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The thermal properties of the 14 nonmagnetic cubic metals through the 4d transition series are
derived from 6rst-princip}es electronic-structure calculations coupled with a Debye treatment of
the vibrating lattice. Debye temperatures and Gruneisen constants are derived from an analysis of
the compressional characteristics of rigid-lattice binding curves and are used to de6ne the contri-
bution of the lattice vibrations to the free energy. A minimization of the resulting free energy
with respect to volume yields temperature-dependent lattice separations and coeScients of thermal
expansion. Theoretical values of cohesive energies, equilibrium lattice separations, bulk moduli,
Debye temperatures, Gruneisen constants, and coeScients of thermal expansion are derived direct-

ly from computed electronic-structure results. Good agreement with experiment is found for all

computed quantities.

INTROIDUCTION

Using self-consistent band calculations, it now is a
routine matter to calculate the binding curves for s sys-
tem of atoms on a given lattice. Analysis of such curves
for elements' and for simple compounds and alloys
yields theoretical ground-state properties such as
cohesive energies, equilibrium lattice separations, and
bulk moduli that sre in good agreement with experi-
ment. In addition, binding curves displayed over an ex-
tended volume range show an snharmonic character and
slant towards higher volumes, thus implying thermal ex-
pansion and vibrations of atoms from their mean lattice
positions. In this work we use Debye-Griineisen theory
to extend the analysis of calculated binding curves to
finite temperatures. In addition to the usual ground-

state properties, we derive a characteristic Debye tem-
perature from the calculated bulk modulus, and a
Griineisen constant from the anharmonicity of the bind-

ing curve. The evaluation of these two quantities is
suflicient to define the free and zero-point energies of a
vibrating Debye lattice, which we then add to the calcu-
lated binding curves to yield free energies.

%'e have done a series of electronic-structure calcula-
tions using the augmented-spherical-wave method and
the local-density-functional theory for the 14 nonmag-
netic fcc and bcc elemental metals up to silver with
signer-Seitz radii spanning the range of approximately
+10% of the equilibrium ground-state lattice separation,
ro, in intervals of 0.02 a.u. The computation of ground-
stste and thermal properties requires the evaluation of
various derivatives and is most easily accomplished by

TABLE I. Morse parameters for the cubic metals on a rigid lattice. The equilibrium %'igner-Seitz
radius, ro, is in atomic units (a.u.), and A, is in reciprocal atomic units (a.u. ). The linear parameters
D and 3 are in Ry/atom. E„, is the calculated free-atom energy in Ry.

System

bcc Li
bcc Na
fcc Al
bcc K
fcc Ca
bcc V
fcc Cu
bcc Rb
fcc Sr
bcc Nb
bcc Mo
fcc Rh
fcc Pd
fcc Ag

ro (a.u. )

3.1429
3.7950
2.9594
4.7719
4.0186
2.8246
2.6658
5.1530
4.3813
3.1359
2.9972
2.8627
2.9281
3.0541

k (a.u. ')

0.7339
0.7269
1.2142
0.6303
0.6095
0.9953
1.5099
0.5898
0.6276
0.8634
1.0732
1.4945
1.5784
1.5788

0.1150
0.0872
0.2163
0.0724
0.2728
0.6889
0.2481
0.0696
0.2167
0.9270
0.8502
0.4319
0.2727
0.1713

—14.719
—322.900
—482.715

—1196.377
—1351.321
—1883.254
—3275.512
—5872.465
—6258.609
—7501.952
—7945.705
—9366.435
—9870.423

—10389.980

—14.709
—322.902
—482.637

—1196.382
—1351.442
—1883.529
—3275.464
—5872.477
—6258.683
—7502.361
—7946.087
—9366.418
—9870.419

—10389.748

37 790 1988 The American Physical Society



37 CALCULATED THERMAL PRQPERTIES OF MFTALS

TABLE II. Comparison of Morse parameters for some cubic metals. The Slater values are derived
from experimental latent heats of vaporization and compressibilities.

bcc Li
bcc Na
fcc Al
bcc K
fcc Ca
fcc Cu
bcc Rb
bcc Mo
fcc Ag

0.1148
0.0835
0.2155
0.0698
0.1365
0.2605
0.0657
0.4974
0.0861

D {Ry)

0.1150
0.0872
0.2163
0.0724
0.2728
0.2481
0.0696
0.8502
0.1713

0.84
0.72
1.28
0.46
0.88
1.50
0.50
1.68
1.48

A, (a.u. ')
Theory

0.7339
0.7269
1.2142
0.6303
0.6095
1.5099
0.5898
1.0732
1.5788

fitting the calculated points to a functional form. %c
have found that a 6t to the four-parameter Morse func-
tion defined in Eq. (A12) of the Appendix yields an ade-
quate representation of our calculations. The four
Morse parameters, A, D, A, , and ro de5ned in the Appen-
dix are summarized in Table I. In all cases, the fit to the
functional form reproduces the calculated energies to
better than a few tenths of a mRy over the specified
range. Included for reference are the calculated free-
atom total energies.

