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The energy Bo~ during the soliton-antisoliton interaction in an extended Klein-Gordon system
is investigated by means of a state-plane technique. The energy 6o~ is divided into traveling-
eave and standing-~ave components, and the energy-transfer mechanism between them is dis-
cussed. Numerical examples are given for the extended sine-Gordon system, and are compared
wth the pure sine-Gordon system. Finally, the eN'ect of local distortions produced during the in-

teraction on the energy Bo~ is clari5ed.

The solutions in dissipative, externally driven, nonlinear
Klein-Gordon systems, which are referred to as extended
Klein-Gordon systems, play a crucial role for many phe-
nomena appearing in condensed-matter physics. It was
shown by Tateno that the exact behavior of the soliton-
antisoliton interaction in one&imensional extended
Klein-Gordon systems can be treated by using a state-
plane technique. '2 Using this technique we can trans-
form the systems directly into expressions of their energy
balance. Moreover, the solution for p„and p(, where the
subscripts represent derivatives, can be divided into the
traveling-wave and the standing-wave components. Thus,
there is the possibility of investigating the energy ex-
change mechanism between them during the interaction.
In this paper, we derive the expressions on such an energy
exchange mechanism using the state-plane technique, and
then apply them to the extended sine-Gordon system in
comparison with the pure sine-Gordon system, clarifying
the effect on the energy Sow of local distortions appearing
during the interaction.

We treat the systems described by

4»» 6( F(P) G4( Ja,
where G is the dissipation coeScient, and Jq the uniform-
ly applied external driven force. Every quantity of nota-
tions in Eq. (1) is normalized by a certain unit quantity.
The exact behavior of solutions to Eq. (1) can be deter-
mined numerically under the condition that the solution
approaches asymptotically the stationary solitary-wave
one as ) x ) goes to infinity. ' In the state-plane tech-
nique, we consider that p is determined by designating x
and t, and then state variables II(x,t) concerned with Eq.
(1) such as p„p(, and so on are determined by designating
p. In order that II(x,t) may be a state variable, that is, in
a functional relation with p, the following condition
should be sustained:

a(II,y) (2)
a(x, t)

that is,

II„ II(
(3)

ay

From (3) we obtain

II» ~P», II( ~(1((
aiI aII (4)

We rewrite Eq. (1) using Eq. (4) in the form of the
derivative of p, and then integrate the result with respect
to p. As a result, we obtain the energy balance relation as

tF(y)+Gy( Jt(ld-y . (s)

It is convenient to use the transmission line equivalent
to Eq. (1) as shown in Fig. 1 (Ref. 3), where G represents
the shunt conductance per unit length, F(p) the nonlinear
nondissipative shunt element per unit length, and the in-
ductance and capacitance per unit length are normalized
to unity, respectively. Then, -p„represents the current
along the line, and p( the voltage between the line.

The power Sow p(x, t) of the transmission line is given

p»
p&x, t) ( ,' y2. + —,

'
y,'-)dx'at'—

+ p(tG&(+F(y) —Jt(ldx' .

The energy Sow is defined by integration of p(x, t) with

respect to t from t —~ to t The ene.rgy density S(x,t)
is obtained by differentiating the energy Sow with respect
to@:

If we take directionality into consideration, the net energy
((~'~(~,t) becomes always zero as expected, because of
/~+2„atx~+ oo.
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P(x,t) T y~+ ,' (I(2+ [G—(1(+F(y)—J )dp, (7)

where is p at t —oo. We can rewrite Eq. (7) using
Eq. (5) as

P(x,t) -y2 .

Thus, it is seen that the energy density at x is twice the en-

ergy density supplied to the inductance element in Fig. l.
We can choo.e the solution between p +,q„—q and

po 2„+2 when we treat two-soliton problems, where n is an
integer denoting the position of the singular point at

] x ut ( being infi-nity. The energy 8t'~(x, t) from
x' ~ —oo up to x is then given from Eq. (8) by
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FIG. 1. Equivalent transmission line to extended Klein-
Gordon systems.

