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%e formulate a Ginzburg-Landau theory for the resonating-valence-bond model of antifer-

romagnetism and high-T, superconductivity, the order parameters of which are complex link vari-

ables. %e investigate the dynamics of their phase part using the Monte Carlo method and obtain

an indication of a transition to a superconducting phase. %hen the doping parameter is zero, the

theory becomes equivalent to a U(l) lattice gauge theory in two dimensions.

The discovery of high-T, superconductivity and the
subsequent active experimental analyses have posed the
challenging theoretical problem of clarifying its mecha-
nism. It is widely believed that superconductivity occurs
predominantly in two&imensional planes. There is grow-
ing suspicion that the mechanism may involve antifer-
romagnetism rather than the conventional electron-
phonon exchange. '~ Among many other theoretical ap-
proaches there is much interest in Anderson's resonating-
valence-bond (RUB) model, z~ which was originally pro-
posed to describe the ground-state of antiferromagne-
tism.

When we recall the success of Ginzburg-Landau (GL)
theory in describing the Bardeen-Cooper-Schrieffer
(BCS) model, it is appealing to construct a similar theory
for the RVB model. Since the RVB model is based on the
concept of valence bonds and spin-singlet pairs of
nearest-neighbor electrons, one needs to introduce in GL
theory order parameters which are capable of describing
these bonds. This is in contrast with the conventional
BCS model. There the order parameter is chosen to be a
complex scalar field, and the corresponding GL theory
contains relatively simple dynamics of the XY-model type.
In Ref. 4 Anderson, Baskaran, Zou, and Hsu pointed out

the importance of the phase degrees of freedom among the
order parameters. In this paper, we formulate a GL
theory for the RVB model and study its phase dynamics
beyond mean-field theories by using the Monte Carlo
method.

Our starting model Hamiltonian is that of Baskaran,
Zou, and Andersons (BZA),

HazA(C, C) -tb g (C„, C~+f, +H.c.) (1)
Zy&aa

—Jgb.',fb.„-idgn„...
Z, l Z, cy"

where Ct is a creation operator of an electron of spin o
at site x on a two-dimensional square lattice,

bt, (C,t, tCt~ 1-CJ,1C,t+f, 1)/v2

is a creation operator of a valence bond on the link
(x,x+i) (i 1,2) and n„, Ct, C„, The .parameters t
and J have their origin in the Hubbard model with on-site
electron repulsion (U) 0).s's We include the chemical
potential to guarantee the relation (n, ,t+n, ,i) 1-b for
the doping parameter b. We consider the partition func-
tion Z Trexp(-pHazA) and write it in a path-integral
form over Grassmann variables: 7

Pf NZ- lim g Q dfif'(x, r)did (x,v)exp —g '+fit'(x, r)fiiy. (x,i+I) -fir.(x, r)]l+apP(r)
i Z,e4 ,Z,e

where yft(r) HazAfy (x, r), fif (x,v)l, and hp /j/N. We introduce the auxiliary collective fields Bf(x) to describe
the valence-bond operators b, ,;. By putting a complex variable Bf(x) on the link (x,x+i) with Gaussian measure, the
four-fermi interaction in (2) is converted into the form of -Bf (x)Bi(x)+J lzfbt, ;8;(x)+H c l ABer.ez. in. integral
over electron variables then generates a determinant for the full quadratic kernel

(y)', yi)(x, r)r(x, i;x', r')(tltt, yt )'(x', v') .

The effective theory in terms of Bf(x,z) reads

Z +18 (x,s)dB;(x, r)detI exp -ap+Bf'(x, v)Bf(x, r)4 Z~r Zyf, t

The block elements of the matrix I have the following representations:

I ii-b„„f(b...+, -b, ,)/~P —i b...) -(tb)b„,gb„,„,,

(3)

I.»- -&J/2B„.QB;(x,.)B... ,. ,+' l

and122 —I (ii~g')r, I 21 I i2, where 8-;(x,r) 8;(x—i, r). In order to get GL theory„we now perform the follow-
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ing procedures on (3). First, we consider only the static (zero Matsubara frequency) mode in 8i(x, r), which we call
8;(x). Second, we expand Trlnt up to the order of 8 . Third, w'e retain only the terms that have the short-range in-
teractions (accessible within the secondwrder hopping expansion with respect to rb). The similar procedures are em-
ployed in deriving GL theory from the BCS model. Here we divide 8;(x) into its radial and phase parts,
8;(x) p (x)U;(x) [Ui(x) 6 U(1)]. We neglect the Iluctuation of the radial part and replace it by a constant p. The
(JL theory then takes the form

Z - DdU;(x)e", (4)
X,l

where A Ao+A~+AU. Ao is an action which does not include 8:
Ao 2+ln{1+exp[pp+2prb(cosp~+cosp2)ll,

P

where the momenta are given by pi 2';/L(rti 1,2, . . . ,L). A~ is a coherent term, A/V Czp2+C4io", where V L2,
Cz~ -2p+2J(Goo+Ging), and Cs -7JzG44/2. AU is responsible for the U(1) phase dynamics (see Fig. 1),

r

AU ~Ux, 2Ux+2, lUx+1, 2Ux, l+&l(Ux+2, lUx, t+Ux+1, 2Ux, 2)+rr2ZUx i,iU-x, i
X l

+rr3(Ux, 2Ux, i+Ux, 2'-i, i+Ux-2, 2'-i, i+Ux-22Ux, i)+C C

where

J p G44/2; ai Jp Gi), rr2 Jp (Go2+Gi)); rr3 Jp (GM+G)i) .