Slater attempted to construct cfkctive Morse curves
by identifying D with the experimental cohesive energy,
computing ro from the experimental density, and ex-
tracting A, from the experimental compressibility. In
Table II we compare our theoretical values of D and k
with Slatcr's experimentally derived values for a number
of systems studied. We note that D values are in agree-
ment except for calcium, molybdenum, and silver. A.

values (note that Slater's r's are interatomic separations
rather than Wigner-Seitz radii), which are crucial in
defining the volume dependence of the energy are also in
reasonable agreement except for calcium and molybde-
num.

Recently, it has been discovered that binding curves
can be scaled such that all metals obey a universal func-
tion involving a single exponential. For a given metal,
this universal function is usually characterized by a
number of parameters obtained from experimental data.
An extension of the universal function yields a universal
equation of state which can predict thermal properties
from experimental parameters obtained at a single tem-
perature. The analysis, which includes consideration of
the vibration of atoms from their equilibrium positions,
yields coeScicnts of thermal expansion which are in
good agreement with experiment at temperatures above
the Debye temperature. Our present work, based on a
At to Morse functions, also demonstrates that thermal
properties of simple systems can be predicted from data
appropriate to a single temperature (ground state, zero
temperature). Our present work, however, goes beyond
the earlier work, and extracts the entire thermal depen-
dence of the coefBcicnt of thermal expansion from calcu-
lated (as opposed to experimentally determined) bllldlllg
curves.

The work that follows can be conveniently divided

into three sections, the first dealing with the determina-
tion of an efFective Debye temperature from the calculat-
ed bulk modulus, the second dealing with the calculation
of the Gruneisen constant from higher derivatives of the
binding curves, and the third dealing with the calculated
free energy of the system and its implications. In the
first section we de6ne a Debye average to replace the
usual longitudinal and transverse modes of a vibrating
system, and find a relation between the Debye tempera-
ture and the bulk modulus. %e show that we can de6ne
a Debye average by assuming that thc longitudinal
modulus (obtained from longitudinal sound velocity),
and the shear modulus (obtained from transverse sound
velocity) are both proportional to the bulk modulus. In
the second section, we show that the Gruneiscn constant
is related to higher derivatives of the binding curves, and
present an argument for a particular expression which
we believe to bc applicable at low temperatures. In the
third section we use calculated Debye temperatures and
Griineisen constants to find the free energy of the system
as a function of both volume and temperature and com-
pute temperature-dependent lattice separations and
coeScients of thermal expansion. Finally, we compare
our calculated ground-state and thermal properties with
experiment.

DKSYK TEMPERATURE

If we assume that lattice vibrations can be accounted
for by the Debye theory, the lattice can vibrate at all fre-
quencies up to a Debye cuto8' frequency, coa„de6ned by

h
kg SD

2m

where h and kz are Plank's and Boltzmann's constants,
and ea is the characteristic Debye temperature. As-
suming a constant sound velocity, U, given by

' 1/28
U (2)

P

where 8 is the bulk modulus dc6ned in the Appendix,
and p is the density, it can be shown that

1/6 ' ' 1/2
r8
M
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where M is the atomic weight. %ith 8 in kbar and r in
a.u. , the Debye temperature (in K) becomes

' 1/2

o~ —{j7 48 (4)

3000
Mo

I 2 1U= +3
U

3
r I

—1/3

where U, =&5/p and UI
——&r /p; S and L being the

shear and longitudinal moduli, respectively. Thus U can
be directly related to S and L. In addition, Anderson's
work shows that, for the nonmagnetic cubic elements
considered here, L =1.428 (this is equivalent to the ob-
servation that, for these elements, Poisson's ratio is ap-
proximately constant and approximately equal to —,

