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For models of finite superlattices, we calculate the power dependence of the transmissivity, when

one film in each unit cell exhibits a nonlinear response to the electromagnetic field. %'e assume the

nonlinearity has its origin in the spins in an antiferromagnetic Nm, illuminated with frequency near

resonance; one then has a term in the magnetic susceptibility proportional to the local Seld intensi-

ty. Results very similar to ours follow for the case where the nonlinearity occurs in the dielectric
response. The response is dependent on whether the frequency of the radiation lies within a stop

gap of the dispersion relation of the infinite structure calculated in linear theory, or within our al-

lowed band of propagating waves. In the former case, ere Snd soliton trains and multistability, as
discussed earlier by Chen and Mills. In the latter, we have multistability and transmissivity gaps
similar to those reported earlier by Delyon et al. The method used presently is adapted from that

employed by Delyon and co-~orkers; @re discuss its relation to alternate computational approaches.

I. INimODUCTION

Superlattice structures of impressive quality are now
synthesized from films composed of a wide variety of ma-
terials. The earlier work placed primary focus on com-
binations of semiconducting materials such as GaAS and
Ga„A1, ,As. More recently, we see structures which in-
corporate a variety of metallic films, including the fer-
romagnets Fe, Ni, and Gd, along with the spiral spin ma-
terial Dy. Very-high-qualit( films of the antiferromagnet
FeF2 have been fabricated, and we may expect these to
be incorporated in superlattice multilayer structures in
the near future.

Superlattice structures form a new class of artificial
materials whose properties can be designed in advance,
and in fact some of these may be unique to the multilayer
structure. For example, we may have collective excita-
tions such as plasmons or spin waves which are
coherent modes which extend throughout the multilayer
medium. It follows that the dispersion relation of these
modes, and even the existence of certain branches, is
sensitive to the geometrical parameters of the superlat-
tices. Through use of Brillouin scattering spectroscopy,
spin-wave excitations in superlattices have been studied
in a particularly quantitative manner, to the point where
information on the magnetization in the Qms may be ex-
tracted from the data.

Knowledge of the spectrum of elementary excitation
spectrum of a superlattice allows one to describe its linear
I'cspoilsc to ail external probe, sllcli as ail clccti'oiilagilctlc
wave. The analysis can proceed in a manner familiar in
the theory of solids.

In the recent theoretical literature, there has been dis-
cussion of the nonlinear optical response of superlattice
structures, vnth emphasis on materials where the length
of the unit cell is comparable to, or longer than, the
wavelength of radiation in the material. In this regime,
in linear theory, the superlattice may be viewed as a

physical reahzation of the classic Kronig-Penney model
discussed in introductory texts on solid-state theory.
The propagation of waves down the structure is described
by a dispersion relation which contains gaps, here called
stop gaps, at the Brillouin-zone boundary and center.
Outside the stop gaps, one has the allowed bands where
waves may propagate down the structure, with dispersion
relation controlled by the solution of the appropriate
Kronig-Penney description of the structure.

Chen and one of the present authors6 have studied the
nonlinear optical response of such a structure when it is
illuminated by radiation with frequency in a stop gap.
The source of the nonlinearity is a power dependence of
the dielectric constant in one of the two films in the basic
unit cell. These authors found that at rather low incident
power, bistability (and, in fact, multistability} occurs with
physical origin in solitons excited by the incoming elec-
tromagnetic wave. Subsequent papers have elaborated on
this %'ork. '

Delyon and co-workers explored the power depen-
dence of the transmissivity of a finite superlattice il-
luminated with radiation with frequency within an al-
lowed frequency band. They also found bistability, and
multistability. In addition, they find power ranges within
which the superlattice becomes perfectly refiecting, in the
sense that the field at the output end of a finite structure
is smaller than that at the input end, by an amount
exp( nI. },with I. th—e length of the superlattice.

The two sets of theoretical studies show that the
nonlinear-response characteristics of superlattices are
rich in properties, and unique to these periodic struc-
tures. It is, unfortunately, dif6cult to make direct com-
parisons between the results of Chen and Mills, who ex-
plored the nonlinear response only for frequencies within
a stop gap, and the results of Delyon et a/. , who exarn-
ined only frequencies within an allowed band. The un-
derlying model superlattices are di8'erent in each case,
and the results are presented in a sufficiently diferent

Qc1988 The American Physical Society



NONLINEAR OPTICAL RESPONSE OF SUPERLATTICES: . . . 8073

manner that a direct comparison is very dificult. For ex-
ample, one would like to inquire if the gap-soliton-
mediated bistsbility discussed by Chen snd MiBs occurs
at power levels substantially lower than, or substantially
higher than, the transmission anomahes discussed by
Delyon et al. Furthermore, the two sets of authors have
employed very dilerent theoretical methods to address
the questions.

