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Transport in porous media is studied using renormalization-group methods arith particular em-
phasis on surface conduction and the determination of a measure of the characteristic length scale
of dynamically connected pores. The nonhnear behavior of the conductivity as a function of pore
Suid conductivity increases ~ith the sinuousity of the pores. The nonuniversal critical behavior of
the transport at the percolation threshold for po~er-lair pore size distributions is studied.

Porous media, such as sedimentary rocks, catalytic
beds, and biological cells play an important role in many
disc1plines. In general, transport in porous media 1s con-
trolled by the pore size distribution and their connectivity.
Renormahzation-group (RG) techmques have proved to
be valuable for studying problems with many length
scales. In particular, the hierarchical lattices, whose basic
units are shown in Fig. 1, are amenable to a simple RG
analysis and mimic a cubic lattice in d ~3 and the per-
colation backbone in d ~4. We use these lattices to study
transport in porous media with an emphasis on surface
conduction and the elucidation of the A parameter, 2 s a
length scale characterizing Suid transport. We show that
the electrical conductivity of a sample with Sxed surface
conductivity X is a nonhnear function of pore Suid con-
ductivity crf when the pore space is sinuous. For these
models we show that A is still the relevant size parameter
for Suid Sow permeability. Further, using the hierarchi-
cal models for the percolation backbone and scaling
theory, 7 we study the nonuniversal critical behavior of the

(a)

F16. l. Hierarchical models for (a) d 3 cubic lattice and
(b) the percolation backbone in d 4. IThe number of singly
connected bonds in the basic unit is 8/(6-d), 2 ~ d ~ 6.] At
each level of the iteration, every bond is replaced by the basic
unit on the left.

conductivity, permeability, and the A parameter at p p, ;
the exponents depend on the probability distribution (PD)
of pore radii P(r) in the r~ 0 limit.

Consider a porous medium in which Suid-filled pores
form a connected network embedded in an insulator. The
ehxtrical conductivity of the medium e is proportional to
of and it depends on the porosity (the volume fraction of
the conducting phase). The permeability k, is a Suid-
transport analog of tr. It is defined by the Darcy equation
v —(k/tl)VP, where v is the Suid Sow velocity, t) is the
viscosity, and VP is the pressure gradient across the medi-

um. On changing all re and grain sizes by a factor b, k
changes by a factor b unlike cr, which is scale invariant.

The electrical conductivity of the porous medium is ob-
tained by solving Poisson's equation in the pore space.
Following Ref. 2, the dynamically connected pore sizes
can be characterized by means of a geometrical pore-size
parameter A, which may be determined by computing tr
in the presence of an additional pore surface conductivity
Z. Such surface conductivity arises in shaly rocks, due to
clay minerals which coat the pore-grain interface. '

When the bulk conduction due to crf dominates the sur-
face conduction, perturbation theory yields

lim a(trl;X) tr(ttf, Z 0) 1+ +0(Z2) . (1)2X
x-0 Aef

In general, 2/A f [Eo( ds/J IES) dV~, where Eo is
the microscopic electric field when Z 0, the numerator is
integrated over the pore-wall surface and the denominator
over the pore volume. A is well defined for any porous
medium and describes the effects of an internal boundary
layer in a variety of situations such as the shaly rock
problem, high-frequency viscous damping of acoustic
waves, and healing length effects in fourth sound. It has
been shown in various situations that A may also pro-
vide a measure of the length scale related to k,

where F ctf/a(tsf, Z 0) and c is a number of order uni-
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ty. Simulations of a model periodic porous medium, cal-
culations of periodic arrays of charged spheres in an elec-
trolyte, and experiments on rocks show curvature in the
cr vs of plot. On the other hand, analytic calculations on
network models of porous media using effective medium
theory and percolation ideas yield nearly linear behavior.
We show that the curvature can arise due to geometric
effects when the surface conduction paths are different
from the bulk conduction paths. The nonlinear depen-
dence of cr on af for nonzero values of X is important
when deducing the properties of shaly rocks.