' ), and
S=0.308. The extent to which these relations are valid
for a number of di8'erent elements is shown in Figs. 1

and 2„where it is seen that only molybdenum is not well
represented by these relations. Note that the constants
of proportionality are non-system-specific (the same con-
stants can be used for all systems considered). Using

3000

The use of this expression to evaluate (eD)0 at r=ro
(i.e., at the rigid-lattice equilibrium separation), using the
calculated (or experimental) bulk modulus yields Debye
temperatures much larger than the experimental values.
In practice, this expression must be multiplied by an
empirical constant obtained from experimental data.
The difficulty arises from the assumption that the speed
of sound is proportional to v 8. Even with an isotropic
medium assumption, the sound velocities associated with
the transverse (shear) and longitudinal modes are related
to the elastic constants of the system in a complicated
manner. ' Anderson expresses the low-temperature
average for the sound velocity for an isotropic crystal
(i.e., isotropic transverse and longitudinal sound velocity)
as

2000

l000

00 500
8 (kbar)

I

l000

FIG. 2. Shear vs bulk modulus derived from an analysis
(Ref. 9) of experimental data for the nonmagnetic cubic ele-
ments considered in the present work. Lithium, aluminum,
copper, palladium, and silver are represented by two points in-
dicating the spread between low-temperature and room-
temperature experimental values.

these relations and Anderson's definition, we can express
the average sound velocity in terms of the bulk modulus

v =0.617
8
P

(6)

Thus the previous expression for ea must be modified

by a scaling factor of 0.617. With these considerations,
we can now proceed to evaluate SD using only theoreti-
cal quantities derived from our fit to first-principles
energy™band results. Evaluated at r =ro, this Debye
temperature is labeled (eD)0. Including the scaling fac-
tor (and specifying r in a.u. and 8 in kbar), we find

' 1/2

(Sn )0——41.63 (7)

where 8 is the bulk modulus evaluated at ro.

2000
GRUNEISEN CONSTANT

IOOO

00 1000 2000 3000
L(1b r)

FIG. 1. Longitudinal vs bulk modulus derived from an
analysis I,'Ref. 9} of experimental data for the nonmagnetic cu-
bic elements considered in the present work. Lithium, alumi-
num, copper, palladium, and silver are represented by two
points indicating the spread between low-temperature and
room-temperature experimental values.

Anharmonic efkcts in the vibrating lattice are usually
described in terms of a Gruneisen constant, y, which
can be de6ned as

nO"

y

and which gives the volume dependence of OD. Using
the theoretical expression for Oz, we find that

1 1 Bln8
6 2 BlnV

But, from the defimtion of the bulk modulus given in the
Appendix,
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BlnB I3 P/BV
8 lnB BP/BV

TABLE III, Bulk modulus, Debye temperature, and
Gruneisen constant derived from a Morse fit of the rigid-lattice
energy, F.,l.

80 (kbar) (8D)o (K)

This expression, first derived by Sister, contains the im-
plicit assumption that Poisson s ratio, cr, is constant (in-
dependent of volume) and that all vibrational modes are
excited.

It should be noted that a constant y implies s Debye
spectrum with frequencies that all vary with volume in
the same manner. Vibrations in a real solid, however,
are somewhat more complicated. Assuming the same
cutoff'wavelength for each type of vibration (longitudinal
or transverse), it is readily seen that all modes are excit-
ed at high temperatures. However, y is dominated by
lower-frequency transverse modes at low temperatures.
Sister's expression for y assumes equal excitation of ajl
modes and is e6'ectively s high-temperature average.
This expression for y is therefore valid at high tempera-
tures and, in general, yields y values that are larger than
values derived from low-temperature specific heat data
by an additive factor of about —,'. By defining appropri-
ate high- and low-temperature averages, Barron' has
also shown that

yHT yLT —
3

(12)

V a'P/av'
2 W/av (13)

This expression is identical to one proposed by Dugdale
and MacDonald, ' and yields Gruneisen constants in
better agreement with low-temperature experimental
values than Sister's expression. Accordingly, we use this
latter expression to evaluate y from our theoretical fit to
first-principles energy-band results. '

In this section we have gone to rather elaborate
lengths to justify the use of yL& in order to facilitate
comparison with y values derived from low-temperature
specific heat data. In addition, it is generally found
that' thermal expansion is less than would be expected
from the high-temperature value of y. Since most of the
expansion occurs at relatively low temperatures, we ex-
pect that y L~ is more appropriate for determining
thermal expansion. These concepts are consistent with
negative values of Ocr/BV (Ref. 17) and a general in-
crease in y with increasing temperature. The latter is
confirmed theoretically, for an isotropic medium with
central forces, by Barron' and by 81sckman. "