We can set ((), and p„as

(), -V(x, t)g(t), y, —V(x, t)h(x)/u, (io)

where V(x, t) is a state variable denoting the traveling-
wave component of p&, and g(t) and h(x) are the other
variables associated with nonlinear coordinates T(x,t)
and X(x,t) defined by'~

T(x,t) - g(t ')dt '+ Tp(x), (ii)

(i2)X(x,t), h(x')dx'+Xp(t),

where Tp(x) and Xp(t) are arbitrary functions of x and t
associated with singularities. 's We differentiate Eq. (9)
with respect to t, regarding x as a function of t with the
relation dx/dt —p&/p„. The result shows the power fiow,
which is another expression of Eq. (6):

p(x, t)

Thus, the net energy fiow s(") at a position xp is expressed

y
Tn)+~ ~&ae+2

e " p(xp, t)dt — (t),dp . (i4)

(I, is also expressed by p, (()„) ' + (()„) ', where the su-
perscripts (t) and (r) denote the traveling-wave com-
ponent and the standing-wave component, respectively,
(y, )"'--(y, )"'/u (y, )") V(x t) (I),)'~-I'h(x)
—1j(y, )"', and =-(x,t) -X(x,t) —ur(x, t).

V(:-) satisfies the following equation'2 which is anoth-
er form of Eq. (1):

trav
' F'(=-)+Gv(=-) —J

8(() i -u' V(=-)
(is)

F (=-) -F(y) -(~.)»+(y, ),')
+(=-.—i)VJu+(=-, +u) V+G(y, )" .

(y, )"-[g(t)—I)v(=-) .

If we take account of V(=") 0 at p &,2„~2, we obtain
the traveling-wave component of a(&), e«), from Eq. (15)
~1,2

(P ) '
d(1)

' ', (l6)(() +~+~ (() 2JB('t)0,2a 4'0, 2))-2)
4 +~ uG

F'(:-)dy F(y)dy 0 .

In Eq. (16), if u &0, u is replaced by —u, that is, the
directionality of the energy fiow has not been taken into
consideration. It is seen from Eq. (16) that s ' is in-

dependent of x. Equation (16) also indicates that the en-

ergy dissipation of the traveling-wave component due to G
is always compensated by the external energy supply by
Jt) throughout (t) from ())0,2N-2 to &0,2„+2. Thus, the
traveling-wave component is always sustained. From Eq.
(15) the net energy loss a ' is written as

«)+ (.) i ~&2.+2
(is)

g 4 4O2-2

where y, -(y, )«'+(y, )" and ((),)"-Ig(t) —1]V(=-).
Since the term G(p, ) (') in F'(:-) describes the dissipation
due to the standing-wave component, one can express 8 ')

from Eq. (17) as

s(r) 1 ' +
(~ )(r)d~

g & &a-2

F"(=-)dy, (i9)

where

F"(=-)--(~ )(")+(y )()
+(:-,—1)vJ'u+(((, +u) V-. .

Equation (19) indicates that the net energy dissipation of
the standing-wave component due to G is just compensat-
ed by the energy supply presented by the integration of-F"(=") with respect to () from &0,2„2 to (I)0,2„+2. Thus,
s ' constructs the standing-wave component. Since e " is
associated with the oi)posite wave to the traveling wave,
the net energy fiow n(" is represented by

g(n) ~(t) ~(r) (2o)

By comparing the term on (((,) (') in Eq. (14) with s(") in
Eq. (20), we obtain the average value of g(t), (g(t)& re-
lated to h(x) as follows:

((((t))- g(r)v(= )dy/ v(=)dy-'-
2-h(x), (2i)

which also represents the ratio of s(' to s '. With de-
creasing I x I from infinity, (g(t)) is increased monotoni-
cally from 1, because h(x) is monotonically decreased
from 1, and as ~x I approaches 0, (g(t)) approaches 2, be-
cause of h(0) 0.