Consider, first, a cylindrical pore of radius r and length
l. The electrical conductance is given by

rr 2X
g ~ f f +

I' CFf

2 Xo'~of j.+-
1' CFf

In thiscase, A r, F 1, and theo vs a plotis astraight
line. The hydraulic conductance g» k/rf)(trr 2/l) with
k r 2/8. gs is proportional to r ~. From Eq. (2), c=1.

The conductance of a threeMimensional (3D) network
of cylindrical tubes can be estimated using the Migdal-
Kadanoff RG scheme' illustrated in Fig. 1(a). Each of
the bonds represents either an electric conductance, hy-
draulic conductance, or a A value. In practice, a pool of
typically 105 bonds is constructed for each of these three
cases. Eight members of the pool are selected at random
and combined to give one member of a new pool. The pro-
cess is repeated until a new pool of 10 bonds is produced.
This corresponds to one iteration. For the starting pools
given a PD of cylinder radii (the lengths are assumed to
be fixed), the A's are equal to the radii, while g, and gs
are given by the equations in the previous paragraph. The
g's are combined using Kirchoff's laws and the recursion
relation for A is

1/A'-(a lb/+ bla2)/(a2b2) —(a i+b l)/(a2+ b2),
where a~ pe lA] and bz g) sA]. This relation is
obtained by making a small X expansion of cr.

For identical pores, A is invariant from one iteration to
the next, whereas the conductances grow by a factor of 2.
The conductivity is obtained on dividing the conductance

after k iterations by 2 . In the random case, an average is
taken over the members of the pool. Convergence is ob-
tained within about 10 iterations. The results are shown
in Table I. For a uniform PD of initial radii in the inter-
val [0,1), A=0.61 and c=1.37, compared to the effective
medium theory result of A=0.51 and c=1.46. (A and
the radii are in the same units. ) In accord with effectiv
medium theory, the o vs crf plot (Fig. 2) obtained by RG
techniques, for the 3D network is virtually straight. Re-
placing each bond by two tubes in series yields only a
slight curvature. For these two cases, the bulk and the
surface tortuosities are similar.

Real pores are rarely straight tubes. The effects of a
sinuous pore (for which the surface and bulk tortuosities
are different) may be simulated by combining in series n

tubes of fixed length but varying in radii. The ordering of
the tubes is irrelevant. The radii were chosen to increase
linearly from ro 0.2 with increments tt r 0.2. Figure 2
shows the conductivity when each sinuous pore is identical
and consists of 100 and 1000 subtubes. The larger the n,
the larger the curvature. A similar effect occurs when Ar
is increased. Figure 2 also shows the results of a network
of random sinuous pores. The randomness is introduced
by choosing n for each pore from a uniform PD between 1

and 200 and it does not remove the curvature in the a vs

crf plot. Thus, geometry alone (without the interplay of
clay chemistry) is sufficient to produce nonlinear effects.
A and c for the 3D sinuous pore network are shown in
Table I. For all the cases studied, c-1 and therefore A is
a proper measure of the length scale governing k.

Are there any geometries for which c is not close to I?
Consider the case of a system near its percolation thresh-
old. If all the occupied tubes have the same radius, then
c=1. Suppose, however, that the occupied tubes are tak-
en from a PD which is a power law; such distributions
model continuum percolation" and are known to change
the transport exponents in nonuniversal ways. To analyze
this problem we use the hierarchical model for the per-
colation backbone6 of Fig. 1(b). This model is designed to
incorporate the nodes-blobs-links structure of the back-
bone. We take each bond in the basic unit to represent a
cylinder of radius r chosen from a PD P(r) behaving as
r' ' for r~0 (all cylinders have the same length I).
Since A r, g, -r, and gs-r, the PD's for these quan-
tities are given by power laws with the exponents a~ a,
a, a/2, and atj a/4, respectively. The four interior

TABLE I. A and c for 3D cubic pore networks. [r~, r21 refers to a uniform distribution between r~

and r2. ISP (RSP) denotes identical (random) sinuous pores.