Our initial determination of y is based on rigid-lattice
results, and is labeled yo. This is considered to be only a
first approximation. That is, we evaluate yo using Eq.

for cubic close-packed lattices with central forces be-
tween nearest neighbors. That is y tends to increase
with increasing temperature"' (aluminum and perhaps
copper seem to be exceptions' ' ). Since we are in-
terested in comparing calculated Gruneisen constants
with values derived from low-tempersture specific heat
data, we find that

bcc Li
bcc Na
fcc Al
bcc K
fcc Ca
bcc V
fcc Cu
bcc Rb
fcc Sr
bcc Nb
bcc Mo
fcc Rh
fcc Pd
fcc Ag

153.8
94.8

840.9
47.1

204.0
1885.5
1655.7

36.7
152.0

1719.6
2549.6
2629.8
1810.7
1090.7

347.4
164.7
399.9
99.8

188.3
425.7
347.0
61.9

114.8
317.2
371.6
356.1

293.9
231.4

1.153
1.379
1.797
1.504
1.245
1.406
2.023
1.520
1.375
1.354
1.608
2.139
2.311
2.411

(13) with V = Vo. Using the volume derivatives,
B2P/BV~ and BP/BV, evaluated at Vo from Eq. (A6) of
the Appendix, the expression for the Griineisen constant
takes the simple form

A, l'0
yo=

2
(14)

(compare with Ref. 3, p. 452, Eq. 2.5). The computed
values of Bo, (OD )0, and yo, for the cubic elements stud-

ied, are listed in Table III. The Sister expression for y
would yield our values plus an additive constant of —,'.

Free energy, I', of the vibrating system can be ex-
pressed as the sum of the total energy of the rigid lattice
and the free energy of the vibrating lattice. Since the
electronic entropy is expected to be negligible, the free
energy can be expressed as

F(r, T) =E(r)+ED(r, T) TSD(r, T), — (15)

where T is temperature and ED and SD are Debye func-
tions, with

and

ED (r, T) Eo 3k' TD (8—D —/—T),

SD(r, T)= 3k~ [—', D (eD /T) —ln(1 —e )] . (17)

The Debye function D (On /T) varies from unity at high
temperatures to zero at low temperatures, and is readily
available in tabulated form. ' Here, Eo is the zero-point
energy which, within the Debye approximation, can be
expressed as

The final expression for the free energy is
—O~ /T

F(r, T)=E„(r)—ks T[D (OD /T)+31n(1 —e )]
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Here, the r dependence enters by way of eD through the
relation

On /(8D )o
——( &o/&)~ =(ro/r)'~ . (20)

Thus we have expressed the free energy of the vibrat-
ing system in terms of theoretical quantities derived
from a fit to electronic-structure calculations involving
the atomic number as the only input. Subsequent Morse
5ts at 6nite-temperature intervals yields, directly, values
of ro(T). Finally, the coefficient of thermal expansion
a(T) is

dro
~(T)=—

I'o dT

In addition to ro(T) and a(T), our analysis also yields
80(T), (SD )0(T), and yo(T); the latter showing relative-
ly weak temperature dependences except for the
softer alkali metals.

As an example, we show the details of our analysis for
the case of potassium, an element with large coefBcients
of thermal expansion, and correspondingly large temper-
ature variation of equilibrium %igner-Seitz radius, bulk
modulus, Debye temperature, and Gruneisen constant.
In Fig. 3 we show calculated free-energy curves for this
system at 100 K intervals over a limited range of r
values. For reference, we have also included the total
energy for the rigid lattice. Note that, as a consequence
of the zero-point energy, the free-energy curve for 0 K is
higher than the rigid-lattice energy. As the temperature
increases, the free energy becomes more negative be-

l5

Io
~ 50

IO

IO IO

IOO Ke 500 0 IOO 200 ZOO

TEMPERATURE {K)

FIG. 4. Calculated coeiTicient of thermal expansion vs tem-
perature for the nonmagnetic cubic elements considered, along
with some experimental (Ref. 19) points.

K (bcc)

cause of the entropy of vibration. The lattice expansion
is readily seen from the positions of the minima (ob-
tained from a Morse analysis) in the free-energy curves.