The relation between p and ()), is calculated froin an or-
dinary diff'erential equation equivalent to Eq. (1).' As
an example, we treat the extended sine-Gordon system,
i.e., F((()) sin(t). Numerical analysis is made for Jn 0.1,
0.4, and 0.6, respectively, where G is fixed at 0.018. For
comparison with the result for J)t 0.4, the pure sine-
Gordon system, i.e., Ja G 0, is first treated for
u 0.99845, which is in agreement with the result for
J)r 0.4. The integration of p, with respect to p is made
to obtain the net dissipation energy, and then its
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traveling-wave component s is calculated from Eq. (10) as
marked by black triangles in Fig. 2. As expected, we see
that a does not depend u]mn the value of ) x ). On the
analogy of Eq. (16) that s") is twice the value for the cor-
responding stationary traveling wave, we can set

s-16/(1 —tt ') '12, (22)

which is twice the energy of a stationary soliton in the
pure sine-Gordon system, s and is shown by the broken
line. The traveling-wave component for Js 0.4 is depict-
ed by the solid line with black circles, and is in agreement
with the result calculated from Eq. (16),i.e.,

s ' 4xJa/ttG (23)

s{') is divided into two, i.e., e{') in t & 0 and sg) in t & 0,
where their centers collide at (x,t) (0,0). Then, we

treat a situation that in t & 0 they are approaching each
other, and in t & 0 they are going away from each other.
At the position where x ) is larger than about 0.3, s~-') is

regarded as almost equal to s$ so that they are in the sta-
tionary state, where the singularity at ) t )

~ is a saddle

point. With decreasing ) x ), the interaction between the
soliton and the antisoliton is stronger. As a result, 8-' is
decreased and s() is increased, where the effect of the lo-

cal distortion is signiScant. However, it disappears when

) x ) is smaller than the value corresponding to boundary
of a saddle point and a node which are singularity at
)x) ~. In any case, the following relation is always
preserved:

s{~) a~~)+s(~) const .

As )x) decreases more, the value of s~ becomes con-
stant. Next, notice the standing-wave component s ',
which is the sum of two components, i.e., s~) in t & 0 and

sg in t &0. a increases from zero with decreasing ) x)
and becomes equal to s(') at x r0, where the net energy
liow 8{")disappears. The condition a+) & ag) is always

preserved so that a decrease of s~-') brings an increase of
s~) and the increase of ag) brings the decrease of ag).

600-
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The results for Ja 0.1 and 0.6 are depicted in Figs.
3(a) and 3(b), respectively. For Ja 0.1, the values of
s{') are closer to the value of a than for Jg 0.4, and the
values of ag are almost in agreement with the ones of s{-'),

irrespective of the value of ) x). For Js 0.6, the
difference between the values of s() and e{—') becomes
more pronounced. Naturally, the difference between the
values of a~) and sg) becomes also pronounced.

The local distortion takes a form of the wedge-shaped
distortion or the thorn-shaped distortion depending upon
whether it appears before or after the collision of the
center. '2 In the case of Fig. 3(a), the local distortion be-

comes considerably weakened compared with the case «r
Fig. 2, because of the much smaller value of Js than for

Fig. 2. Thus, sg is almost equal to e-' . In Fig. 3(b), the
distortion becomes stronger than for the case of Fig. 2, be-
cause of the larger value of Ja. From these examples, it is
understood that the occurrence of the wodge-shaped dis-
tortion in t &0 acts to weaken the traveling-wave com-
ponent, and that the thorn-shaped distortion t & 0 acts to
strengthen it by the same amount lost in t & 0 to keep 8 '

constant. The degree of them depends upon the magn|-
tude of their distortion.

w=~=~—w~e~s~W=-

~(t}

0
400' ~- 0
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FIG. 2. Comparison of energy novrs betvveen the extended
slIlc-Gordon system for 6 0.018 and Jg 0.4 and thc Pure
sine-Gordon system, where u 0.99845 for both cases. Every
quantity of notations in the Sgurc is normahzcd by a certain unit
quantity.

