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Ahsence of phonon-induced localization for the free optical polaron
and the corresponding Wannier exciton-phonon system
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%e prove that the ground-state wave function of a free optical Frohlich polaron is delocalized for

any coupling strength, even for long-range eouplings. The mathematical techniques involved are

quite general and can be transferred, e.g., to the discussion of the center-of-mass motion of an

exciton-phonon system. %e sho~ that this motion is delocahzed, too.

I. INTR&DUCTION AND BASIC NQTATIONS

The standard three-dimensional polaron model is
defined by the Frohlich Hamiltonian HF, which describes
the interaction of a single electron with one branch of
phonons. Setting A=trt=1, HF reads as follows (see
Frohlich, Pelzer, and Zienau'):

U.—:exp(—i Pzh. r),
one veri6es that

U 'PTU=p

HF = U'HF—U = ,'( p Pt t -)'+—Ho, th+Ht
Ht. =p't'2—+Ho, th+Hr, F (1)

where now

h

HI=a' f d kg(k)[a(k)+a (k)] . (10)

and

HI@=A g exp l r Q +H C. (3)

Clearly, HF is defined on &F, too. One should notice,
however, that Ht; does not depend on r, i.e., [HF,p]=0.
Consequently, we arrive at the following direct integral
decoInpositioI1 of HF (see Frohhcll ):

Here, r is the position and p the momentum operator of
the electron. k, to(k), a(k), and at(k) are the wave vec-
tor, frequency, and annihilation and creation operators of
phonons, k =

~
k

~

. Finally, g (k) denotes the electron-
phonon coupling, o; being the dirnensionless electron-
phonon coupling parameter. Without loss of generality,
g(k) may be assumed to be real. HF is defined on the
Hilbert space,

&F=FL (I ) . (4)

Pph=—fd k ka (k)a(k),

is the phonon momentum, commutes with H+. An
equivalent statement is that HF is translational invariant.
Following Lee, Low, and Pines, we may use this fact to
eliminate the electron coordinates from HF. Defining the
unitary oper ator

%F is the direct product of the usual phonon Fock space
F and the one-particle Hilbert space L (I ).

It is easily verified that the total polaron momentum is
conserved: the corresponding operator PT, de5ned as

PT =Pph+P

HF= f ed QH(Q),

where

X&=—exp[i(Q —P I, ) r]4 h, (13)

where mph ls supposed to be an element of E. Notice that

X& is not contained in JVF; only suitable superpositions
with respect to Q may yield a normalized state.

As HF commutes with PT„ it is sufBcient to solve the
equation

H Xq ——E(Q)Xq . (14)

Inserting in (14) HF and X& according to Eqs. (1) and (13),
we directly recover the eigenvalue problem

H(Q)4ph ——E(Q)4p„.

In the remainder of this paper, we are entirely concerned
with the ground-state energy Eo(Q} of H(Q}. Not too

H(Q)=——,'(Q —Pph) +Ho ph+Ht .

H(Q) is a momentum-decomposed Hamiltonian, namely
the projection of HF onto the subspace of axed eigenval-
ue Q of PT. Obviously, H(Q) is defined on F alone.

It proves useful to repeat the transformation steps, out-
lined in (7) to (12), in terms of wave functions. The gen-
eral eigenfunction of PI with eigenvalue Q is given by
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surprisingly, the properties of Eo(Q) will prove to be inti-
mately connected with localization properties of the
ground state eigenfunctions of HF.

The paper is organized as follows. In Sec. II, we dis-
cuss the problem of localization and state our results.
Then in Sec. III, we comment on previous publications
related to ours. In Sec. IV, we prove our statements, ex-
cluding localization in free-optical-polaron systems, even
for long-range couplings. Then, we turn to the %'annier
exciton-phonon system. In Sec. V, we introduce the
Hamiltonian and transfer results of Spohn to the center-
of-mass motion of the exciton. Our method from Sec. IV
is applied to the exciton-phonon problem too. Section VI
contains some genera1izations and summarizes our re-
sults.

II. THE PROBLEM OF LOCALIZATION
AND STATEMENTS OF THE RESULTS

To begin with, we Sx the precise meaning of the head-
ing "localized. " A polaron wave function + is called lo-
calized if 4 is an element of %F, i.e., it is normalizable
with respect to the electron and phonon part; otherwise,
we call 4' delocalized.

