I (characterized by the expectation
values {n, I) .via certain transient states to a iinal attractor
of I (characterized by the expectation values Inf I ),
which is an attractor of the total system, too. The
s~itching dynamics, as discussed in the next section,
must occur on a time scale t «rd, so that the decay of
metastable states cannot interfere, which means that the
states of Pz must change on the same time scale. After
the switching process is completed, we can let the state of
P„rel axto the idle state without further disturbance.
This allows us to change between difFerent attractors by
means of external pulses of the states of the preparation
system. Generally, for a given preparation system„not all
attractors can be reached directly from every initial state
within one step. But a reliable preparation of all attrac-
tors must be possible, using a limited sequence of elemen-
tary switching processes.

The preparation system couples via single modes of the
electromagnetic field to the fast transitions 3-1 and 3-2 of
the electronic subsystem (4.1). Since we want to investi-
gate the preparation of coherent electronic superposition
states, too, we describe the light 6eld by phase-correlated
classical plane waves with high temporal coherence:

A = g AJ cos(to t +P ) . (4.2}

+G'&f3& ].
(4.3}

Since, on the time scale t g~ v&, we need only to consider
the photon-field reservoir, we find for the reduced density
matrix

where we use the dipole approximation. The coupling
Hamiltonian then reads

2 2

=2irt g [A cos(tojt+pj)] g [G t}

IV. OPTICAL CON IQ,OL AND RELAXATION

A. Equation of motion for the reduced density matrix

2

+ X ' (ltt j'tii~ptt inj)+[11 j'ttip» 8j)»
J=1

(4.4)

We now return to the multiple heterostructure of Sec.
II. It is assumed that a single hole has been trapped, i.e.,
that in the T=0 K ground state the Fermi level is pinned
between level 1 and level 2. Neglecting many-particle
efFects, we may describe the quantum dot structure on the
time scale of switching by a three-level model for a single
electron:

i81
Qi ——Gi A, =Qie

i82
Q =G A=Qe

(4.5)

where the transition probabilities i' are given by (2.3).
Using a polar representation for the complex coupling
constants

3

8,= y. Ejataj. (4 1)

and the oiF-diagonal matrix elements

i(a)1t+ $1+81)
P13 P13 7

Here, 8 and 8 are the electron creation and destruction
operators. Note that spin degeneracy is lifted by spin-
orbit coupling and by the spatial conSnement of the
quasiparticle (Coulomb interaction). Possible excita-
tions from the ground state include the transient state
(electron in level 3) and the long-hved charge-transfer
state as a metastable state (electron in level 2).

i(co2t+ p~+ 82)
P23=PZ3e

it(a)1 —~~)t+(P1 —P~)+(81—8~) 3

P12=P1Ze

(4.6)

we get, within a generalized rotating-wave approxima-
tion, for the transformed elements of the density matrix
(in the basis of the electronic eigenstate! ~fPo)

P11 0 0

0 0 N2

0 0 —(m, +u&} P33

0 0
——,'I w, +m2) I23

823 0 0

0 0 5, —52

R1q
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Here, 01 and 02 are the respective Rabi frequencies
which depend on the intensity of the incident light. 5,
and 52 give the detuning of the applied light modes:

fi5 i E——3 E—
i
—

irido i,
irt5z ——E3 E—z —fez .

(4.8)

B. Aitractors of the three-level system

The attractors of the isolated system I (cf. Sec. III) are
found from (4.7) for Q, =Qz ——0, 5, =5z ——0, and t oo ..

N]
Pi 1( 00 ) =Pi i(0)+

N1+ K2

Pzz(oo }=1—P»(0)

R iz( 00 ) =R iz(0),

Iiz((g& ) =Iiz(0),

(4.9)

P33( ~ )=Ii3( ~ )=R i3( oo )=Iz3( oo )=Rz3( 00 )=0

These attraciors, depending on the initial conditions,
can be divided into three groups.

(1} "Pure" attractors: Riz ——Iiz ——0 and pii(0)=1 or

pi i(0)=0 (pure states I or 2 ). The quantum syste111

remains stationary.
(2) "Coherent" attractors: a coherent superposition of

eigenstates l and 2. After diagonalization the density ma-
trix contains only one element which is not zero (zero en-
tropy). The quantum system follows periodic orbits in
state space [cf. Eq. (4.6)].