In Fig. 4 we show the calculated coeScients of
thermal expansion, along with experimental data' for all
of the elements considered. Note that the a scale dN'ers
for difFerent elements, being an order of magnitude
greater for the "soft" alkali metals compared with the
"hard" midtransition metals. In general, the agreement
with experiment is excellent. It should be noted that the
calculated Debye temperatures determine the position of
the "knee, " and that the calculated Gruneisen constants
determine the high-temperature "amplitude" of the
curves. Thus these results would indicate that the
theoretical y is too high for lithium and strontium, and
too low for aluminum, vanadium, copper, and niobium.
In addition, the calculated 8D would seem to be too low
for sodium.

FIG. 3. Calculated free-energy curves for potassium at a
number of temperatures. The dashed curve is the rigid-lattice
energy. The free energy is relative to the rigid-lattice
minimum. The positions of the minima are obtained from a
Morse analysis (see text). —(E g ) (22)

As discussed above, a Morse 6t to the temperature-
dependent free energy yields temperature dependent ro
and a values, along with Bo and (8D)0 values which
show weak temperature dependences. Table IV shows
our theoretical results. Here, the cohesive energy is
found by forming
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TABLE IV. Theoretical cohesive energies (E„h), equilibrium %'igner-Seitz radii (ro), bulk moduli
(8~), Griineisen constants (yo), Debye temperatures [(8&)o], and room-temperature coefficient of
thermal expansion (a).

System

bcc Li
bcc Na
fcc Al
bcc K
fcc Ca
bcc V
fcc Cu
bcc Rb
fcc Sr
bcc Nb
bcc Mo
fcc Rh
fcc Pd
fcc Ag

'5 K.
b200 K.

0.122
0.084
0.292
0.066
0.160
0.411
0.294
0.057
0.142
0.515
0.465
0.446
0.275
0.224

To (a.u. )

3.196
3.868
2.975
4.781'
4.043
2.831
2.677
5 159'
4.413
3.141
3.002
2.869
2.938
3.070

8 (kbar)

136.7
80.6

791.5
37.9

194.8
1852.0
1573.0

29.2
143.0

1697.0
2513.0
2556.0
1726.0
1007.0

1.16
1.39
1.80
1.51
1.23
1.41
2.02
1.52
1.38
1.35
1.61
2.14
2.31
2.41

{OD)o (K)

345.0
164.0
398.0
99.4

188.0
425.0
346.0
61.8

114.6
317.0
371.0
355.0
293.0
231.0

a (10 /K)

58.7
70.3
17.3
91.0
21.2
6.8

13.4
95.7
24.6'

5.4
4.9
6.5

10.8
18.8

where Eo is the zero-point energy calculated from
theoretical Debye temperatures and Griineisen con-
stants, and E„, is the free-atom energy (including spin
polarization). The Wigner-Seitz radii, ro, are evaluated
at room temperature, except for potassium and rubidium
where low-temperature values are available for cornpar-
ison. In all cases, the bulk modulus, 80, is determined
at room temperature (the room-temperature value can be
as much as 20% less than the low-temperature value,
especially for alkali metals like potassium and rubidium).
The Gruneisen constants show a weak increase with
temperature, the tabulated values being appropriate for
low temperatures (because the experimental values to be
used for comparison are derived from low-temperature
specific heat data). Low-temperature Debye temperature
values are tabulated (again, because the experimental

values used for comparison are derived from low-
temperature specific heat data). The coefficients of
thermal expansion, a, are room-temperature values, ex-
cept for strontium which is at 200 K for reasons of ex-
perimental comparison. Table V is the experimental
analog of Table IV. The experimental signer-Seitz radii
were computed from experimental lattice constants at
room temperature for all elements except potassium and
rubidium where low-temperature (5 K) values were
used. The coe%cients of thermal expansion' are
room-temperature values except for strontium which is
at 200 K. Bulk moduli, Gruneisen constants, and Debye
temperatures are from Gschneider's review article ' with
the latter two quantities being derived from low-
ternperature speci6c heat data.

The sensitivity of the analysis on the expression used

TABLE V. Experimental cohesive energies (E„h},equilibrium signer-Seitz radii (ro), bulk moduli
(80), Griineisen constants (yo), Debye temperatures [(8D)o], and room-temperature coeScients of
thermal expansion (a).