In view of Eq. (13) and the considerations thereafter, it
is not at all clear whether there exists a single localized
polaron wave function as an eigenfunction of HF. In
fact, from the very beginning of the polaron story, it was
a controversially discussed question, whether the
ground-state wave function of HF is localized for large
electron-phonon coupling. The whole discussion was
probably initiated by Landau's early idea of self-trapping
(see, e.g., Ref. 4} and Feynman's paper on Frohlich pola-
rons in 1955. Feynman proved that the phonon effects on
the electron can exactly be incorporated into a self-

energy functional. In an introductory part, he approxi-
mated this functional by a one-particle potential U, con-
taining adjustable parameters. One may choose a varia-
tional procedure to fix these parameters, to produce
upper bounds on the ground-state energy of HF, and to
get an approximate ground-state wave function. Intui-
tively, one expects that U~O for c~O whereas strong
binding should occur for a~co. It may even happen
that the variational principle forces one to choose U=O
for a & a, and U&0 for a ~ a, . This would correspond
to a localization transition from a delocalized ground
state to a localized ground state. Calculations of this

type may have caused the conjecture that the true
ground-state wave function of HF shows such a localiza-
tion transition at a=a„ too. As an immediate conse-

quence, the ground state should be infinitely degenerate
for a ~ a, : Because of translational symmetry, the
ground state can only be unique up to translations.

The localization problem may be viewed from another
standpoint. If we choose a to be suSciently small, we

know from perturbation theory that the ground-state +0
of H~ is of type X& 0 [see Eq. (13); Xo is an eigenstate of
Pz. with eigenvalue Q=O]. Consequently,

holds in a certain surrounding of a =0. Let us tentatively
assume that (16) was not true for a ~ a, . Then we could
deduce the following.

(i) The ground state is in5nitely degenerated, as Eo(Q}
depends merely on

~ Q ~

.
(ii) If the minimum of Eo(Q} occurs for a subset of Q

vectors with diferent length, a suitable superposition of
the corresponding eigenfunctions might yield a localized
state.

(iii) There exists +0 such that

exp(ik, P&)%0&+0, for any real A&0 .

Property (iii) would show that for a ~ a, there exists a
ground-state wave function of HF which has a lower sym-
metry than HF itself. Such a phenomenon is usually
denoted as quantum-mechanical symmetry breaking. If a
localization transition would exist, translation symmetry
was necessarily broken.

At this point, we remark that the above concept of
symmetry breaking is well distinguished from the 6eld-
theoretical one (see e.g., Guralnik et al. ). In the latter
case, one starts with an infinity of degenerate ground
states and an associated nonseparable Hilbert space,
selects one axed ground state, and expands the equation
of motion around this fixed ground state. This procedure
is connected with a change of Hilbert space and is neces-
sary in order to get a new separable Hilbert space. In this
sense, symmetry breaking can only take place for
acoustical-phonon dispersion, if it takes place at all. It is
only in this case that the electron can generate an infinite
number of (zero-energy) phonons which keep it localized.
Such ground states are infinitely degenerated and do not
belong to the usual Fock space. In order to get a "physi-
cal" theory, where one of these ground states is con-
tained, one has to change the Hilbert space from the
Pock space to a new "physical" Hilbert space. In the fol-
lowing, however, we shall restrict ourselves to optical
dispersion where such problems do not occur.

Our central results, to be proven in Sec. IV, exclude
the possibilities (i)-(iii). We show the following.

Statement 1: If co(k) &m, ~0 and fd'k g'(k)g
(1+k ) & oo, the ground state of Hz is delocalized for

0&ate

oo.
Statement 2: Under the conditions of statement 1, in-

equality (16}holds for 0& a & ao. Consequently, no sym-
metry breaking occurs.