(3) "Stochastic" attractors. After diagonalization the
density matrix contains more than one element which is
not zero. Because of its Snite entropy, such an attractor
will induce stochastic behavior in a measurement or a
further dynamical process. As long as p, z ——0 the quan-
tum system remains stationary. Otherwise it will follow a
periodic orbit in state space.

These asymptotic attractors can be reached only ap-
proximately, as the time scale on which Eq. (4.4) is valid
is restricted to t »»~d. Contrary to classical, dissipative
double-well systems, which would show only a discrete
set of attractors and their statistical mixture, a new class
of attractors arises in their quantum-mechanical analo-
gues: a continuous set of coherent attractors. Coherent
superposition states of the eigenstates 1 and 2 do not de-

I

p;; denote the diagonal elements of the density matrix and
and IJ the real and imaginary parts of the

transformed off-diagonal elements p;~, respectively.

FIG. 4. Relevant subspectrum of a heterostructure fox which

the pure attractor states 1 and 2 can be detected via lumines-

cence measurements. The transient levels 4 and 5 must be local-
ized, too.

cay for t »» vd, since there is no relaxation process 2-1 on
this time scale.

As far as the measurement of attractors is concerned,
we restrict ourselves to pure attractors. During a switch-
ing process, charge is transferred from one VB well into
the other and the electrical dipole moment is changed. In
an experimental situation, measurement of the depolari-
zation current could thus be performed on an ensemble of
multistable elements (approximately 10 elementary
charges). The time resolution of this technique seems to
be high enough to be applied for the present purpose.

If the heterostructure has a relevant subspectrum as
shown, e.g., in Fig. 4, single multistable elements may al-
ternatively be detected via optical luminescence measure-
ments. Measurements are performed by a test laser in-
ducing the transitions 4-1 and/or 5-2 and detecting the
spontaneously emitted photons of the corresponding en-

ergy. The number of counts may be integrated over the
whole lifetime of the corresponding attractor. For attrac-
tors with long enough lifetimes the sensitivity of this
method is high enough to detect single electron transi-
tions. ' The amplification is based on the same time-scale
spreading, ~, &g7d, which is responsible for the bistable
behavior.

C. Dissipative one-mode dynamics

In this section we will briefly discuss the three-level
system driven by a single light mode. %ithout loss of
generality we may assume that the light mode induces
transitions between the eigenstates 1 and 3 [Fig. 5(a)].
We therefore must set Qz ——0 and 5z ——0. Equation (4.7)
then decouples into two independent equations describing
the time evolution of the diagonal elements and the oft'-

diagonal elements 8 13,I».

P33
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——,'(w t+ w2)

——,'(w +w2) O, 0

and the time evolution of the other off-diagonal elements:

0 0 Q) I23

823
(4.11)

—5t 0 77~2

The only stationary state of (4.10) and (4.11) is given by
the attractor p,.~ =5;2512, independent of the choice of the
parameters and independent of the initial state. Since all
off-diagonal elements decay, one-mode light pulses can
only be used to prepare pure attractors. Figure 6 shows
the diagonal elements p», p22, and p33 and the off-
diagogal elements I&3, I23, and E.» as a function of time
during a switching process.

%e may deSne a switching time T by' '9

T=max[ —(Rekj ) '], (4.12)

where A, are the (complex) eigenvalues of the matrix in
equation (4.10). Figure 7 shows this switching time T for
difFerent detuning and Rabi frequencies. For high values
of 0, /(w, +w2) the switching time is limited by the
spontaneous emission 3-+2 and attains a minimal value
T=2/w2 independent of the detuning (cf. Ref. 18 for the
case w, =0). This may lead to problems with the selec-
tive preparation of individual three-level systems within
an array of several quantum dots. I.et us consider two
three-level systems with transition frequencies separated
by 5,= 10(w i +w2 ). Using light with low intensity

[0,=0.2(w i+we)], both systems may be switched selec-
tively since the ratio af the corresponding switching
times is 103. Irradiation with light of high intensity

[0,= 10(w, +w2)], on the other hand, leads to switching
times which are nearly identical, so that selective switch-
ing is no longer possible (cf. also Sec. V 8).