System

bcc Li
bcc Na
fcc Al
bcc K
fcc Ca
bcc V
fcc Cu
bcc Rb
fcc Sr
bcc Nb
bcc Mo
fcc Rh
fcc Pd
fcc Ag

'5 K.
'200 K.

E„h (Ry)

0.122
0.083
0.245
0.069
0.134
0.389
0.258
0.064
0.125
0.556
0.501
0.424
0.287
0.218

ro (a.u.)

3.265
3.992
2.991
4.862'
4.123
2.818
2.670
5.197'
4.436
3.071
2.928
2.809
2.873
3.018

Bo (kbar)

115.7
68.1

721.6
31.8

152.0
1619.0
1309.0

31.4
116.1

1702.0
2725.0
2705.0
1808.0
1007.0

'Yo

0.91
1.33
2.18
1.37
1.07
1.55
1.97
1.85
0.95
1.74
1.65
2.43
2.47
2.46

(OD )o (K)

352.0
157.0
423.0

89.4
234.0
326.0
342.0
54.0

147.0
241.0
459.0
480.0
283.0
228.0

a (10 /K)

46.6
69.0
23.0
82.0
22. 1

7.8
16.7
91.0
23.0b

7.1

5.0
8.2

11.6
19.0
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FIG. 5. Comparison of theoretical and experimental
coeScients of thermal expansion at room temperature aRT for
the nonmagnetic cubic elements |the calcium values are taken
at 200 K). Solid points represent calculations based on the
Dugdale and MacDonald (Ref. 15) expression for y, and open
points correspond to calculations based on the Slater (Ref. 3)
expression for y.

and Debye temperatures, and by high coefficients of
thermal expansion. These properties, in turn, imply low
melting temperatures. The Debye theory is basically a
harmonic theory of lattice vibrations. It makes drastic
simplifying assumptions and is therefore not expected to
be valid near the melting point. In our analysis, howev-
er, we recompute Debye temperatures and Gruneisen
constants at each temperature. Our treatment is there-
fore quasiharmonic because we allow the system to ex-
pand and apply a harmonic theory at each stage (tem-
perature) of the expansion. The effect of this quasihar-
monic treatment is most apparent in our calculated a( T)
curves shown in Fig. 4. For potassium and rubidium,
the high-temperature regions deviate from a linear be-
havior, and are concave upwards. Experimentally, the
coefficient of thermal expansion tends to diverge as the
temperature approaches the melting point. Our calcu-
lated behavior for potassium and rubidium indicates a
precursor to the melting point, which is just above room
temperature for these two elements. Thus our

to calculate y is shown in Fig. 5 where we compare
theoretical and experimental coefficients of thermal ex-
pansion evaluated at room temperature, a„T (the calci-
um value is taken at 200 K). Perfect agreement is
represented by the 45' line. The solid points were calcu-
lated using Eq. (13) and are in agreement with Fig. 4 and
Table IV, while the open points were evaluated using
Slater" s expression given in Eq. (11). Note the change in
scale separating the alkaline metals. The better overall
agreement between theory and experiment using Eq. (13)
is obvious.

In addition to temperature-dependent Signer-Seitz ra-
dii, the Morse analysis described in the Appendix also
yields temperature-dependent bulk moduli. With in-
creasing temperature, the decrease in bulk moduli scales
roughly with the thermal expansion and is largest for the
softer alkali metals. Recent experimental studies on
the latter provide a test of our analysis. In Fig. 6 we

compare our calculated temperature dependence of the
reduced equilibrium radii, ro/(ro(T=0)] (evaluated at
zero pressure), with experiment for bcc lithium, sodium,
potassium, and rubidium. Similarly, our calculated tem-
perature dependence of the reduced bulk moduli,
Bo/[Bo( T =0)] (evaluated at zero pressure) is compared
with experiment in Fig. 7. Both comparisons are excel-
lent and indicate that our analysis yields reasonably
correct temperature variations of signer-Seitz radii and
bulk moduli. Thus our 6rst-principles calculations, with
atomic numbers as the only input, yield quantities in
reasonable agreement with experiment. The results
show that our determination of Debye temperatures and
Gruneisen constants, which are of fundamental impor-
tance in the analysis, is qualitatively correct.