It is interesting to contrast these results to well-known
properties of the infinite-coupling case (a~ ao ). Accord-
ing to Allcock, Adamowski, Gerlach, and Leschke, and
Donsker and Varadhan, the ground-state energy Eo of
HF ful611s the equation

lim Eola = inf [—,
' Jd x

~
Vg(x)

~~~ oo g, )) f~( = 1

2'~' Jd'x d'y
~

f—(x)
~

Eo(0) & Eo(Q&0) (16)
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In addition, Lieb' proved that the minimizing solution
of (18) is unique up to translations and exhibits an ex-
ponential falloff (see also the numerical studies of Mi-
yake"). Therefore, there exists a locahzed ground state
in this case.

III. COMPARISON %'ITH PREVIOUS %'ORK

Concerning the problem of translation-symmetry
breaking, Spohn has recently discussed a model for po-
larons in a finite volume. He proves that inequahty (16)
holds for all couplings, if

f d k g (k)/co(k)( oo,

The literature on "localization phenomena and optical
polarons" is enormously extensive.

There exists a variety of variational calculations, pro-
viding nonanalytical upper bounds for the ground-state
energy. The point of nonanalyticity at o, =a, is interpret-
ed as localization transition. Synonymously, the terms
"phase transition" and "self-trapping transition" are
used. As for a compilation of literature, see Ref. 12.
Without underestimating the merits of these varistional
approaches as such, the proposed localization transition
has to be classified as an artifact, of the approximation.
As for the particular aspects of breaking of the transla-
tional symmetry, we additionally refer to Haga'i [who
supposed inequality (16) to be violated], as well as to
Manks' and to Hipolito and de Sodas. '

On the other hand, Hohler' snd Haken' stressed in
early papers that a translation-symmetry breaking is im-
possible (without providing a proof}. Toyozawa (see, e.g. ,
Ref. 18) emphasized that the localized solution, found in
adiabatic approximations, has to be superposed to yield
the true delocslized state of this system. Gross' proved
the inequality Eo(0) &Eo(Q); apparently, this is not
sufficient to exclude symmetry breaking. Peeters and De-
vreese provide a critical review of the phase-transition
literature. Their work, in turn, was initiated by an earlier
one of I.epine and Mstz. '

The present authors (together with Schliffke) studied
the free energy F=F(Q, T), T denoting the temperature,
and proved, in Ref. 22, that inequality (16) holds for F, if
T~O and if the number of (optical) phonon modes is
finite.

Closely related to the present work are two recent pub-
lications of Spohnzi and Fisher and Zwerger. 24 Spohn
uses a localization criterion, which differs from ours; add-
ing to Hz an external potential ~r /2, ~&0, he discusses
(at finite temperature T) the functional-integral represen-
tation of the expectation value (r2) for the limits T~O
and then a~O. Note that in this finite-temperature ap-
proach and for acoustical dispersion, the problem of de-
generate ground states outside the Fock space (described
in Sec. II) does not occur. Spohn's result [see Eq. (4.5) in
Ref. 23] is as follows: Let ei(k)-k" and g(k)-k, and
assume the space dimensionality to be d. Moreover,
define o:—(4+2—2A, )/v. If one introduces a large-k
cutoff in g (k)„ then ( r )~ 00 for a.~O and o ~ 3. Con-
sequently, the ground state of the corresponding polaron
is always delocalized. Fisher and Zwerger calculate
(r ) within the Gaussian approximation and obtain
delocalization for a ~ 2.

This is in agreement with our statement 1. %e add as
a comment that the introduction of a large-I(. cutoff is
more than a technical trick, if it cannot be removed. Our
method (see Sec. IV) is free from such a shortcoming.

f d kg (k)k /co (k)(oo, m=2, 3,
where we have written the discrete k summation formally
as an integration (to render a direct comparison with our
assumptions in statement 1). Spohn shows that

lim fdig trg exp[ —PH(Q)]/trexp( PH&—)=0,
P~ co

(20}

which implies (16). In a slightly diff'erent functional-
integral representation (see Gerlach, Lowen, and
Schliffke2 ) we can directly recover (20). Interestingly
enough, for acoustic dispersion and a continuous k space,
Eq. (16) cannot be proved up to now.

IV. PROOF OF STATEMENTS I AND 2

In this section, we are concerned with optical polarons
fulfilling the conditions for statement 1. For example, the
standard optical Frohlich model [c0(k ) =coo p 0,
g(k}-1/k] is included. It has a long-ranged coupling