D. Dissipative hro-mode dymmnics

The three-level system is now driven by two different
light modes, which induce transitions between the eigen-
states 3-1 and 3-2, respectively [Fig. 5(b)]. The system
must be described by the full set of equations (4.7). Fig-
ure 8 shows the stationary population of level 3 for
different detuning asymmetry b =5,—5z. If the two light
modes are asymmetrically detuned (5+0), the popula-
tion of level 3 is not zero and the attractor of the total

0.8

~ 0.6

0

0.2

(o) (b)

0.0
0.0 5.0 10.0 15.0

Time [units of (w, +w2) ']
20.0

c= 0.25

0.00

-0.25

-0.50
0.0 5.0 10.0 15.0

Time [units of (w, +w2) ']
20.0

FIG. 5. Quantum optical models for the interaction of a mul-

tistationary three-level system ~ith single modes of the elec-
tromagnetic 6eld as discussed in the text. {a) dissipative one-
mode dynamics, (b) dissipative taro-mode dynamics, (c) coherent
two-mode dynamics.

FIG. 6. Matrix elements of the density matrix as a function
of time for a dissipative one-mode process. Parameters:
0&——1.2(w&+w2), 5& ——0, w& ——w2. (a) Diagonal elements as a
function of time for a pure initial state: p;J(0) =5;~5J&. (b} 08'-
diagonal elements as a function of time for a coherent initial
state: pl l(0)=p22(0) =0.5, R lq(0) =0.5.
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K Coherellt 4%0 In@e 4) namlcs

If the time scale of the switching dynamics becomes
much shorter than the time scale of the spontaneous
emission, also the couphng to the external photon vacu-

um may be neglected: tc, =uiz ——0. The three-level sys-
tem will undergo coherent transitions between the eigen-
states 3-1 and 3-2, [Fig. 5(c)]. For ici ——iu2=0 Eq. (4.7}
can be reduced to three coupled second-order differential
equations for the o¹diagonal elements I; -:

I23

li2

—(5i+40,+0 2)

—3QiQ2

—Qi(25i —5, )

—30)Q2
—(52+4Q 22+0 ~i)

—Qg(25' —5i )

—Q2(25, —5i)
—Q2(252 —5i )

—[Q i+Q 2i+ (5,—52) ]

I23 (4.14)

A, =2(Qii+Qi+ —,'5 )' and &g= —,'(~+5) (4.15)

As has been shown in Ref. 18, with Q, =Q2 and 5i ——52 it
is possible to transfer an electron coherently from level 1

to level 2 with probability 1. The o8'-diagonal elements
vanish just when the diagonal elements are in their ex-
tremum. Coherent two-mode processes may therefore be
used to prepare pure attractors, too. %e de6ne the re-
quired pulse length T as the time for complete electron
transfer. We get T=m(Q i+Q i2)

'~ which, in principle,
can be made much shorter than in the case of the dissipa-
tive dynamics. However, high laser powers are needed to
obtain short enough switching times (e.g., P=3)&10
W/mi for T= 1 ps and the heterostructure of Table I,
P=1.5}. Furthermore, the preparation process is now
sensitive to the Rabi frequencies, 's finite detuning 5 (Fig.
10},and the light-pulse length. The final state depends on
the initial state, too, as shown in Fig. 11:during a light
pulse with duration T the populations of level 1 and level
2 get interchanged.

which can be solved analytically for symmetrical detun-
ing (5, =52——5). For the diagonal elements of the density
matrix we obtain a superposition of oscillations with fre-
quencies'8' 3

V. INFORMATION PROCESSING
SY INDIVIDUAL MULTISTASLE ELEMENTS

A. Preliminaries

Although the model structure discussed is a micro-
scopic system ~hose dynamics must be described within
the framework of quantum mechanics, multistationarity
and complex dynamics is achieved in a quite conventional
way: complex selection rules arise due to a separation of
the microscopic degrees of freedom into dynamical and
passive degrees of freedom on the time scale of the
switching process. This has been demonstrated for the
case of the electron-phonon interaction. %e believe that
a hierarchical structure of the degrees of freedom is a
necessary condition for every inforrriation processing sys-
tem. The character of the stationary states, on the other
hand, is novel: Contrary to optical computers or conven-
tional microprocessors, the stationary states are metasta-
ble states of the isolated computing system and do not re-
quire an external driving apparatus (e.g., a battery).
Therefore no dissipation of energy is needed to maintain
the stationary state; dissipation of energy is only required
during the switching process (cf. Sec. IV}. This may be
an advantage in the construction of highly packed de-
vices, where the dissipated energy is a severe problem.