It would therefore be most helpful, in our view, to see a
comprehensive study of both sets of nonlinear anomalies
for the same model superlattice, and within the same
theoretical framework. The purpose of this paper is to
present such a study. We also present a number of new
results, not found in either of the previous studies. For
frequencies within the allowed band, we show the spatial
variation of the field intensities within the superlattice
structure. These provide insight into the physical origin
of the nonlinear anomalies. For frequencies within a stop
gap, we extend the earlier calculations of Chen and Mills
to much higher power levels, where we find marked
difFerences in the nature of the instabilities.

We make a specific choice of the model superlattice, in
our analysis, so quantitative numerical results are
presented for a well&efined physical system. The model
is a superlattice constructed of alternating layers of
dielectric, and an (insulating) antiferromagnetic film, as-
sumed to be placed in zero external magnetic field. Thin
films of FeFz have been fabricated recently with very nar-
row resonances' in the far infrared, and our recent
theoretical analysis'0 shows that when such films are il-
luminated with radiation very close to the antiferromag-
netic resonance frequency, their nonlinear response to an
electromagnetic wave is very large, by virtue of non-
linearities in the magnetic permeability. While structures
of the sort explored here have yet to be synthesized, and
in this sense our model superlattice is academic in nature,
it is possible in principle to fabricate such a multilayer
structure. The principal aim of this work is to discuss the
two very difFerent classes of nonlinear behavior explored
earlier within a single model calculation, so we do not re-
gard this as a serious problem.

It is our view that magnetic materials, and most partic-
ularly high-quality single films of such materials as FeFi,
offer exciting possibilities for the future, as nonlinear
(tunable) elements for the far-infrared frequency range.

The nonlinear instabilities explored here require struc-
tures whose unit-cell dimensions are comparable to a
wavelength of the modes which propagate in the struc-
ture. This is quite clear for the gap soliton mediated bi-
stability, since to operate within a stop gap, one must em-

ploy radiation whose wavelength is on the scale of the
unit ceH. At visible or infrared frequencies, this means
the structures appropriate for such studies mll consist of
films very much thicker than those incorporated into
many of the semiconducting or metallic superlattices dis-
cussed in the current literature. It should be the case also
that the demands 011 liltefface quality will riot be partlcll-
larly high, i.e., one will not require perfection on the
atomic scale, so far as we can see. This suggests the ex-
perimentalists should be able to synthesize appropriate
structures from a variety of materials.

II. FORMALISM

We consider s plane-polarized electromagnetic wave
propagating normal to the interfaces of the superlattice.
The sntiferromagnet is assumed to be an easy-axis, two-
sublattice material with easy axis normal to the inter-
faces. If no external magnetic field is present, then the
plane-polarized wave propagates through the medium
with no rotation of the plane of polarization. This
remains true in the presence of nonlinear contributions to
the magnetic susceptibility tensor. ' We then may write
down the wave equation obeyed by the single Cartesian
component of magnetic field, h(z, t)=h(z) exp( iQ—t)
In the antiferromagnet as described above, with lowest-
order nonlinearity included, we have

(2.1)

where k =Q ei/cz, with ei the dielectric constant in the
basal plane. In Eq. (2.1), X is the linear magnetic suscep-
tibility of the material, and A, describes the lowest-order
nonlinearity. If 00 is the sntiferromagnetic resonance
frequency in zero magnetic field, M, the magnetization of
one sublattice, H„ the strength of the anisotropy field,
and y the gyromagnetic ratio, we have'

(2.2a)

and the parameter A, in Eq. (2.1) is frequency dependent,
given by the expression'

3 y Q(Q+yH )
A,(Q)=-

(Qo—Q )
(2.2b)

The nonmagnetic film is described by setting +=0, and
replacing e~ by the appropriate dielectric constant e0.
Boundary conditions are that h be continuous at each in-
terface, along with the product (dh/dz)e ', with e the
dielectric constant in the appropriate material.