and in contrast to acoustical models it requires no renor-
mshzation.

Our proof is based on the following two functional
analytical theorems.

Theorem L I.et H be a Hamiltonian, defined on a Hil-
bert space % and bounded from below, the ground-state
energy being Eo Choos. e a fixed representation of the
Hilbert space. If Eo is an eigenvalue and exp( H) is po-—
sitivity improving with respect to the fixed representa-
tion, then Eo is a simple eigenvalue.

Here, an operator A is called positivity improving if
for any positive 4+0 the function A 4 is strictly positive.
This property clearly depends on the representation of
the Hilbert space. If A 4 is only positive and A %&0, the
operator A is called positivity preserving.

The second theorem provides a manageable criterion
to decide whether the exponential of a Hamiltonian is po-
sitivity improving.

Theorem II: Let H =Ho+ U and choose a fixed repre-
sentation of the Hilbert space. Suppose that U is a multi-
plication operator (i.e., that it is diagonal in the represen-
tation) and that there exists a sequence of bounded multi-
plication operators U„such that Ho+ U„~H and
H —U„~Ho in a strong resolvent sense. Then exp( H)—
is positivity improving, if exp( Ho } is positivity i—mprov-
ing.

For a proof of these theorems, we refer to Reed and
Simon (Chap. XIII in Ref. 26). We shall use them twice
to obtain a proof for statements 1 and 2.

Firstly, we turn to the localization problem and prove
statement 1. %e suppose that the ground state of H~ is
localized and then we deduce a contradiction. Let
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%,E%F be such a localized ground state of HF. Then,
because of the translational symmetry of Hz, there exists
A, ER such that %z =—exp(iA, .Pr)%, is hnearly indepen-
dent of 4, . Clearly, %2K&~ and +z is a localized
ground state of HF, too.

Now, as an insertion, we show that exp{ —H~) is posi-
tivity improving. As representation, we take the
Schrodinger (position} representation for the electronic
coordinate and the Q representation for the phonon coor-
dinates. The latter is obtained by rewriting the annihila-
tion and creation operators a(k) and a (It) in terms of
position and momentum operators q{it) and p(k} (see
Ginibre for details), such that the q(k)'s act as multipli-
cation operators. For an extensive mathematical discus-
sion of the Q representation, we refer to Simon.

In this chosen representation, HI ~ acts as multiplica-
tion operator. The analysis of Frohlich makes clear
that —under the conditions of statement 1—HI z can be
approximated by bounded multiplication operators U„as
required in theorem II. Now, in order to prove that
exp( —H~) is positivity improving, theorem II ensures us
that it is suScient to show that exp( —p /2 —Ho~„) is
positivity improving. But this follows directly from the
fact that exp( —p /2) is positivity improving with respect
to the Schrodinger representation for the electron and
that exp( —Ho ~g ) is positivity improving in the phonon

Q space (see again Simon ). By this, our insertion of the
proof of the positivity-improving property of exp( HF)—
is 6nished.

Now we can continue our original proof. By theorem
I, it follows that the ground-state energy of HF is a sim-
ple eigenvalue. But this is the desired contradiction to
the fact that we can construct two different localized
ground states %', and %2, if there would exist one local-
ized ground state +&. Consequently, the ground state of
Hz cannot be localized.

Secondly, we prove statement 2, that is Eq. (16). Let us
consider the Hamiltonian HF [see (9)], defined on anoth-
er, new Hllbeft space

%,=FL ([—a,a[i), O(a ( gp (21)

restricting the electronic functions to a finite cube with
length a (they are periodically continued to define them
on R ). Of course, we have to explain how the operators
r and p are defined on the space L ([—a,a[ ): r acts as
usual multiplication operator and p is defined as the mul-
tiplication operator in the associated discrete Fourier
space. Note that exp(ik. .p) acts in such a way as to cause
a translation of A,.

An important fact is the following: Since Hz does not
depend on r, the ground-state wave function(s) of HF on
JV, can always be written as a product, namely the
ground-state wave function(s) of H(Q„) times an eigen-
function of p with eigenvalue Q„; recall also Eqs.
(13)-(15). The associated ground-state energy is just
Eo(Q„). Let %(Q„) be such a ground-state wave func-
tion of HF on %F, Here, sin.ce p has only discrete eigen-