1.0

0.8

E
4P 06

a 0.4
o 0.4

0.2 .

0.0
0.0 2.0 4.0 6.0

Time [units of (0,+g) '~ ]

0.0
0.0 2.0 4.0

Time [units of (D,+g) '~ ]
6.0

FIG. 10. Population of level 2 as a function of time and de-
tuning. Parameters: 0& ——A2, 5& ——52 ——0, 0.2, 0.4, 0.6, 0.8, 1 in
units of (A&+02)'», and p;~(0)=5;&5j&. Finite detuning des-
troys the switching process.

FIG. 11. Population of level 2 as a function of the initial
state. Parameters: 01——02, 5] ——52 ——0, p»(0) =1—p22(0) =0,
0.2, 0.4, 0.6, 0.8, 1, and all other matrix elements zero (stochas-
tic initial state).
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Three-level systems are the most elementary bistable
systems which can store information on a time scale
t ~~~&. If we restrict ourselves to the pure attractors,
each three-level system can store one bit. There are two
switching processes possible which can be used to
prepare those attractors: "dissipative" one-mode light
pulses and "coherent" two-mode light pulses. Since the
final state of the three-level system does not depend on
the initial state, dissipative one-mode switching is capable
of overwriting single bits. Both switching processes ddfer
in their susceptibility for errors and in the role of dissipa-
tion in the switching process.

By assigning an alphabet to at least some of the attrac-
tors, we can use the open quantum system to store and
process information ("quantum computer" }. To do so, a
reliable preparation of the attractors representing infor-
mation must be possible within a finite sequence of relax-
ation processes. Likewise„ the measuring process must
reliably reveal the information encoded in the final at-
tractor on a time scale much smaller than the dwell time

The probability that identical measurements, per-
formed on two identical quantum systems in di8erent at-
tractors p; and pj, yield the same result, must be negligi-
bly small for at least one of the relevant observables
(denoted with 4)

~
tr(p;4 z}—[tr(p;Q)p

~

'~2

gg
~
tr(p, Q) —tr(p&Q)

~
for all i+j (5.1)

For a given measurement system condition (5.1) restricts
the number of attractors of the system capable of
representing information.

8. Information storage: Errors and role of dissipation

Errors occurring during a switching process can be
separated into two classes: errors due to a "wrong" Ham-
iltonian 80 (type-1 errors) and errors due to a wrong cou-
pling Hamiltonian Po (type-2 errors}. Type-1 errors
may arise from nonideal interfaces, fabrication failures,
and failure of the idealized description due to, e.g.,
many-body efFects and heavy-hole-light-hole mixing. Er-
rors of this kind change the electronic elementary excita-
tions and alter the time scale of the relaxation processes.
As long as the errors are smail, so that the time scale of
the stability of the attractors and the time scale of the
switching dynamics are still well separated, type-1 errors
have no serious e8ect.

Type-2 errors may arise from, e.g., o8'-resonance light
modes, wrong light-pulse length, and wrong light intensi-
ty. They directly in6uence the switching process. In the
case of dissipative switching, only one (asymptotic) sta-
tionary state exists, which is therefore independent of the
light-pulse parameters. For wrong light-pulse parameters
reliable switching is still possible, but the switching time
T increases (cf. Fig. 7). For a single element, errors can
be made arbitrarily small by using suSciently long pulses,
provided t ~~~d is still fulN1ed and the transition fre-
quency for the back-transfer is far ofF resonance.

