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The 6eld theory introduced by Lubensky and Tremblay [Phys. Rev. 8 34, 3408 (1986)] for
continuum percolation is reanalyzed. Dynamical exponents are found which agree with those
found by Straley [J.Phys. C 15, 2343 (1982)] and Machts et al. [Phys. Rev. 8 33, 4818 (1986)]
using a nodes-link-bIobs approach.

t -t(a) -(d —2)v+1/a, (2)

where v is the correlation-length exponent. The crossover
from to to t(a) is the subject of controversy in the litera-
ture. On the one hand, investigations26 based upon the
nodes-links-blobs picture of the incipient infinite cluster
yield

t -max[to, t(a)),
so that there is a crossover from universal to nonuniversal
behavior when a a, such that to t(a, ). The nodes-
links-blobs analysis thus predicts that the broad distribu-
tion of bonds is irrelevant for a, & a & I. On the other
hand, a field-theoretic e expansion due to Lubensky and
Tremblay (LT) predicts that t & to for all a & 1 and that
there is a crossover to t t(a) at a value of a smaller than

Several investigators'~ have recently studied the
dynamical exponents for percolation networks where the
bonds of the network are chosen from a broad distribu-
tion. An example of this kind of problem is a diluted
resistor network with a broad distribution of resistances.
Suppose that a fraction p of bonds have finite resistance
and that these resistors are chosen from a distribution
having a power-law tail such that

prot(R&X)-X ', X

Here R is any of the finite resistors in the network and
0 & a & 1 characterizes the tail of the distribution. 5 The
recent interest in this problem stems from the observa-
tion' that the dynamical properties of continuum percola-
tion systems are governed by distributions satisfying Eq.
(1).

It is generally agreed ' that as a~ 1 the conductivity
exponent t approaches its universal value fo When .a is
suKciently small, t is nonuniversal and behaves like

In this Comment, I reanalyze the renormalization-
group Qows obtained by Lubensky and Tremblay and ar-
gue that the field theory is in agreement with the nodes-
links-blobs results, Eq. (3). The starting point is the one-
loop recursion relations for the parameters u and w given
in LT as Eqs. (29)-(31):

dl v
Q

dp 4a v (p ) ' '+4w p -8auwp '
ao p (1+vp2'- wp') 4

v is the correlation-length exponent, and u 3 is the coupling
constant whose fixed-point value to leading order in

6-d is (u3 )2 2e/7. The parameters v and w de-
scribe the distribution function of the resistances. In par-
ticular, v describes the amplitude of the power-law tail of
this distribution and must be non-negative. If there is no
power-law tail u vanishes and -w is the mean of the dis-
tribution, in which case w must be negative. On the other
hand, when u &0, w may take either sign and has no
straightforward interpretation.

Equation (6) leads to nonlinear couplings between u

and w. To simplify the calculation, LT introduce a new
field g wu 'i' and carry out a small g expansion of the
recursion relations. The present approach is based instead
upon a large-g expansion of the recursion relations. The
appropriateness of this expansion will be discussed at the
end of the Comment.

I define h (-g) ' (—w) 'u, change variables of
integration to z wp, and expand Eq. (6) in powers of h
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holding w fixed. To linear order in h the result is

1E 2w dz

2z cz—4whe'* dz
( )5+ (

If w & 0 the contour of integration (."is along the positive
real axis and if w & 0 the contour is along the negative
real axis. If w & 0 the integrals in Eq. (7) do not exist be-
cause of the pole at z 1. However, LT argue that this is
the result of truncating the k expansion of the quadratic
coupling constant in the field theory and that the inclusion
of higher-order terms would move the pole off the axis.
Assuming the pole is moved to 1+it) the integrals can be
done and are independent of the sign of w,

E-- -,'w-whl. (1+a)r(4-a) . (8)

Combining Eqs. (4), (5), and (8) one obtains recursion
relations: for h and w

""- '+ —.
' u)hl-(I+c)1-(4-c)

dl v

and

dlnh 1—(1 Poc) —u fhl (1+c)I'(4-c), (10)C

dl v

where po 1+v(u3» )2/6.

There ar'e two nontrivlal fixed points of these recursion
relations. The first is at w* h 0. This is the universal
fixed point and is stable for g&1/c. The second, a-
dependent, fixed point is at w» 0 and h [4(1/c
-g)l/(v(u3 ) I (1+a)I (4 —a)l and is stable for &0
& 1/c. These fixed points have the same stability and ei-

genvalues as the pair of fixed points found in the
renormalization-group treatment of a hierarchical nodes-
links-blobs model. 2 In Ref. 2, the parameters describing

the distribution of resistors are A and Bwith B —w and
(A/B) ' h to linear order in w and h.

The stable fixed point governs the critical behavior of
the conductivity and the exponent t is obtained from the
largest eigenvalue of the linearized fiow near the stable
fixed point. The method is described in Sec. IVB of LT.
The result is that t to (d-2)v+&0 when a & a, and
t t(c) when c & a, in agreement with Eq. (3) and the
nodes-links-blobs analysis.

Near the exchange in stability of the two fixed points
h» is small for both fixed points justifying the use of the
small h expansion in investigating the crossover from
universal to a-dependent behavior. Physically, this is the
statement that near the crossover point the tail of the dis-
tribution of resistors renormalizes to a small value. To ob-
tain the dependence of t on a in the whole range,
0 & a & 1, I assume that away from the crossover region
the qualitative features of the renormalization-group flow

persist. Specifically, I suppose that there are two fixed
points; the universal (w» h 0) fixed point stable for
c & c, and a finite h fixed point stable for a & c,. The
eigenvalues of the finite h fixed point are more easily ob-
tained using the variables v and h from which it follows
that t t(a) whenever this fixed point is stable. For a
sufficiently less than a„h is expected to be large so that
the small g analysis of LT holds and one again recovers
the result t t(a) How. ever, the small g expansion can-
not be used to study the regions a=a, or 1 & a & a, since

g is large or infinite here. I conclude that the field

theory, when properly analped, is in agreement with the
nodes-links-blobs analysis. z
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