Single tube
Single tube
Double tubes
Double tubes
Double tubes
ISP-100 tubes
ISP-1000 tubes
RSP

Pore radii distribution

0.61
1.53
0.46
0.67
0.61
0.27
0.28
0.27

1.37
1.09
1.40
1.26
1.37
0.82
0.81
0.81



TABLE 11. Results for the exponent [—(vgyf, ) '] for the
electrical conductance, the hydraulic conductance, and A for the
model of the percolation backbone (Ref. 6) in d dimensions.

a, in[8/(6 —d)l/in[8/(6 —gf)+1/2l, 2~ d ~ 6.

2.0

—1/(vf yf, )

min(a„a, )
min(ae, a, )

Cp

0 I

8.0

FIG. 2. Normalized electrical conductivity of the 3D net-
work, rr(frI, X)/cr(0;Z) vs the fiuid conductivity cry for surface
conductivity X 0.5. Dotted hne, random network of single
tubes. Dotted-dashed hne, random network of double tubes.
Solid line, uniform network of sinuous pores with the number of
layers as indicated. Dashed line, random network of sinuous
pores with 100 layers on an average.

from a PD Pn(A)-A' ' in the A~ 0 limit. Upon itera-
tion, the PD acquires a fixed shape and it narrows by a
factor 4 '/' with each iteration in accord with Table II.

To understand these results, consider the case when all
the A's are widely separated. Equation (4) then reduces
«A'~min[Ate Azs A3, A4s max(Ass As)j showing the ir-
relevance of the blobs. It is also useful to consider the re-
cursion relation for two tubes in parallel (series) with A
values of As and As (A~ and A2):

A/+4 &A')

A, +A

sites of the basic unit in Fig. 1(b) are decimated out to ob-
tain an eff'ective A, g„and gs between the end sites. We
represent the physical quantities such as A, g,„and gs
generically as J and study the scaling of J(L ),

J(L)-L '-L)'"',
where J(L) is ths "coupling" J for a ssrnple of linear size
L, L ~

-L "' is the number of "red" bonds at length scale
L (Ref. 12) (a red bond is one whose removal cuts the
backbond into two pieces' ), and v~ is the correlation
length exponent at the threshold. Our results for
(very~)

' are shown in Table II. The results for g, and gs
are obtained by noting that the conductance problem
maps onto the Heisenberg ferromalInet and that both
problems have been studies before. ' ' ' The new in-
gredient is that a, and as are different. The A problem
may be solved following the treatment in Ref. 15. The re-
sult is that (analogous to the Ising ferromagnet's) the
blobs do not play any role and it is only the "red" bonds
that contribute leading efFectively to a 1D problem. The
recursion relation for the unit of Fig. 1(b) is

A5+A6

~ +e) —A/8,

where

cjf g; )A;, k 123,
A -c)+e2(As+ As)+ (e)c2 —c3)(A5+Q),
8 1+e2(A/+lg) .

We have analyzed this recursion relation, as in the stud-
ies of the 3D network. The initial pool of A's are selected

2 1
v y 2/a+maxP e'a, ma, x

C Cc

Remarkably, for a ~ (a gap at the origin in the PD of r)
and a (2c„e(L) is scale invariant. For e & 4a„
v~y~ 2/e but for 2c, (c (4a„v~y~ 1/e, -2/c & 0.
For the Swiss cheese (inverted Swiss cheese) model" in
3D, c, -', , as —', , a~ 1 (a, 2, as 3, aA 2) lead-
ing to scale invariance (no scale invariance) of e.

Using finite size scaling, the derived exponents may be
related to percolation exponents in the limit p p, :
cr- (p —p, ) ', where a denotes the conductivity defined by
J-rJL~ for the p 1 (no dilution) case with
r ~yvp vpyps ye ~d 2, ys d 2, and yA
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A(Ag(A(+A)) (A ~)

Ai'+A)

When As and As are both picked from a PD with an ex-
ponent a, then it is straightforward to show that
P(Aperellel) Aygra]Iel for Aperene&~ 0. In the series case,
when A~ and A2 are characterized by exponents a~ and a2
(unlike the parallel case, the series case does not neces-
sarily have a~ az, a blob can be series with a "red"
bond), Ag eg c~n be shown to follow the distribution
P(Age„)-A „'" again showing that the blob con-
tributions are irrelevant.

Using the results of Table II, the scaling behavior of c
defined in Eq. (2) is c(L)-L '-L, ~'"' with
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