Earlier papers explored model dielectric superlat-
tices, in which the magnetic permeability is unity every-
where, and the nonhnearity resides in the dielectric
response. The present set of equations and boundary
conditions can be mapped onto those used earlier by re-
placing h (z) by f(z) = h (z)/e everywhere, where e is the
appropriate dielectric constant. Thus, the conclusions we
reach are directly applicable to dielectric superlattices,
save for the quantitative aspects.

We could proceed to study the solutions of the above
set of equations by expressing their solutions in terms of
elhptic integrals (in the nonlinear film), then employing
the identities developed by Chen snd Mills to eliminate
all but one parameter, the transmissivity. Instead, we
choose here to follow Delyon and co-workers, who
proceed by a direct real-space integration, introducing a
grid of points z„. If e is the dielectric constant outside
the finite superlattice structure (@=1 for vacuum), we be-
gin by writing Eq. (2.1) in the form, with ko =Q e/c,
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d h +koh=ko 1 ——(}+4mX+4mXA. Ih I
) h,

dz

(2.10a)

exp(iKn)+R exp( iKn+—ig), n &0
Texp(iKn}, n &N

(2.5a)

(2.5b)

where in Eq. (2.5a) R is a real number. Our aim is to cal-
culate the transmission coefficient T.

We now let y„=y„/ I
7 I, and rearrange Eq. (2.4),

i = it'. + i —(E —ro+&—
i I h; —I

'
I
T

I

'
I it. I

'W.

(2.3}

%@herc 1t 18 Understood that thc terms on thc r1ght-hand
side are nonzero only within the sample. Then if h; is the
incident Seld, we let P„=h(z„)/h, , and case Eq. (2.3) in

the form

+4n+i+4n —i=(&0 cubi I hi I I &n I )&n (2'4)

where E= —2+K, and K =kog, with g' the width of the
interval in the basic spatial grid. We have ao=K2[}
—(}+4mX)(ei/e)] and a, =K 4rrXeiA, /e. We notice
that the nonlinear term on the right-hand side of Eq. (2.4)
exists only within the magnetic film, and
ao K[1———(eo/e)] within the dielectric layers.

Let the grid be chosen so that z„with 0 & n & N covers
the space occupied by the fimte superlattice. The super-
lattice is illuminated by a wave incident from the left, in
the region where n &0. Then to the right we have only
the transmitted wave. Thus, we have

(2.10b)

w}uch after a few lines of algebra can be translated into

the requ1rement

1—J =—Jn —1 n+] s

E2
(2.11)

)
c2 h, dh hdh'

16m Qe, i dz dz

. (h„h„+,—„„+,),—h h'
16m Qe;i

(2.12)

so the condition in Eq. (2.11) is equivalent to the require-

ment that the energy per unit time Sowing down the

structure is independent of z, as it should be.
We then let

—(g„'1(„~, f„f„'+,—)= A,1

E]
(2.13)

with A a constant, where on the left-hand side the dielec-

tric constant of the medium within which the points

(n, n+1) lie is to be inserted.
Assuming for n & N we have a medium with dielectric

constant e,

i.e., the quantity J„/e, is conserved at each interface.

The time average of the Poynting vector for our problem

18

where now the asymptotic forms are

(2.6) A =—(e' —e '
) =—sin(K},&K —tK

so that

(2.14)

r

Roe'K" +8,e

e iKn

—iKn ig n&0 (2.7a)
g„'g„+, g+,$„=—2i sin(K—) . (2.15)

where&0 ——1/I T
I

and 8, =8/
I
T

I

There are conservation laws contained in the above
finite-difference equations. Let the three points n —1, n,
and n + 1 lie within one medium. We then have the iden-
tity, which follows from Eq. (2.6},

By exploiting the conservation lair just described, we

may simplify the task of solving the Suite-difference equa-
tion. Let F(

I t/i„ I
)=E—ao+ai I h, I I

T
I

Prom Eq. (2.6), one may derive the relation

which means that within each Nm the quantity

(2.8)
I iIl. i I'=

I @.+i I'+[F(
I @.I')]' I @.I'

+F(
I @.I'}(0:it.+i+4.0:+i} (2.16)

(2.9)

1s conscrvcd.
Our boundary conditions are that 1t„ is continuous

across each boundary (conservation of tangential h), and
also (1/e)(dh/dz) is continuous across each boundary
(conservation of tangential electric Seld). Let points
(n —},n) lie in medium 1, and points n+ },n +2 lie in
medium 2. The boundary conditions then translate into
the requirement

while multiplying each side of Eq. (2.15) by its «mp}ex
conjugate glvcs

p'„(g„'+,)'+(|t„')'(g„+i)