values, belonging to the discrete Fourier space of
L ([—q, a [ ), Q„belongs to this discrete Fourier space.
The index n at Q„denotes the discreteness.

Note that true eigenfunctions of p exist in the new Hil-
bert space %„ in contrast to the original Hilbert space

Furthermore, the phononic part of %(Q„) is square
summable too, if %(Q„) corresponds to a ground state of
H+ and if the phonon dispersion is optical, as has been
shown by Frohlich. This enables us to apply theorem I,
where the ground-state energy of HF is required to be a
true eigenvalue.

Now, suppose that Eq. (16) is violated for a certain

Q, AO, i e., ie«s assume Eo(O) &ED(Q, )=ED(
~ Q, ~

).
Then, we deduce a contradiction: %'e choose the length a
fixed as a =m/~ Q, ~, such that (Q„O,O) as well as
( —Q„O,O) belong to the discrete Fourier space associat-
ed to L ([—a, a[ ). Consequently, HF defined on%, has
a degenerate ground state. But, on the other hand, there
exists a representation such that exp( —HF } is positivity
improving, which we shall show below. This is a con-
tradiction to theorem I. Consequently Eq. (16) is proved.

We add the proof that exp( HF }, defi—ned on %„ is
positivity improving. As representation, we choose the
phonon Q space and the electronic position space
L ([—a,a[ ). In this representation, Hi acts as a multi-
plication operator. Consequently, by theorem II, all that
remains to do is to show that exp[ —(p —P~i, ) /2 —Ho ~i, ]
is positivity improving. %'e represent
exp[ —(p —P b] /2] as the Fourier integral

exp[--,'{p-P,b}']

=(2m) i Jd A, exp( —A. /2)

)&exp(iA, p)exp( —iA, P b} .

Now, exp( Ho~b) is p—ositivity improving with respect
to the phonon coordinates and positivity preserving with
respect to the electron coordinates. exp( —i){, P „}is po-
sitivity preserving with respect to both phonon and elec-
tron coordinates (see again Simon ). The positivity of
the Fourier transform exp( —)t, /2) and the fact that
exp(ik, -p) acts as translation operator ensures us that

Id Rex(p—),{, /2)exp(ik, .p)exp( i AP„—) i,s. positivity
improving with respect to the electron coordinates and
positivity preserving with respect to the phonon coordi-
nates. Consequently, exp[ —(p —P~„) /2 —Ho b] is posi-
tivity improving in the chosen representation.

Thus, we have excluded the possibility of spontaneous
symmetry breaking in free-polaron systems.

%e remark that this result also implies that the ground
state of HF is nondegenerate (in the distributional sense)
and delocalized, as it belongs to zero total momentum.
Nevertheless, we have given an extra proof for delocaliza-
tion of the polaron ground-state wave function in the first
part to illustrate the applicability of theorems I and II.

U. THK %PANNIER KXCITO}N-PHONGN SYSTEM

The %'annier exciton-phonon system can be treated in
a similar way as the free polaron. %e first recall the
Hamilton HE, the reader will easily recover the analogy
with the corresponding parts in Sec. I. According to
Haken, HE is given in the center-of-mass and relative
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H„=p /(2p) Z/r—, Z)0 (24)

HI F ——fdik g(k}fp(k, r)exp(ik R)a(k)+H. c.] .

Here,

p( k, r )=exp( ik rm 2/M ) —exp( ik—rm, /M ) „ (26)

and M =m
&
+m z and p =m

&
m 2/M are the total and the

reduced mass, respectively, ~here m, is the electron, m 2

the hole mass. g(k) is assumed to be real. The associat-
ed Hilbert space is now

(27)

%ith a Lee-Low-Pines transformation, defined by
Uz ——exp( —iP i, R), one finds

H~ ——Uz 'H@U=(P —Ppi, ) /(2M)+Hi, +Ho pi, +HI E,

coordinates R and r for electron and the hole, the associ-
ated momenta being P and p (fi= 1):

HE ——P /(2M)+Hg+Ho pi, +HI ~,
where

that now two three-dimensional Wiener integrations have
to be done; the one concerning R(v) corresponds to the
polaron case. Moreover, we have four similar interaction
terms. The theory of Spohn is directly applicable to
this case. The result is delocalization in the center-of-
mass coordinates, i.e., (R )~ ao as ~~0 for o ~ 3.

Furthermore, we remark that the proof of (16) of
Spohn for discrete k space is easily done for excitons,
too (see Schmidt for the path-integral formula and the
brief discussion of Gerlach, Lowen, and Schliffke ).

We have formulated our proof of Sec. IV in such a way
that it is directly transferable to the exciton-phonon sys-
tem. As for co(k ) and g(k), we need the assumptions of
statement 1. In fact, in the Q representation of the pho-
non coordinates and the Schrodinger representation of