The Gij are sums of products of Green's function,

g(x) +exp(i')/ exp(i8„) —I -aP p+2tbgcospi
V p

over Matsubara frequencies 8„x(2n —I )/N (n 1,2, . . . ,N), and given by

G~-gg(0)g(0)', G» -gg(I)g(I)',
Go2-gg(0)g(2)', Go3-~(0)g(1+i), G J[g(0) (0)'j2 .

When b is zero, the RVB model is known to describe
antiferromagnetic quantum Heisenberg spins. At this
point, only )I, survives in AU and our GL theory becomes
(after the conjugate transformation of half of the U's)
equivalent to a U(l) lattice gauge theory, which is exactly
solvable in two dimensions. This four-body term gen-

crates resonance (Sip-Sop) of valence bonds. As b in-
creases, the two-body interactions become important.
They describe the hopping of valence bonds and violate
the U(1) gauge symmetry at 8 0.

In order to determine p and p as functions of T and b,
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FIG. 1. Schematic diagrams of AU in Eq. (4). A segment
with an arrow represents Uor U . The A, term (—

A,UU UU )
has a different structure and the opposite sign (k & 0) from the
plaquette term (g 2UUU~U ) in lattice gauge theory.

FIG. 2. Phase structure in the 8-T plane. The line of y 3 is
shorn to distinguish the incoherent condensate and the coherent
condensate, the latter should be identi5ed as a superconducting
state.
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we use two conditions: (i) imposing &n& 1 —b, and (ii)
minimizing the effective action -lnZ with respect to p.
This is a complicated coupled problem because one needs
to calculate U(1) dynamics also. We use only the U-
independent action As+A~ to calculate {n) and minimize
it. This procedure is found to be a good approximation
after a numerical study of AU. One can show that for
each set of (p,p) at (b, T) there is associated a solution
(—p,p) at (—b, T). Therefore, we consider only positive
b. We have chosen J 0.1 eV and r 0.3 eV (see Refs.
1-4). In Fig. 2 the line of p 0 is given, across which the
system exhibits a second-order phase transition and the
condensate starts to develop. We have calculated some
other p 0 curves with different sets of J and t. They look
rather similar to each other, when plotted in the
tb- J 'T plane. The intercept at the b 0 line is always
given by T J/(4k).

We used a 20& 20 lattice to calculate the coeScients in

AU. We observed that the finite-size effects become
strong for very low temperatures. Then we calculate
several kinds of U correlations for the U(1) system of (4)
by the standard heat-bath Monte Carlo method. 'o

The results on a 202 lattice are presented in Figs. 3, 4,
and 5. The data are classified according to the different
values of y Ptb, each of which represents a straight line
in the b-T plane. For the plaquette expectation values, we
observe no significant change up to y 10.0 (the max-
imum value in our simulation). Parallel and perpendicu-
lar UU correlations in Figs. 4 and 5, in contrast, take al-
most negligible values up to y 3.0, " but then suddenly
increase. Therefore, the region of condensate in the 8-T
plane may be partitioned according to the magnitudes of
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FIG. 4. Expectation values of parallel bond-hopping term vs

r. The inset shows cross sections at 8' ~0.06 and 0.07.

two-body correlations. We draw in Fig. 2 the line of
y 3.0 as a possible borderline.

Due to the finite size of the lattice, we cannot conclude
that this sharp change demonstrates a phase transition,
b« it is tempting to regard it as an indication of a phase
transition from the antiferromagnetic insulator phase to
the superconducting phase. They are characterized ac-
cording to whether the bonds locahze or move. The two-
body hopping correlations should be sensitive to this tran-
»tion. In Fig. 2 we observe that the highest possible tem-
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FIG. 3. Expectation values of the palquette term plotted
along constant y's vs r= [(kT/r ) +b I '~s. The case of y 0 al-
lows for an exact solution and is depicted by a line without
markers.
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FIG. 5. Expectation values of perpendicular bond-hopping
term vs r.
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perature in this "superconducting phase" is more or less
100 K.

Our straightforward GL theory describes two diFerent
mechanisms: (i) p condensation or noncondensation, and
(ii) U(1) phase coherence or incoherence. From the
above argument, one may characterize these cases by (i)
super or normal, and (ii) metal or insulator, respectively.
For example, a superconductor is a coherent condensate,
and an antiferromagnetic insulator is an incoherent con-
densate.

In conclusion, to derive GL theory and explain high-T,
superconductivity from the RVB model, we have used as-
sumptions and techniques similar to those in BCSWL
theory, and get diFerent kinds of order parameters (site
versus link variables) and phase dynamics [XFtype versus
U(1) gauge + UU hopping]. Although our U(l) dy-
namics are more complicated due to the competing in-

teractions, it can still be handled by a standard Monte
Carlo method in lattice gauge theories. We hope this
eFective theory will prove itself useful in describing high-
T, superconductivity, just as the standard GL theory has
in the case of BCS-type superconductivity.

Note added. After submission of the paper, we became
aware of work by Baskaran and Anderson. '3 They have
also described a RVB model in terms of U(l) lattice
gauge theory, but did not do Monte Carlo calculations.

We would like to thank Professor M. Kulic and Profes-
sor K. Schotte for discussions and encouragement. The
Monte Carlo calculation was done on a CRAY-XMP at
Konrad Zuse Institute, Berlin. We thank G. Baskaran for
useful correspondence.
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