I @„+iI

—2—sm (K), ( . 7)
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' 1/2

(2.18)

This result is very similar to the principal result of Ref.
9, except the square root is missing from the third term in
the equation displayed in their text (we assume this error
to be of typographical origin). When Eq. (2.18) is applied
to the antiferromagnet, we have seen that e;=el, with
F=E a0+—a,

~
h; (

I
(
T

~

I
) p„~ I, while for the non-

magnetic Slm, e =@0 and I =E—ao only.
The virtue of Eq. (2.18) is that it involves the real num-

ber
( g„[ only. Once we know [g„( and

~ t/i„+I (,
we can calculate

~ Q„ I ~, and thus iterate from right to
left beginning on the output side of the superlattice.

In Ref. 9,
~ g„~

z was denoted by x, ) g„+I ~
as y, and

by x', so if we use this notation, Eq. (2.18) be-
comes

2
" 1/2

x'=y+Eix+2 xy ——sin (E) F, (2.19)

If now we work with a grid which places point n precisely
on the boundary between the two media, we have

1 ~ =1(x' —x ) = (x —y) .
E

(2.21)

Equations (2.19) and (2.21}represent the formal results
that provide the basis for our analysis. We next turn to a
description of how this mathematical method is applied,
and illustrate how the results of an earlier paper, which
used a rather difFerent approach, may be recovered. '

III. RESULTS AND DISCUSSION

Before me examine superlattice structures, it will prove
useful to consider a single, isolated film of FCFI modeled
as discussed in Sec. II. The power dependence of the
transmissivity of such a film was explored in Ref. 10,
through use of a very dil'erent theoretical approach. Our
Srst step is to establish contact between the two very
difFerent calculations. As me do this, we mill obtain in-
sight into useful features of the present method.

Oli thc olltpllt sldc of thc filnl (asslllllcd to bc vacuuII1),
we have only the transmitted a&ave, which is necessarily a
simple plane wave with amplitude

~
T

~

. Thus, we have
x =y =1 here. The boundary condition at the interface
[Eq. (2.21)] implies x = 1, i.e., continuity of the derivative
of the intensity, which is zero outside the film. For con-

where F=E—a0 —ai
~
h;

~ ~
T

~
x. Conservation of

h (z) at each boundary, combined with conservation of
(1/e)(dh /dz ) means that at each boundary, we have

~h ['Z0 —5= lim [h ~'Z0+5.
s~0 e dz 5~0 6+ dz

(2.20)

venience, and in fact as a matter of practical necessity, we
introduce a new variable II0=h;

~
T ~, since at this point

we have no knowledge of the transmission coef6cient

~
T ~. It is h0 we use as the parameter which, in the

units of Sec. II, control the strength of the nonlinearity.
For a given value of h0, through use of Eq. (2.19), we may
iterate through to the left-hand (input) side of the film, at
which point Eq. (2.21) is applied again. This application
of the boundary condition yields nontrivial results.

We now need to determine the value of
~
T

~
. This is

accomplished through the following technique. The solu-
tion is continued to the left into the vacuum, and we see
from Eq. (2.7) that it oscillates between the values

Z,„=(R0+R,}I and Z;„=(R0 R, )I—. Since
~

T
~

I

=1/
~ R0 ~, we arrive at

2= 4
lrl In I '

(Zmin+Zmax }

Note that the condition R0 —R I =1 (energy conserva-
tion) implies that Zm~Z „=1. This guarantees that

~

T
~

&1. The value of h0 was used as input, and since
h0 =II;

~

T ~, now that we know
)
T ~, the value of the in-

cident field h; corresponding to
~
T

~
is uniquely deter-

mined.
From this discussion, it is clear that for each choice of

h0 we determine a unique value of
~

T
~
. We may then

see how bistability (or multistability) emerges from the
analysis by consulting Fig. 1. In Fig. 1(a), we show

~

T
~

as a function of the parameter h0. The single-valued na-
ture of the relationship between the two parameters is
evident. We see oscillations in the transmissivity charac-
teristic of a thin film whose index of refraction is varied
through some external means; the transmissivity reaches
unity whenever an integral number of hilf-wavelengths
fits into the film. The analogy is not a precise one, of
course, because in our case the change in efFective index
is not independent of position, but in fact varies with the
local intensity of the wave. In Fig. 1(b), we plot the in-
tensity of the transmissivity

~
T

~

I as a function not of
h0, but of the actual incident-field amplitude h;=h0/

~

T
~
. We see the characteristic signature of bistability in

the response, once the information in Fig. 1(a} is rear-
ranged into the form of a proper input-output plot. %e
have compared results obtained by the present method
with those presented earlier, ' and the two give identical
results.