the center-of-mass and relative coordinates, HI z as well
as HI E act as multiplication operators. The rest of the
Hamiltonians are positivity improving; this can be seen in
the same way as in Sec. IV. Consequently, we can apply
twice our theorems I and II to demonstrate that a simul-
taneous localization in the relative, center-of-mass, and
phonon coordinates cannot take place for any coupling
strength and to exclude spontaneous symmetry breaking,
i.e., to show (16).

where

Hz E ——fd k g(k)[5(k, r)a(k}+H.c.] .

HE does not depend on R. Therefore, P may be replaced
by a c number Q. Let HE(g) be the associated total-
mornentum decomposed Hamiltonian with ground-state
energy Eo(Q).

In the case of an exciton-phonon system, the phonon-
induced localization concerns the center-of-mass coordi-
nates (see Toyozawa, o and Adamowski, Gerlach, and
Leschke '); the translational invariance of Hz is connect-
ed with this variable. As for the relative coordinate, the
wave function is assumed to be locahzed. For physical
interesting cases (e.g., the Frohlich model) this can
definitively be proven; for general co(k) and g (k),
fulfilling the assumption. s of statement 1, this cannot be
taken for granted; we refer to Ref. 32. The aspect of sym-
metry breaking may be introduced as in Sec. II. In par-
ticular, the absence of symmetry breaking may again be
demonstrated by proving inequahty (16) for the ground-
state energy Eo(Q) of the exciton.

In the remainder of this section, we generalize state-
ments 1 and 2 as well as the proof of Spohn (mentioned
in Sec. III) to the case of an exciton-phonon system.

Concerning the work of Spohn, we remark that the
6nite-temperature expectation value of R can be
represented as a functional-integral expression (Ref. 23},
the action 5 now being given by

S=—,
' f [MR (~)+ur (w)

—2Z/'~ r(~)
~

+xR (r)]de+Sr . '(30}

As for Sz see, e.g., Adamowski, Gerlach, and I eschke.
A comparison with the action of the free polaron shows

VI. GENERALIZATIONS AND CONCLUSIONS

Firstly, we mention some generalizations. Our proof is
also valid for several branches of phonons, for arbitrary
spatial dimension and for anisotropic cases. An interest-
ing question is whether a general band structure e(p) in-
stead of p /2 in Eq. (1) can change the result. Our proof
holds for such a band structure s(p), if the Fourier trans-
form of exp[ —s(p)] is strictly positive. Then the crucial
step (22) of the proof can be done in an analogous
manner. This condition is fulfilled for e(p) =ap, a & 0, if
Og v&2 (see Montroll and Shlesinger ). Unfortunately,
the physical interesting case e(p) =Ay +pp, &, p) 0, is
not included (see theorem 5 of Simon ).

The same proof is possible if the Fourier transform of
e(p} exists and is a nonpositive bounded function, g(k)
being square integrable and ~(k) optical. Then, the
positivity-improving property of exp[ —e(p)] is shown by
developing the exponential in its power series. This is
possible, since e(p) is defined anywhere.

Another generalization is concerned with a polaron ex-
posed to an additional potential V. V may be caused by
defects, external fields, etc. If this potential is of short-
range type, the system may indeed show a localization
transition (see Lowen ). Further details will be given in
a forthcoming publication.

Finally, we remark that our discussion of syrnrnetry
breaking can also be done for a small optical polaron.
Even in this case we can prove Eq. (16) with our inethods,
Q now belonging to the first Brillouin zone of the lattice.
The result is that a small polaron cannot be localized
over the lattice sites and that the translational symmetry
cannot be broken. As for details we refer to Ref. 32.

In conclusion, we have shown the absence of phonon-
induced localization in free-polaron and exciton-phonon
systems for two cases: firstly, for acoustical disperson
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and short-range couplings (this was the result of Spohn )
and secondly for optical dispersion and arbitrarily ranged
couplings.

The absence of spontaneous symmetry breaking was
demonstrated for both polaron and exciton-phonon sys-
tems and optical dispersion. For the acoustical case there
exists no proof up to now, although the result (20), ob-
tained in a discrete k space, seems to indicate that the

ground state respects the translational symmetry in the
acoustical case and for a continuous k space, too.
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