If several bistable elements are combined to a quantum
information memory, another kind of error arises. Due
to the finite linewidth of the optical tl.ansitions, a bistable

10'

10 '
D

Q
L

10
ia
L
L
tP

D 10

10
0.0 50.0 100.0 150.0

Pulse duration [units ot (w, +ws) ]
200.0

FIG. 12. Total error probability m, as a function of the pulse
duration. The light-pulse parameters are Q& ——0.5(tJ&+m2),
m&

——to2 for both elements I and II. The transition frequency is
resonant for system I, but system II is detuned by 5= 10, 30, or
100 ln umts of (l8) +Np).

element may be switched even if the light mode is olF res-
onance. This leads to a finite bandwidth per transition
and a maximal density of the transitions in frequency
space, which depends on the intensity of the incident
light and the tolerable error probability. Let us imagine
two three-level systems with slightly different transition
frequencies, one of them (I) should be switched selective-
ly. The total error probability consists of the probability
to, that system I has not been switched during the pulse
duration T, and the probability ur» that the other system
(II), despite being olF resonance, has been switched within
this time. Figure 12 shows the total error probability
tu, =wi+ w» as a function of the pulse duration T. For a
short pulse-length T the total error probability is large,
since the switching process of system I has a Snite switch-
ing time. The probability tu, then decreases until the
pulse length becomes comparable with the switching time
of the oIF-resonance system II. Contrary to a single
three-level system, the error probability cannot be made
arbitrarily small within an array of elementary storage
elements. There exists an optimal pulse length for which
the error probability is minimal; its magnitude depends
on the light intensity, as well as the separation 5 in fre-
quency space. If we choose an optimal Rabi frequency
A, =0.5(w, +w2) and accept one wrong switching pro-
cess out of =6)&10, the minimal separation of storage
elements in frequency space will be approximately 10'
Hz ti.e., 5=100(tu, +wz), cf. Fig. 12]. Since the useful
transition frequencies for a typical semiconductor materi-
al (e.g., in the Gai „Al,As system) lie within a range of
approximately 1.6)& 10' Hz, 1600 different elements
could be selectively switched. A high number of storage
elements may be achieved by spatially resolved address-
ing of the three-level systems. If we assume that the di-
ameter of a focused laser spot is about 10 pm (Ref. 17),
we can derive a maximal information density of about 10
bits/cm . An error of rate 10 —10 is, of course, quite
large, so that redundancy must be used.

Coherent switching processes lead to an accumulation
of errors within each step. Integrating (4.14), we get for
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the population of level 2 with the initial condition
p;;(0)=5;,5J,

( ) Q2Qi 2
cos(k, f)—1

A,
2

cos(A, t) —1

A2

cos(A, +i)—1

A+

(5.2)

The correct parameter combination for a switching pro-
cess is given by Qi ——Qz, 5=0, and pulse duration
T =n(Q, +Qz) '~ . There are three kinds of type-2 er-
rors possible.

(1) W~ong Rabi frequencies (Q,~Q2). For the error
probability we get

(5.3)

hpz2 ——1 —pic(r) =-,'Lhr (Qi+Qz) . (5.5)

Errors in the initial preparation are not changed dur-
ing a switching process (cf. Fig. 11). Since the final state
depends on the initial condition, overwriting of single bits
is no longer possible. Coherent switching is therefore not
practical for simple storage elements, but may be useful
in performing simple logical operations, as shown in the
next chapter.

Dissipation of energy by coupling to external reservoirs
leads to transitions between the electronic eigenstates of
the open quantum system. Dissipation is not only a pos-
sible source of errors (type-1 errors), but it is a necessary
element to make the switching process less susceptible to
type-2 errors. Within our model, dissipation has to fulfill
several tasks. The coupling to appropriate reservoirs is
needed (1) to prepare an attractor independent of the ini-
tial attractor of the quantum system, (2) to fix the result
of a switching step, and (3) to make the switching process
less susceptible to type-2 errors.

In the case of di'i)sipative one-mode processes all tasks
are performed by the couphng of Po to the spontaneous
emission modes of the electromagnetic field. Independent
of the changes in 8o, i.e., in the light-pulse parameters
Q, and 5„only one attractor of the system I remains at-
tractor of the total system, too (cf. Sec. III). In the case
of coherent two-mode pulses no dissipation occurs within

Therefore the system is susceptible to type-2 errors
and no longer capable of performing task I. It is remark-
able that Sxing of the result still occurs, vrithout dissipat-
ing energy within the computing system, but in the re-
mote system P~ responsible for the laser pulse.