Our earlier studies of the nonlinear optical response of
a thin film' ' and of multilayer structures expressed the
solution to the basic differential equation, Eq. (2.1), in
terms of Jacobi elliptic functions. These contain certain
constants of integration in their arguments which make
the task of satisfying the boundary conditions at each in-
terface dificult to implement. A series of identities eras
derived that enabled one to express all constants in terms
of the transmissivity

~
T

~
. A consistency relation was

developed which, if satis5ed for a given value of the in-
cident field h; and choice of

~
T (, ensured that one had a

solution in hand. Then for a given choice of h;, one had
to search for all values of

(
T

(
in the range 0&

~

T
~

& 1

for which a solution can be achieved. In regions ~here
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bistability occurs, one finds three values of
~
T

~
for a

given value of }'i;, and there are more in regimes of
multistability.

The method used in these earlier papers is very much
easier to implement than approaches put forward by ear-
lier authors. At the same time, the method employed
here, set forth first in Ref. 9, is simpler yet, in that the
need to search for allowed values of ) T

~
is eliminated.

Finally, the approach developed by Chen and Mills al-
lowed one to explore rather large structures, with up to
120 unit cells. It proves dilicult to maintain accuracy
with a finite-difierence method for a structure that large.

We should mention that the results obtained with the
finite-difference approach converge quickly with decreas-
ing g. In the example displayed in Fig. 1, where the slab
thickness equals A,c/2, with Q the vacuum wavelength of
the incident radiation, the choice /=ac/2000 proved
more than adequate to give convergent results.

We now turn to multilayer systems, which we model as
stacks of bilayers. Each bilayer consists of one dielectric
film, and one film of FeF2. The parameters representative
of FeF2 are @i=4, the anisotropy field H„ is 200 kG, the
exchange field Hz is 540 kG, while the saturation magne-
tization of one such lattice is 0.56 kG. We suppose the
dielectric film is ZnF2, which is diamagnetic, and for
which @i=8.' We examine these systems in two limits,
(a) thick slabs, where each film in the bilayer has equal
thickness, and the width d of each bilayer equals the vac-
uum wavelength Ac, and (b} thin slabs, where d =A.c/10.

To assist in interpreting the results, and to guide the
calculation of the nonhnear response, we begin by calcu-
lating the dispersion relation for propagation of elec-
tromagnetic waves in the structure, in the direction nor-
mal to the interface, in hnear theory. With the nonlinear
terms set to zero, the model system is a physical realiza-
tion of the classical one-dimensional Kronig-Penney
model. The normal modes have the character of Bloch
waves of wave vector Q, and the associated dispersion re-
lation has stop gaps at the various Brillouin-zone boun-
daries. Ifp= I+4mXc, and d, and dz are the thicknesses
of the two films in the basic bilayer, the dispersion rela-
tion for such a structure is found from the roots of

0.8—

0.0
0.0

l

i.o
I

5.0
l

4.0 5.0

I.O

0.4—

0.2—

0.0
0.0

I

I.O
I I

2.0
h) {6)

1

5.0
I

4.0 5,0

FIG. 1. (s) A plot of
~

T (

2 as a function of h;
~
T

~

for a sin-

gle film of FeF2 with thickness d~ ——}(c/2=105 p,m, and for a
frequency (0—00)/y of 150 6 (i.e.„a frequency 150 6 above
the antiferromagaetic resonance frequency). The units of h; are
G. (b) The same as {a),but now we plot

~

T
~

~ as a function of
h;.

cosQ(di+dz)= cos —d, (e,p, )'i cos —dz(e~z)'i2
c c

' 1/2
6'I@2

1/2

+
&&82

d i (6ipi ) sill d2(62juz} (3.2)

