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Hole propagation in correlated spin systems
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An approximation method is presented for the calculation of the Green's function for a single
hole moving in a correlated spin background. General formulas are obtained for calculating the
moments of the Green's function, generalizing the arinkman-Rice method to a general spin state.
Numerical results are presented for a oneMimensional GutzwiBer resonating-valence-bond {RVB)
state. In the twoMimensional case, the ban&ridth is derived. The kinetic energy of a single hole
in a correlated antiferromagnet or Gutnviller RVB state is higher than in a Weel antiferromagnet.

The discovery of high-temperature superconductors'
has touched o8' a theoretical debate on what theoretical
model best describes the materials. One intriguing possi-
bility is that a twoMimensional Hubbard model with large
intra-atomic re~ulsion U and a nearly half-filled band may
be appropriate. Each site is then occupied by a hole or a
spin. The superconductivity in this model would be the re-
sult of hole pairing induced by singlet spin bonds3 or Bose
condensation of bound hole-spin quasiparticles. 4'5

A central question in this physical picture is whether a
hole in this spin background can propagate freely or not.
If it can„ then one is justified in treating the holes as quasi-
particles and proceeding to determine their statistics, pos-
sible pairing interaction, etc. If, on the other hand, hole
motion is purely diffusive, the issues surrounding super-
conductivity from hole-hole coherence must be handled
more carefully. A second issue is the question of the ki-
netic energy of a single hole in correlated spin states. For
example, the ground state of the twoMimensional Heisen-
berg Hamiltonian has long been thought to be a correlat-
ed state with antiferromagnetic long-range order. s7 Re-
cent calculations by Gros on a d-wave resonating-
valence-bond (RVB)-type state have called this into ques-
tion. Doped systems with finite hole concentration also
have kinetic energy and it is then also possible that a nor
mal Gutzwiller RVB state9 is lowest in energy. To
resolve these questions, it is neo+sary to understand the
relation between the hole energy and the nature of the
spin background. Mean-field theories, 'e which take the
hole energy to be independent of the background, are not
suitable for dealing with this question.

In this paper, I focus on the problem of a single hole. I
follow the moment method of Brinhnan and Rice" (BR)
to calculate the single-particle Green's function (GF).
These authors calculated the GF for ferromagnetic, Neel,
and random spin configurations and' the calculations for
the Neel state have recently been refined in connection
with superconductivity by several authors. Our interest
here is in correlated spin states which are not eigenstates
of the spin projection on an axis at any site.

The single-hole GF is defined as

where [ 1Ir& is a spin state, i.e., contains no holes. I is tak-
en to be the kinetic energy operator.

H- — (1-nt —,)egret, (1 -tsar-, )+H.c. , (2)
(r,j,s

with a hopping matrix element equal to one. The opera-
tors (I tt) -merely ensure that H never creates any dou-
bly occupied sites. For generality, the spin-spin interac-
tions which stabilize

~ lr) are not included in H. This
means, however, that as the hole moves the spin
configuration is not allowed to relax. In the Hubbard
model, this is a good approximation only if U»1, where
U is the intra-atomic Coulomb repulsion.

The expression (1) may now be expanded:

i
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n

All expectation values are in the state [ y). The nth mo-
ment is determined by a path of n steps leading from site i
to site j. In the BR calculation, the matrix element could
be calculated by geometrical reasoning: If the motion of
the hole disturbed (left unchanged) the spin configuration,
the answer is zero (one). In our esse, the spin configura-
tion is not an eigenfunction of the z component of spin on
the sites, and we must do the fully quantum-mechanical
calculation of the operator product along a path from i toj in the state [ lr). This may be carried out at low order in

n by using the fermion anticommutation relations, the
identities etre;t -T(1+o,'), etteti - —,

' (1 -of), e)e;)
ot+ ette;t o; and the fact that &nt) 1. ot' is the o

th Pauli matrix on the site i For exam.ple, if i and j are
nearest neighbors, the m z term in Eq. (1) is given by

—m $&etebe)ej, ) —
2 m &1+cr; crJ& . (4)
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For i,j next-nearest neighbors, the first nonvanishing term
is order m 3, and there is normally more than one path
from i to j The contr. ibution from a path i k j is

—,'m 3fl+&cr; crt, +crt crt+oj crt, )+i&ca; (okxcrj))) .
(5)