To perform tasks 1-3, we exploit two difFerent proper-
ties of a reservoir: We make use of the fact that a reser-

(2) Finite detuning (5+0). In the lowest order of 5 we
get for the error probability

1 6 5
pm= 1 —pu(T) = +—1

q ~
. (5.4}

0)+02
(3) Wrong pulse duration (r= T +5,r). In lowest order

of hv we get for the error probability

voir consists of "irrelevant" degrees of freedom (task 1)
and that the number of its degrees of freedom is large
(tasks 2 and 3). Since the performance of task 1 does not
rely on the number of irrelevant degrees of freedom, cou-
pling to a reservoir is not a universal prerequisite, al-
though we use it in our model. If one relies on just a few
irrelevant degrees of freedom, relevant and irrelevant de-
grees of freedom may be treated physically on equal foot-
ing: The distinction between them will be made by as-
signing an appropriate alphabet to the attractors. At-
tractors which difFer only in the projection onto the ir-
relevant subspace have the same meaning. This concept,
e.g., has been used for the (theoretical) construction of a
reversible computer. 'i ' The performance of tasks 2
and 3, on the other hand, depends on a large reservoir.
For a reliable fixation of the result, the Poincare recur-
sion time must be at least of the order of the dwell time
~d. This is accomplished in our model by assuming a to-
tally absorbing reservoir which, by definition, has an
infinite recursion time. Task 3 reHes on large basins of at-
traction in the relevant subspace which, in turn, exist
only for a large number of irrelevant degrees of freedom.

C. Logical Sanctions with one argument

While the final state generally depends on the initial
state in the case of coherent light pulses, the same is true
for dissipative dynamics only if the multistable system
under consideration has more than two pure attractors
(Fig. 13}. If the switching electron is initially in the at-
tractor state 5, a dissipative process induced by a Hght
pulse with frequency co45 will transport the electron into
the attractor state 3, while an electron in state 1 will be
unaffected. These dynamics may be used to represent
logical functions with one argument. Logical functions
with two arguments as well as concepts for the general
purpose computer make use of several interacting elec-
trons and are discussed in the following paper. ' We first
relate the attractors to an alphabet for which we may
choose the binary digits. In the following, two out of the

Dato eioment {1, 5)

FIG. 13. Cyclic quantum optical model and coupling scheme
of the pure attractors for a multistable element capable of per-
forming logical functions. The system consists of three pure at-
tractors (1„3,and 5), the highest VB states, and three transient
states (2, 4, and 6), the lowest CB states.
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three (stationary) attractor states in Fig. 13 are taken to
represent one bit of information: electron in 5, logical
state 0; electron in 1, logical state 1; electron in 3, logical
state is not defined. There are four logical functions with
one argument:

Argument 0 Identity NOT 1

ing" and the separation of time scales mainly depends on
the localization behavior of the envelope wave function in
one dimension, layered structures will show opticai
switching and bistability, too, and might be used to estab-
lish an upper bound for the well-1 to weil-2 relaxation
rates from existing structuring technologies.
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The functions 0 and 1 are nothing else but %RITE opera-
tions which store data into a bistable storage element,
consisting of the energy levels 1, 6, and 5. They have
been discussed within the last chapter. For a realization
of the NoT operation, three consecutive dissipative
switching processes (single light modes) are necessary:

Since the NOT operation is the only operation (besides the
trivial identity), where the final state depends on the ini-
tial state, it is the only operation which may be per-
formed also using coherent dynamics, realized, e.g., by a
coherent two-mode pulse within the three-level system 1,
6, and 5.

VI. SUMMARY

In this paper we have shown that it may be possible to
construct multistationary quantum systems on the basis
of semiconductor heterostructures. Although a semicon-
ductor is a typical many-body system, it should be possi-
ble to generate quasimolecular subsystems of only a few
electrons which decouple from the rest on an appropriate
time-scale. As will be shown in the second part, these
molecular subsystems, if properly designed, can perform
the essential logical operations and may therefore be used
to construct even a universal computer whose dynamical
behavior must be described within the framework of
quantum mechanics. The dynamics necessary to support
logical operations is achieved using a separation of
length, time, and energy scales, which, in turn, are based
on the hierarchical nature of various degrees of freedom.

Preparation and optical control of the switching pro-
cesses are performed by driving the open quantum system
via single modes of the electromagnetic 6eld. All three
types of attractors may be prepared optically. Measure-
ments may be performed optically, as weB as by the
determination of depolarization currents.

