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Constramts on high-temperature series expisnsions for spin correlations in the square Ising model
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High-temperature series expansions have been derived for pair correlations in the square Ising

model vmth nearest-neighbor and diagonal interactions. Eating has pointed out that constraints

on the series expansions can be obtained from exact results on the disorder line of the model. The

constraints are imposed on the pair correlation series and turn out to be satisfied by the published

series coeScients. The coefBcients thus pass a rather severe test. In addition, the constraints al-

low the prediction of a few extra coeScients.

I.CRYSTALWR0%TH MODEL AND ISING-MODEL
DISORDER LINK

The aim of this report is twofold. Firstly, a partial
check is provided of the coeScients of high-temperature
series for Ising-spin correlations pubhshed by Indekeu,
Stella, and Rogiers. ' Secondly, a further example is given
of the derivation by Enting2 of constraints on series ex-
pansions from the knowledge of an exact solution of the
model for special sets of interaction parameters commonly
referred to as disorder points.

In the following use will be made of the relationship be-
tween Ising models at their disorder points and crystal-
growth models, as demonstrated by Enting. 4 The Ising
model that we consider is de6ned on the square lattice (in
two dimensions) by the following reduced Hamiltonian:

—PH({crt) -Kga, cr, +I, g a,a, ,
&rr'& «rr'&&

where P~l/ktrT. The Ismg spms cr,(~+'1) interact via
(reduced) nearest-neighbor coupling K and next-nearest-
neighbor or diagonal coupling L.

The probability distribution for spin con6gurations {ol
1s given by

F({a/) exp[- PH({crt )]/Z, (2)

where Z is the canonical partition function.
The pertinent crystal-growth model on the square lat-

tice is defined by the following probability distribution for
configurations of occupation variables {xj:

F({x))-QF,({x/), (3)

with

&,({xl)-F,(x, )x, . b, x, b, x, ,), (4)

where a and b are unit vectors along the principal lattice
axes, and P, is a conditional probability. As a conse-
quence, the occupation of site r is made to depend only on
the occupations of neighboring "predecessor" sites. 4

After making the correspondence between occupation
variables x and Ising spin variables cr through
x (1+a)/2, the requirement that P, be a conditional
probability is expressed as

Fr(err I ar-a-s crr-b ar-a)
—P~-(inZ)/N,

assuming H lattice sites.

(12)

Assuming furthermore spin-reversal symmetry (i.e.,
atom-vacancy symmetry) P, must take the form

P (a'4f cr~, cr2, cr3)

2 + cr4 (Acr2+A'ai+Bcii+ Cert criers), (6)

where the labeling is such that a2 and cr3 are nearest
neighbors of cr4, and cri is diagonally across from cry, in an
elementary square on the lattice.

The solubility of the crystal-growth model relies on the
property (4) which allows the derivation of simple closed
sets of equations for the spin correlations. The Ising prob-
ability distribution (2) can be factorized in conditional
probabilities (4) provided a specific relationship is im-

posed between the couplings K and L.
One can write

F, (a4(cr), cr2, o3) -exp{ P{E(-ai, a2, a3, o4) -all,
(7)

where, most generally and respecting spin-reversal sym-
metry,

—PE K,aicr2+Keoscr4+Kboicr3+Kbo2a4

+Licr~cr4+L2o2cri+Fcria2a3cr4 . (8)
The couplings K„.. . , F can be expressed in terms of

r, -=z, (+ (+++),
F2 —=F,(+ (++-),
P,—=P, (+ )+ -+),
z4-=z, (+

~

—++),
using (5) and (7).

The product over all sites r of the exponential in (7)
gives an expression of the form (2). In order to obtain
complete correspondence with the Ising model defined in

(1),one must have

K, +EC,' Eb+ECb E,
L) L2,
F 0,
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The requirements (9)-(l I) imply, in the crystal-growth
model,

P2 P3 (or A A'),

P2P3 (1 —P i )P4,

(i3)

[exp(-4L ) —I ](cosh L ) 2 (sinh 2K,')

Furthermore,

—PA inf i+exp(-2L)] .

