
PHYSICAL REVIE% 8 VOLUME 37, NUMBER 13 1 MAY 1988

Cossssssent on "Self-trayying on a sI!ssser: TllmeAeyendent solutions
of a discrete nosslssear Schrodinger equation"

L. Cruzeiro-Hansson and P. L Christiansen
Laboratory of Applied Mathematical physics, The Technicul University of Denmark, DII'-2800 Lyngby, Denmark

J. N. Elgin
Department of Mathematics, Imperial College, London SW7 28Z, United Eingd'om

(Received 31 August 1987)

The equivalence between the discrete self-trapping equation for t~o degrees of freedom, the

pendulum equation, and the space-independent p equation is demonstrated.

iA&(t)+y~A~(t) [ 'A)(t)+aA2(t) 0,
iA2(t)+ y )A2(t) [ 'A2(t)+aAI(t) -0 .

(2a)

(2b)

Here, A~ and Az are the probability amplitudes for
finding an excitation in the two sites of the system in this
case. y and u represent the strength of the nonlinear in-
teraction in the system and the coupling between the two
sites, respectively.

The density matrix p with elements

p,k(t) -A, (t)Ak (t) (3)

can be rewritten as

3

p(t)--,' I+ g~, r, (t)
j~l

(4)

where I is the identity matrix and ~J denote the Pauli ma-
trices. From Eqs. (1) and (3) we get

The discrete self-trapping (DST) equation was intro-
duced in Refs. I and 2 and has been used to account for
the dynamics of small molecules, molecular crystals, self-

trapping in amorphous semiconductors, and global pro-
teins. In Ref. 3 it was pointed out that the DST equation
is integrable for two degrees of freedom and can be re-
duced to the pendulum equation. However, no details
concerning the reduction to the latter equation were given.

Recently, it has been shown in Ref. 4 that the DST with
two degrees of freedom can be reduced to the space-
independent p4 equation P Ap -Bp3. In this Comment
we derive the pendulum equation and demonstrate the
equivalence with the space-independent p4 equation.

For two degrees of freedom the DST equation

iA +HA 0 (i)
can be written as

h((t) u,
h,(t)-0,
h3(t) +((A( )

—(A2[ 2) +r3(t) .
22

In Ref. 3 the DST equation (1) was rewritten as

(7a)

(7b)

(7c)

i ~(t) -—yr2(t)r3(t), (9a)

r'2(t) yr~(t)r3(t) -2ar3(t), (9b)

r'3(t) 2sr2(t),

implying that )r ~
-=(r/+r)+r))'J2 remains constant

throughout the interaction (as a consequence of unitari-
ty). Note also that Eqs. (9a) and (9b) i&ply

(9c)

r1(t) —" r j(t)+const .
4u

Equations (9) are best solved by vrriting them first in the

r'q(t)+ir'2(t) iylrq(t)+ir2(t)jr3(t) -i2ur3(t) .

Integration of (10)gives

(io)

tnt

r~(t)+ir2(t) +aexp iy, r3(t')dt', (l l)~to

where a and to are real integration constants.
Since, by (Sa) and (Sb) r ~(t) and r2(t) are real, we get

28 ~t
r)(t) - +a cosy r3(t ')dt ',

~i to

j(t) i[p,H] . (8)

Substituting (4), (6), and (7) into (8) the following equa-
tions are obtained:

r~(t} p~2(t)+p2~(t),

r2(t) i [p/2(t) —pz/(t)I,

r3(t) -p))(t) -pz2(t) .

(Sa)

(Sb) pt
rz(t) ~usiny ~, r3(t )dt

Using (12a) and (Sa) at t to we obtain

(12b)

Rewriting the matrix H as

H(t) ghJ(t)/J++[~A/(t) ~
+ [A2(t) ~ jI,j~]

u -pie«o)+p2i«o)— 28 (i3)

Substituting (121) into (9c) and defining the real vari-
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IMMENTS

able q by

q y, r3(t')dt',

g ~28)'c smg

i.e., the pendulum equation.
In Ref. 4 the space-independent ps equation

ji Ap —Bp

is derived from the two degrees of freedom DST equation.
Here, p is de6ned as p=p~t(t) —p22(t). Thus

y

Furthermore, the constants A and Bare given by

A - apl 1(to) —p22(to) l '-«'
2

We shall now demonstrate that Eq. (16) is equivalent to
Eqs. (15) and (13). Integrating (15) and using (17) and
(18b) we obtain

ap —2@yecosq+ e,
where C is an integration constant. From the definition of
p and (14) it follows that C A is given by (18a).

Substituting Q sinq/2 into (19)we get

Bp 2trtsy(2Q 1—)+A .

Differentiation of this equation and use of

g (q/2)cos(q/2) (yp/2) v I —g 2

y eids

p -Ap'- —JP4+const .
2

Repeated differentiation now gives

and

+2ay[p|2(to)+ p2i(to)], (i8a) P Ap -Bp
which is the space-independent p equation.

2

2
(i8b)

in our notation. (Note that Ref. 4 uses —V instead of s,
which is a positive parameter in the DST model. )
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