0

FIG. 3. Energy So~ in the extended sine-Gordon system,
where 6 0.01$. (a) Jg 0.1 and (1)Jg 0.6.
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We set Eq. (22) equal to Eq. (23). Then, we obtain

u -+ 1/[I+(4G/xJ&)'I'" (24)

which is in agreement with the result by Mclaughlin and
Scotts obtained by regarding the right side of p. (i) as a
perturbation. Thus, the difkrence between s'» and s
denotes a measure of inaccuracy for application of Eq.
(24).

Consider the soliton-antisoliton interaction in more de-
taiL As the soliton and the antisoliton approach each oth-
er, the attractive force becomes stronger. This is because
the phase velocity»v(x, t) ttg(t)/It(x) is larger toward
the wave front of each wave as they approach each other,
where g(t) is a decreasing function of [ t ( and h(x) an
increasing function of

~
x . Thus, distortion is produced

in each wave. In the pure sine-Gordon system, the distor-
tion is smoothly distributed throughout the wave on ac-
count of no moving singularity. On the other hand, in the
extended sine-Gordon system, the excess stress that acts
so as to divide the wave into two is concentrated at the po-
sition satisfying h(x) 2/tt 2-g2(t) 0. Thus, other parts
of the wave can endure the stress. As a result, the wedge-
shaped distortion grows there. We may also regard this
process as a kind of local decaying process of the wave.
Thus, dt(-'» is decreased with decreasing ) x [. In this situa-
tion, the singularity at t -oo is still a saddle point, so
that the solution around the singular point cannot be
changed appreciably in this process. Thus, the wave can
preserve its identity as a soliton or an antisoliton as a
whole against the stress by producing such a local distor-
tion. When ) x [ is smaller than a certain value, the singu-
larity at t —~ is changed from a saddle point to a node.
This means that the soliton or antisoliton cannot preserve
its identity under the increasing stress, so that the

waveform can be changed freely according to the stress.
Thus, the local distortion disappears, and the stress is dis-
tributed smoothly over the wave. In t )0, the wave is de-
celerated this time on account of the attractive force.
When I x I reaches a certain value with increasing I x I,
the singularity at t +oo is changed from the node to a
saddle point, and then a thorn-shaped distortion appears.
Thus, the identity as a soliton or an antisoliton is again
recovered because the wave is able to overcome the de-
creasing stress with increasing ( x ~. We may regard this
process as a kind of a local generalization process of the
wave. Thus, tt(» is decreased as the local distortion is
weakened with increasing I x I . As I x I increases
suSciently, the distortion almost disappears so that the at-
tractive force disappears, and n(» becomes just half the
value of n('».

We have investigated the situation of energy Bow dur-
ing the soliton-antisoliton interaction in extended IGein-
Gordon systems, by dividing the energy liow into
traveling-wave and standing-wave components. It is con-
cluded that (i) the energy density of the systems is ex-
pressed by p2, (ii) the sum of these energy Hows is ob-
tained by integrating f, with respect to p and then divid-

ing by tt, (iii) the average value of g(t) over V(=-) at a
given value of x is equal to the ratio of the sum of the
above two energy components to the traveling-wave com-
ponent. Numerical examples have been given for the ex-
tended sine-Gordon system. It is also concluded for the
system that (iv) the traveling-wave component of the en-
ergy flow is invariable irrespective of the value of

~
x ~,

and that (v) with decreasing ~x [ the wedge-shaped dis-
tortion acts to decrease the traveling-wave component in
t & 0 and the thorn-shaped distortion acts to increase it in
f 0

'H. Tateno, Phys. Rev. 8 36, 2170 (1987).
2H. Tateno, J. Math. Phys. (to be published).
A. C. Scott, Active and Nonhnear Wave Propagation in Elec-

trottics (Willey-lnterscience, New York, 1970).

sS. Sakaki and H. Tateno, Jpn. J.Appl. Phys. 22, 1374 (1983).
sJ.Rubenstein, J. Math. Phys. 11,258 (1970).
~D. %. Mclaulhbn and A. C. Scott, Phys. Rev. A 1S, 1652

(1978).