In a term from a path of length n, all rotationally invari-
ant spin-correlation functions up to order cr"+' appear,
and the complexity of such functions increases rapidly
with n An exception oc. curs for any path having retraced
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steps. The retracing preserves the state and the expecta-
tion value is the same as for the shorter path with the re-
traced steps deleted. To calculate expectation values at
high order, we make the approximation of neglecting all
terms involving cross products of e's. Such terms may be
expected to be small for the states we will consider, with
spins tending to be parallel or antiparallel. The symmetry
of the operator product, together with the fact that the ex-
pectation value is always unity for

~ y), a ferromagnetic
state, leads to the result that

&c;H"c,& 2 "g g((e;, e;,)(e;, et, ) (e;, , e;, )&
paths I 0

even

(6)

for paths with no self-intersections. Here„ the sum is over
paths of length n, and the I 0 terms in the sum is equal
to one. The e subscripts label sites in increasing order
along the path from il i to iI j. The number of terms
in the sum over I is 2". In one dimension (1D), the simple
topology allows explicit calculation —any path from i toj
is the product of the direct path and retracings. Every ex-
pectation value at a given order in Grj (tn) is the same, and
is precisely (6) with iI increasinlI along the chain. The 1D
GF is, therefore, Gt~(tu) MJG;~(tu), where M J is the en-
velope function given by (6) and

G (ro) [tu+2cos(k)) 'e "" "dk/j & -a
is the free (ferromagnetic) GF. For random- spins,

M;J 2 ~' J~. To compute M~&, we factor the spin prod-
ucts. ((e] ' e2) (e3' e4)) (e] ' e2)(e3 es), and similarly
for higher-order functions. The pair correlation function
for all separations has been calculated by Gebhard and
Vollhardt'3 for the 1D U ~ Gutzwiller wave function.
They find &e; e~& 4(-1)'Si(xr)/err, where r ~i -j~
and Si is the sine-integral function. With this input, M,
may be computed numerically which I have done for r up
to 24. The results are shown in Fig. 1.

~ M, ~
behaves

roughly as (0.576)'. Its falloff is, therefore, exponential,

M~

(0.576)

just as in the random case, though slightly slower. In ad-
dition, and more important for later considerations, it os-
cillates with a period of roughly 5.

A spatial Fourier analysis of G;, (ro) will be presented in
a future publication. It is already clear from the qualita-
tive behavior of G that its poles lie well off the real axis ex-
cept for a limited range of wave vectors corresponding to
the oscillations of M, . The electrons propagate in a
diffusive manner with a relatively short coherence length.

A more physically interesting case is that of hole
motion in two dimensions. I consider only the square lat-
tice. Here, closed loops, i.e., paths with self-intersections,
are possible and the number of paths to be considered
grows rapidly with the moment to be computed. The sim-
plest approximation is to treat the lattice as a Cayley tree
to eliminate loops, which is very accurate for a Neel anti-
ferromagnet. " Consider first the diagonal GF, G;;(ro)
As BR point out, G;;(rn) is independent of spin
configuration in this approximation. Since G;;(tn) deter-
mines the bandwidth of the hole, this implies that the ki-
netic energy of a hole in the Gutzwiller RVB (for exam-
ple) state would be the same as that in the Neel state.
The differences in the two states arise when closed loops
which return to the origin are considered. On the square
lattice, the simple four-step loop leads to nonzero contri-
bution at order ro 5. The matrix element for a general
spin state for this path may be calculated. If the spins are
labeled 1, 2, 3, 4 clockwise around the square, then

(c)H'cr'&=-m —,
' [1+&ep e3)+&e2 e4)

+&e3 e4& i(e2—(e3 e4))] .

For the two-dimensional d-wave state, or the Gutzwiller-
RVB state, the spin correlations can be calculated numeri-
cally. '2 The result, together with results for the antifer-
romagnet, is listed in Table I.

TABLE I. List of characteristics of various two-dimensional
spin states on the square lattice. The normal RVB state is that
de6ned in Refs. 2 and 9. The d-wave state is the nominally su-
perconducting state defined in Ref. 8. The Oitmaa-Betts state is
a correlated antiferromagnet as described in Ref. 6. The second
and third columns give the nearest-neighbor and second-
neighbor spin correlation, ~hereas m, listed in the fourth
column, also contains a contribution from the second-neighbor
correlation. The Mth column gives the kinetic energy of s single
hole in the corresponding state. This is calculated using the
square loop approximation, explained in the text. The spin
correlations for the RVB states are taken from variational
Monte Carlo calculations of C. Gros, R. Joynt, and T. M. Rice
(unpublished). The correlations for the Oitmaa-Betts states are
taken from Ref. 6.