When the right-hand side of Eq. (3.2) is less than unity,
the frequency ~ hes within an allowed band, while when
it has magnitude greater than unity we are within a stop
gap. The wave vector Q always hes within the first Bril-
louin zone of the structure, —m(d, +d2) &Q &+ir/
(d, +dz }. In Fig. 2(a), we show the dispersion relation of
several bands in the structure with d, =d2 ——A,c/2; recall
that Qo is the antiferrornagnetic resonance frequency, and

we measure (Q —Qc) in G. In Fig. 2(b), we show the
transmissivity

~
T

~
as a function of frequency, for eight

bilayers, calculated within hnear theory. The infiuence of
the stop bands is evident, and within the allowed bands,
the oscillatory structure has its origin in the standing-
wave resonances of the Snite structure. The "noise
spikes" within the stop gaps are evidence of numerical er-
rors in the Snite-difference method.
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0
0

kik

FIG. 4. For the two-bilayer structure explored in Fig. 3, and
for h; I

T
I
=1.03 corresponding to the second small resonance

in Fig. 3(a), we plot the square of the Seld as a function of posi-
tion. The incident wave is incident from the right, and the 6rst
61m is an antiferromagnet, and distance is measured in units
which makes the thickness of one bilayer equal unity.

bilayers present. %'e do not understand the physical
reason why this is so.

Beyond the "threshold" at h; I
T

I
=0.6, examination

of plots of the square of the field as a function of h; I
T

I

leads one to understand the origin of the resonant peaks
for h, I

T
I

&0.6. As discussed earlier for the two-bilayer

case, these are nonlinear standing-wave resonances of the
whole structure. As one moves from one resonance to
the next, examinations of plots such as given in Fig. 4
show these to be just one more half-"wavelength" in the
field pattern within the whole structure (not within one or
each film). As the number of bilayers is increased, a
smaller increment in the parameter h, I

T
I

is thus re-

quired to move from one resonance to the next, and the
pattern becomes progressively finer as bilayers are added
until by the time we reach eight bilayers the plots provide
an illusion of chaotic response. %e should remark that
for eight bilayers we have reduced g to A.c/20000, and we
have been careful to examine portions of the plot in
sufficient detail to convince ourselves that the structure is
real; it is too laborious to check every detail in the figure
with such care, unfortunately.

we find exactly one more oscillation in the whole struc-
ture.

In Fig. 5(a), for a set of eight bilayers each identical to
those used in Fig. 3(a), and again for (Q —Qc)/y = 150 6,
we show a plot of

I
T

I
versus the parameter h; I

T
I

.
We again see smooth behavior below h; I

T
I
=0.6, and

then
I
T

I
plummets rapidly. Beyond this apparent

threshold, we see very fine oscillations in
I
T

I
. The

figure has a chaotic appearance, but in fact these are
ffnely spaced resonances, much narrower and much
closer together than those in Fig. 3(a), beyond
h;

I
T

I
=0.6. Figure 5(b) is a plot of the transmitted

power, as a function of incident power, constructed by
rearranging the information in Fig. 5(a). The figure re-
minds one of Fig. 3 in Ref. 9. Below Pl =-0.5 G, we have
reentrant, and, consequently, bistable behavior, and
above this value Pz is a complex, very multivalued func-
tion of Pl. Each of the fine features in the plot have finite
widths, which do not show on the scale of the graph. We
assume that an actual structure exposed to radiation so
strong as to enter the raultivalued regime will exhibit an
apparently chaotic response to small changes in input
power.

%'e have explored the response characteristics of three,
four, five, and six bilayers identical to those used in Figs.
3 and 5, with (Q —Qc)/y =150 G. In the plots of

I
T

I

as a function of h, I
T I, we always find smooth behavior

«
I
T

I

' in the «gton h; I
T

I
&0 6 and

I
T

I

' drops «
sharply at this value, to display a sequence of well-defined
resonant peaks above this value of h, I

T
I
. To the eye,

all the curves display the two distinct regions, and the
transition from smooth behavior .at small h; I

T
I

to the
regime with closely spaced resonance peaks at large
values of this parameter is independent of the number of

0.2—

0.0
0.0

LI I

" ' iIII)[ ~ i:i(, I I4 "&
I

2.0

(b)