The alkali metals„especially potassium and rubidium,
are characterized by low cohesive energies, bulk moduli,

I.OI—

I.OI—

I.OO

I.OI

] I

IOO 200
TEMPERATURE (K)

FIG. 6. Comparison of the theoretical and experimental
temperature dependence of the ratio of the Wigner-Seitz radius
to the zero-temperature value t,'evaluated at zero pressure) for
the alkali metals. The points represent experimental values
taken from Ref. 22.
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FIG. 7. Comparison of the theoretical and experimental
temperature dependence of the ratio of the bulk modulus to
the zero-temperature value (evaluated at zero pressure) for the
alkali metals. The points represent experimental values taken
from Ref. 22.

electronic-structure calculations, coupled with our
quasiharmonic treatment of the vibrating lattice, lead to
a qualitatively accurate model which even captures the
behavior of systems just below the melting point.

if the speed of sound is expressed as a square root of the
bulk modulus divided by the density. We also find that
the Slater expression yields Gruneisen constants which
are usually larger than experiment by an additive con-
stant of about —,

' and accordingly use Eq. (13) to find y.
With these prescriptions for evaluating the Debye tem-
perature and the Gruneisen constant, we express the free
energy of the vibrating lattice as a function of both
volume (r) and temperature. A Morse analysis of the re-
sulting free-energy curves yields the equilibrium volume
(ro) and bulk modulus as functions of temperature, and
the temperature derivative of the former leads directly to
coeScients of thermal expansion versus temperature.

We have shown that the compressional characteristics
of rigid-lattice binding curves contain su5cient informa-
tion to define parameters which lead to an approximate
and useful definition of the free energy of the cubic non-
magnetic elements considered. Based on this work, we
can conclude that a bulk modulus calculated with a scal-
ing factor of 0.617 can be used to compute reasonable
values of the Debye temperature. We found that y
values derived from Eq. (13) yield coefficients of thermal
expansion in better overall agreement with experiment
than y values obtained from Slater's expression, especial-
ly for the alkaline metals.

The underlying rigid-lattice energy-band calculations
yield a first approximation to the basic parameters, 8D
and y, used in the thermal analysis. The calculations,
which are self-consistent and are based on the
augmented-spherical-wave method, utilize the local-
density approximation. The work presented here
demonstrates that the local-density approximation,
which has previously been considered applicable only to
ground-state properties, yields binding curves with
compressional characteristics which give Debye and
Gruneisen parameters capable of defining the free energy
of the system as a function of temperature. We have
shown that an analysis of the resulting free energy leads
to coeScients of thermal expansion in reasonable agree-
ment with experiment. The remarkable success of this
analysis is a tribute to the adequacy of the local-density
approximation to provide adequately accurate ground-
state and thermal properties of materials.
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APPENDIX

To analyze the binding curves derived from our
energy-band calculations, we choose to fit to an exponen-
tial function of the form,

(A 1)

where E is the total energy, r is the %'igner-Seitz radius,
and A, , a, b, and c are four fitting parameters. The fitting
procedure can be simpli6ed by letting
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then becomes

E =a +bx +cx

xk, 2(li+4cx) — (b +2cx) . (A10)
12m lnx lnx

The pressure, P, can now be evaluated by taking the neg-
ative volume derivative of the total energy. Thus

However, since (b+2cx)=0 at ro, where x =xo,

I' =—
BV

'

where the volume, V, is

(A4)
cx oA,8(ro)=-

6m lnxo
(A 1 1)

(A5)

In terms of the variable, x, and the exponential 6tting
parameters,

The above expression gives the bulk modulus for the rig-
id lattice. The bulk modulus for the vibrating lattice
will difkr slightly from the above, even at zero tempera-
ture because of the zero-point energy.

The exponential 6t discussed here is mathematically
equivalent to a fit to a Morse function of the form,

xAP = (b+2cx) .
4m(lnx)

(A6) E(r)= A 2De — ' +De (A12)

Since the pressure varushes at r =re, where (b +2cx)=0
and x =xo,

(A7)

A Morse fit is operationally more dif5cult because of the
appearance of two nonlinear parameters A, and ro. It is
easily verified that the two fits are equivalent with the
fitting parameters related by

(A13)

lnxofo=—

Here, I o can be interpreted as the equilibrium %igner-
Seitz radius for the rigid lattice. In general, this value is
less than the corresponding value for the vibrating lat-
tice, even at zero temperature because of the zero-point
energy.

The bulk modulus, 8, defined as

and

—A,ro—= —2e
C

bD= (A15)

8= —V
as

V
' (A9)

Thus a least-square 6t yielding the four parameters A,
D, A, , and ro completely specifies the calculated binding

curves.
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