I

10 &Cr;. a, )I &O;" a, &2 Kinetic energy

FIG. 1. Plot of the dimensionless function M„vrhich deter-
mines the spatial decay of the single-hole Green's function in
one dimension. M, has been normalized to remove the exponen-
tial falloff -(0.576)'. The oscillations arise from the antiferro-
magnetic correlations in the Cyutzvnller RVB state.

Ferromagnet
Normal RVB
d-vvsve RVB
Neel
Oitmaa-Betts

1

—1.10
—1.28

—1.31

1

0.56
0.44
1

0.78

1
—0.16
—0.28

0
—0.21

—3.97
—3.37
—3.29
—3.46
—3.34
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We now take a clue from the oneMimensional case and
assume that the exponential falloff and oscillation in sign
of the matrix elements for larger loops allows us to keep
only the contributions from the squares. The longer loops
will be subject to destructive interference. This is the fun-
damental approximation of this paper.

We now follow BR and write G-(m) 1/m(1 —g),
where g is the sum of all paths which return for the first
time to their starting point only at the end of the path.

(4/co )[1—(3+2m)/m ] includes 12 branched re-
traced paths and 8 loops and is correct to order m 4. This
reasoning may be continued' and leads at infinite order
to

—~ 1 — — 1—2nt 2'
N N

1/2 '
12
Q3

2
I

The density of states for hole excitations is p(m)
(1/x)lmGg(e-t'8) and the band edge is given by set-

ting the argument of the square root to zero. The results
are shown in the table.

The ferromagnetic result for which the exact answer for
the kinetic energy is -4 is included in order to show that
the inclusion of loops gives very good results accurate to
better than 1%, even when there is constructive interfer-
ence from longer loops. The loop approximation should
be better for the antiferromagnetically correlated states.
A surprising result is that the kinetic energy of a hole in
the Neel state is considerably lower than in correlated
states, and may be traced to the fact that m &0 in the
latter due to stronger nearest-neighbor correlation. Then
translation of the system with a hole gives a larger charge
in phase to the many-body wave function. The true anti-
ferromagnetic state has less long-range order and the
bonds have more singlet character, raising the hole ener-

gy. The energy of the hole in the normal Gutzwiller-RVB
state is between that in the Neel and in the true antiferro-
magnetic states. Its nearest-neighbor correlations are less
negative, relatively lowering the hole energy, but the hole
gets less help from longer-range parallel spins to lessen its
energy further. The d-wave superconducting state has
higher kinetic energy than all the others. This is to be ex-
pected and is due to the broader input momentum distri-

bution, just as in ordinary Bardeen-Cooper-Schrieffer
(BCS) superconductivity. Let us discuss case by case the
implications of these results for the stability of the various
states with holes. The low energy of the hole in a fer-
romagnet merely confirms a well-known result 5 in the
absence of spin-spin interactions the ferromagnetic state
with one hole is stable. If there are antiferromagnetic
nearest-neighbor spin-spin interactions, then at half-filling
one might expect a state with long-range antiferromagnet-
ic order. It is remarkable that the addition of holes moves
the state towards more long=range order (Neel state), but
this conclusion is inescapable. This indicates that the usu-
al idea that the Neel state should be destroyed most
quickly by the addition of holes is not correct. The ener-
gies of the correlated antiferromagnet and the d-wave
RVB state are already extremely close in the half-filled
case. As holes are added, the antiferromagnet may be-
come stable unless longer-range interactions are added.
As concerns the competition between normal and d-wave
RVB states, it appears that at some finite concentration,
the normal state will eventually become lower in energy.

Using the same methods, one can also calculate numeri-
cally the results for Gt (m) for iWj. This requires
knowledge of longer-range spin correlations and more ela-
borate path-counting methods and has not yet been under-
taken.

In conclusion, I have formulated a method for comput-
ing the Green's function for holes in correlated spin sys-
tems. This can be used to determine the character of the
propagation and the kinetic energy. This is an improve-
ment over mean-field theories which ignore the spin
configuration. The kinetic energy, together with spin-
correlation energy, determine the delicate relative stabili-
ty of competing phases in the doped Mott insulator.
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