Arrays of three-level systems, e.g., in a semiconductor
heterostructure, may be used to design an optical mass
memory based on PHB (persistent hole burning) process-
es' and using dissipative switching processes between
pure attractors. In PHB elements in a semiconductor
heterostructure, data may be read and written on the
time scale of the switching process. If properly designed,
reading and writing processes can be decoupled.

Two-dimensional semiconductor heterosiructures with
a layer thickness of a few nanometers can presently be
manufactured with high precision. Since "optical switch-
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valuable discussions. Financial support by the Deutsche
Forschungsgemeinschaft (SFB 329, Physikahsche und
chemische Grundlagen der Molekularelektronik) is grate-
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APPENDIX A

In this Appendix we outline the calculation of spec-
trum and eigenfunctions for the heterostructure shown in
Fig. 1. For the interfaces perpendicular to the z axis we
take the usual matching conditions:

nit I interface= 1 nit I interface &

1 8; 1

Al interface interface

(Al)

where (i,j)=(A,B) or (B,C) and n denotes the CB or
VB. To simplify the numerical calculations we describe
the interface along the coating material by an in6nite bar-
rier, which imposes the boundary condition
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on the envelope function. With the ansatz

g„„(r)=g„k (x)g„k (y)X„„(z), (A3)

Eqs. (4.2), (A 1), and (A2) decouple into three one-
dimensional eigenvalue problems if the potential U(r) is
addltlvc.

In the following we take U(r)=0, i.e., we assume no
external fields. We get then
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where I. denotes the length of the three-bioek structure in
the z direction and S is its length in the x and y direc-
tions. The envelope functions X„(z)have the form
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g„„(z)= A„'„cos[k„',(z —d; )]+8„'„sin[k„'„(z—d, )],
1 f2

2m„~.
[E„„E—„'(k„,k ) E—„']

i=A, B,C.
Here z is taken vrithin the material i = A, 8, and C. The
coeScients A„'„and 8„'„and the eigenenergy E„„must be
computed numerically.

The effective-mass theory as formulated in Eqs. (2.2)
and (Al)-(A6) is valid for nondegenerate bands, i.e., for
the conduction band of most of the technologically im-
portant semiconductors. Degenerate bands, i.e., the
valence bands of most of the semiconductors, must gen-
erally be treated within a Kane-type model. Fortunately
the heavy-hole band in all semiconductors with cubic or
zinc-blende symmetry completely decouples from the
neighboring bands in the case k, =k»=0 (Ref. 46) and
can be treated for small k, and k» within a parabolic ap-
proximation.

APPENDIX 8
For the calculation of the interband relaxation rates,

we insert the wave function {2.1) into the matrix element
(2.4). Using the dipole approximation we get
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denotes the average Bloch matrix element in the dipole
approximation. It has been taken equal for the difFerent
materials in the heterostructure. Equation 82 shows that
the interband relaxation rate is directly proportional to
the overlap integral:

u'nf, n'«' ~ f&nPn ~dz (84)
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Again we have made use of the fact, that the envelope
function is slowly varying and may be set approximately
constant over a unit cell. Inserting (Cl) together with
(A3) and (A4) into Eq. (2.6) gives the result
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APPENMX C

For the calculation of the interwell relaxation rate, we
insert the wave function (2.1) into the phonon matrix ele-
ment (2.7):
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{81) where
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where we have made use of the fact that the envelope
function is slowly varying and may be approximately set
constant over a unit cell. The first term in (81) vanishes
because of the orthogonality of the Bloch functions. If
we replace the summation over all unit cells j by an in-
tegration, Eq. (2.3) together with (Bl), (A3), and (A4)
gives the result
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For the Bloch matrix element we get
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In order to get an estimate of the time scales, we use the
upper bound

I IPq I
= 1. One integration in (C3) may be

readily evaluated if the BZ is approximated by a sphere
with radius qm»

——m/a, where a is the lattice constant.
In spherical coordinates me hand
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where I,„„., I k k„and I
k „,denote the three integrals in Eq. (C4). Using (A6), analytical expressions can be given for

each integral. For a discussion see, e.g., Ref. 47. The two remaining integrals in (C6) have to be evaluated numerically.
An upper bound of the squared matrix elements (C4) may be found using

f Jt'.*:'*Jt'..dx & f I&..I I&..Idx (C7)

Within this approximation we get for the transition probability (C3)
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