I

I.O 5.0

FIG. 5. (a) The same as Fig. 3(a), but now we have eight bi-

layers in the structure rather than two. (b) The same as Fig.
3{b),with eight bilayers.
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as for the 40-bilayer case. But then the 6rst resonance is

a four-soliton state, as illustrated in Fig. 8.
%'e should comment briefly on the terminology we

have used in the discussion just given. The point is that
the term "soliton" has been used in a rather imprecise
manner. As pointed out earlier, for frequencies within a
stop gap, the nonlinear wave equation applied to the
periodic structure admits soliton solutions for the

infinitely long superlattice T. his was demonstrated nu-
merically first for a diele:tric superlattice, and then in
certain limits it may be demonstrated analytically that a
double sine-Gordon equation is satisfied by a phase vari-
able which characterizes the gap sohton. These solitons
are states in which the time-averaged energy Sow normal
to the interfaces is identically zero. Only single solitons
emerge from the analysis, and not "sohton trains" such
as those shown in Figs. 7 and 8.

Consider, for simplicity, the simple sine-Gordon equa-
tion. If the spatial coordinate is viewed as a fictitious
time, then its form is identical to the equation of motion
of a pendulum in a gravitational field. The soUton then
corresponds to the following situation. At time r = —00,
place the pendulum in its unstable equilibrium position,
pointing upward, opposite to the gravitational Seld. Give
it an infinitesimal kinetic energy 5. It will then swing
through 360, and as 5~0, it will return to its original
position at time t =+ oo. This orbit, which has zero en-

ergy, with energy zero chosen when the pendulum is at
rest in the unstable equilibrium position, becomes the
sine-Gordon soliton when the time is replaced by the spa-
tial coordinate.

Now give the pendulum a small, but finite amount of
kinetic energy /LE at time r = —oo (we mean small com-
pared to the gravitational potential energy 2 Mg h). The
pendulum wi11 slowly begin to fall, move rapidly past its
lower-most point with velocity 2 (gh), and return to
the topmost point, dwell in its vicinity for some time, and

I 00

80—

60—

20-

then recycle. %e obtain an infinite number of equally
spaced "solitons, "

by virtue of the very small, but finite
value of AE.

The time average of the Poynting vector (5 ) in our
problem plays the role of AE in the example just given,
and we have the time variable replaced by a spatial coor-
dinate. Our "soiiton trains" occur only because (S)&0
when the superlattice is illuminated by incident radiation.
Each sohtonlike object is not, strictly speaking, a soliton
in the mathematical sense, but becomes very similar
when the peak field intensity in the medium becomes
large compared to that in the incident wave. In Fig. 7(a),
the peak field intensity is roughly 2 orders of magnitude
larger than the incident field intensity.

We conclude by comparing the field strengths required
to enter the highly unstable region when the sample is il-

luminated with radiation inside an allowed band of linear
theory, and the field strengths required to induce gap-
soliton-mediated bistability. In Fig. 5(a), the shoulder
which separates the regime where

~

T
~

i varies smoothly
with h;

~
T

~

from the regime where we have rapid oscil-
lations is h; ~

T
~

-0.6, with h; measured in G. Hence,
for this example, incident fields in the range 0.5 &Ii, & 1

G will suffice. Such fields can be attained in contem-
porary high-power sources. For our example of soliton
inediated bistability, we have h, ~0. 1 G for the first reso-
nance in Fig. 6. Hence, these examples show that the
fields required are the same order of magnitude to realize
each type of behavior, though for the explicit cases exam-
ined, the soliton-mediated bistability occurs at somewhat
lower fields. It is quite clear from the calculations
presented here that gap-soliton-mediated bistability
occurs in multilayer systems at fields very much lower
than bistability in a single film. This may be appreciated
by comparing Fig. 1(b) with Fig. 6. In the single film,
fields as large as 3 G are required to initiate bistability.
This conclusion is in agreement with earlier results.

%hen examining the quantitative results in this paper,
the reader should keep in mind that our description of
the nonlinear response of the antiferromagnetic films is
approximate, in that it assumes the magnetization gen-
erated by the electromagnetic field may be written in the
form

(3.3)

with higher-order terms ignored. As yet, we have little
concrete experimental evidence in hand on the validity of
this approximation in an actual material such as FeF2.
The spirit of this study has been to carry out explicit
quantitative calculations for superlattice structures that
may possibly be synthesized, but at the same time experi-
mental data on the nonlinear response of the antiferro-
magnetic Nms are sparse at present.

0 20 50 40
z

FIG. 8. The field configuration for a 40-bilayer slab, at the
first gap-soliton resonance. The bilayer unit used to generate
the structure is identical to that employed in Fig. 6. Distance
units are the same as in Fig. 7.
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