These relations, together with (9), define the disorder
line of the Ising model and the corresponding (trivial) free
energy. The disorder line lies entirely in the subspace of
antiferromagnetic diagonal coupling (L &0), and in the
paramagnetic phase. This line is shown, e.g., in Fig. 3(c)
of Ref. 4 and Fig. 2 of Ref. 5. For small couplings it is ap-
proximately given by

—L —It (20)

On the disorder line the pair correlations have been de-
rived by Enting. s His result for our case of full square lat-
tice symmetry can be written in the form

&aoo,+„b& (tanh Kin) I ~ I+ I ~ I (2i)

where Kin=K,' —E,. The notation Kin makes reference
to the Ising model in one dimension where a similar decay
holds for the pair correlation function. Result (21) means
that on the disorder line the competition between the
nearest-neighbor interaction and the antiferromagnetic
diagonal interaction is such that correlations effectively
propagate only along a path that consists of the smallest
number of nearest-neighbor steps connecting the sites.

II.CONSTRAINTS ON SERB~A EXPANSIONS FOR
SPIN CORRKI ATIONS

P, (i —P, ) (i —P, ) (i —P,) -(i —P, )P2P,P, , (i5)

respectively. It also follows that

EC, Eb, E~ Eb.
Requirement (12), which expresses that 5 is the free ener-

gy per site, is in general incompatible with (7), because in
(7) 6 must take care of the proper normalization of the
conditional probability P,. However, in a special ease
both requirements can be met simultaneously. Imposing
the normalization (5) one finds the desired special Ising
model with constraints on the interactions:

cosh(2K,' —L )
exp 4K,

cosh(2K'+ L)

high-temperature series to ninth order (in both interac-
tions) for seven pair correlations. These series expansions
of (crocr, ) are denoted by

69(v,r) g ajj'(r)u w (22)
i+j 1

where v (u, w), u tanh K, and w tanh L. The
coefficients a,j are tabulated in Tables XXXIII through
XXXIX in Ref. 1. The computations were done for r a,
2a, 3a, 4a, 6a, a+b, and 2a+ 2b.

It is now straightforward to obtain constraints on the
series expansions. From (17) and (18) one derives the fol-
lowing expansions of K, and L in powers of y —=K,'.

u tanhK y+-', y ——"y +" y
~ S672 9 3848126+ 2835 P 155925

109183 ]0+
14175

~ 24692 9 915548
2835 P 155925 f

(25)

(26)

The result of the check is that the coefficients satisfy the
constraints, as they should. This does not prove that the
coefficients are correct but provides a good reason for
beheving it. The check furthermore predicts two new
coefficients: for r a,

Expansions for K K, +K", and K~n E,' —K, follow im-

mediately. The constraints now obtain by requiring that
(21) and (22) have identical expansions in the variable y.
This requiietnent allows a partial check of the coefficients

a;t. Note that K and v tanhE are of first order in y,
whereas L and w tanhL are of second order in y. As a
consequence, the check can be performed up to (and in-

cluding) ninth order in v but only fourth order in w. In-
terestingly, one can go a little further when making addi-
tional use of the coefficients of u' and u" derived by
Fisher and Burford. 7 This allows to make the check com-
plete up to (and including) tenth order in v and fifth order
in w, and to make a prediction for the coefficient of v9w.

This coefficient was not previously derived' but can be ex-
pressed in terms of the coefficients of u", v w~, vsw3,

v 3w4, and uw through a constraint.
For calculational purposes the following results are use-

ul:

In 1985, Indekeu, Stella, and Rogiers constructed static
and dynamic real-space renormalization-group (RG)
transformations through series expansions for correlation
functions. ' They applied the RG approach to the square
Ising model with nearest-neighbor and diagonal interac-
tions. For implementing the static scheme they derived

a9) 2140 .

(The coefficient a9, ~ is trivially zero for the other five pair
correlations under consideration. )
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