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Layer plasmons and high-T, superconductivity

1 MAY 1988

V. Z. Kresin and H. Morawitz
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California at Berkeley,

Berkeley, Californta 94720
and 1Bhf Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95l20-60W

(Received 23 December 1987)

%e study a layered electron-gas model for the high-T, copper oxides. The formation of
plasmon bands by the interlayer Coulomb interaction is sho~n to lead to enhanced plasmon-
induced electron pairing at the boundaries of the plasmon bands. %e comment on the potential
contribution of quasi-oneMimensional plasmons for the Ysa2Cu307-& compounds. The concept
of coexistence of phonon and plasmon mechanisms is discussed.

Among the several potential nonphonon mechanisms
proposed to explain the dramatic increase in the supercan-
ducting transition temperatures in newly discovered, lay-
ered copper-oxide materials' is the plasmon mecha-
nism. The plasmons make an important contribution
to the pairing, and high-T, superconductivity in the new
oxides is caused by coexistence of the phonon and nonpho-
non (plasmon) mechanism. Although no definitive exposi-
tion of the correct physical picture for these materials is
available despite a large number of highly original and in-
triguing proposals, we present in this paper some results
that we believe add weight to the plasmon idea.

Specifica11y, we will show that it is not only the qualita-
tively different nature of electronic collective excitations
(plasmons) in less than three dimensions that leads to
their potentially important role in the layered copper-
oxide materials, but also the formation of plasmon bands
by the interlayer Coulomb interaction. This interaction
redistributes the plasmon density of states to the boun-
daries of the plasmon branches, which enhances the cou-
pling considerably. As is well known, the dispersion rela-
tion for the two-dimensional electron gas does not have a
gap at tr O. s In the region of small a., 0 is proportional
to tr'l2. One can show that increasing tc leads to a linear
dispersion relation A-L..9 The interlayer Coulomb in-
teraction leads to a noticeable modification of the simple
two-dimensional (2D) dependence. ' ' Layered crystals
are characterized by a plasmon band 0 f(tc,q, ), where
tr, q, are wave vectors in the planes and perpendicular to
them, respectively. The z axis is chosen perpendicular to
the layers (Fig. 1).

The values of 0 are restricted to lie between the upper
and lower branches. These branches correspond to q, 0
and q, tr/c for the uppermost and lowest branches, re-
spectively. In addition, we note that these boundary
modes correspond to the in-phase motion of electrons on
different planes (q, 0) and out-of-phase motion (q,

n/c) on adjacent planes. Note that the layer spacing c
is equal to half the lattice constant co for La2 „Sr,-
Cu04.

The plasmon spectrum of the layered electron gas has
been studied recently because of the increasing interest in
superlattices, in which conducting planes are separated by
insulating planes. '~'2 We assume that we may use such a

model for the layered copper oxides since their transport
properties are highly anisotropic. Recent experimental
evidence for 2D plasmons in single crystals of La2Ni04
was given in Ref. 13.

In Fig. 1 we show the dispersion relations for the lay-
ered electron gas for a cylindrically symmetric system—the excitations are both electron-hole pairs and the
various plasmon branches for the in-plane wave vector tc

and the wave vector perpendicular to the conducting
sheets q, .

The upper branch corresponds to three-dimensional be-
havior, and the dependence of 0 (tr, 0) is similar to the be-
havior of the usual three-dimensional sample. On the oth-
er hand, the behavior of the lowest branch 0 (tc, tr/c) is en-

tirely different. It is important to note that in the limit
tr, &)1/c, the interlayer interaction does not play an im-
portant role and we are dealing with a two-dimensional
dispersion relation 4u-x. There is a crossover from
3D 2D behavior in the region a; -1/c. This crossover
corresponds to a maximum in the density of states. ' This
can be seen by considering the dependence of the plasmon
frequency o on one less variable, and hence the derivative
with respect to this variable goes to zero. This leads to an
effective increase in the density of states in this region.

We now consider the interaction with the conduction

Electron- Hole Pai

FIG. 1. Plot of the various plasnMn branches and electron-
hole pair excitations as a function of r (absolute value of in-

plane wave vector) and q, for a layered electron gas.
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electrons with the entire set of collective excitations
(plasmons) in the same manner we used earlier. '5

Consider a simple model of a periodic array of two-
dimensional conducting sheets and neglect electronic tran-
sition between layers. Such a model was studied in Refs.
10-12. Q(a, q, ) is described by the following relation
(here n is the carrier aerial density; s is proportional to the
Fermi velocity):

( ) ~ ~ 2 2+ 2xne irstnh{Lc)
nt cosh{ac) -cos(q, c)

(1)
It is easy to see that the derivative 80+/8q, at

q, 0, + a/c vanishes. The singularity of (8o+/8q, )
implies a singularity of the plasmon density of states at
both boundaries. This singularity is transformed into a
sharp peak if we take into account a small interlayer hop-
ping term. '2 The equation describing the pairing has the
form (at T T,)

a(x,p, ;a).)Z Tg d'p'I (q,p, —p„ru„- tu„)
hs

a(a',p, ;.tu„)
X

2 +g&2

ru„{2n+1)nT, d, is the order parameter, g' is the
electron energy referred to the Fermi level, and I is the
effective vertex describing the electron-electron interac-
tion. Z is the renormalization function; q L —r' is a
two-dimensional momentum. I can be written as a sum

(3)I" I"pb+ I"p) .

Here 1"
b Xui,Dui, (ruui„cu„) is the phonon part and (from

Ref. 16

Qp)
I pi XpiDpi(Q pi~ rug ) A,pi

&p&+ n

describes the plasmon contribution to the pairing. This
equation represents the usual Eliashberg equation if we
study the effect of I ui, only.

The right-hand side of this equation can be written as a
sum of two terms,

h,pb+h, p) .

Let us focus on the plasmon term. The Fermi surface in
our case has a cylindrical shape with p, '" n/c. Using a
cylindrical system of coordinates and integrating over (',
we obtain

ni(qq, ) &{p+q ~ )
aui(ic, p, ;co„)Z nTQ dq dq, i (q,q, )

We made a transformation iIi q and introduced

Z(q, q, ) Xu)(q, q, )(4kp-q2)

The integration over q, is limited to the range
p, —2n/c & q, &p, .

Let us introduce curves of constant plasmon frequency
defined by the equation 0 (q,q, ) const. Making a trans-
formation to the integration over these curves and 0, we
obtain after setting x

0
aui(p„ru„) -nTQ do Gui(o)

l

in a striking way from the three-dimensional branch.
tntegral 4pi(pz run ) contains contributions of the

entire frequency range up to oui(q, ) where oui(q) is
determined by the lowest dispersion curve of the plasmon
branches (see Fig. I) and q, is a cutoff momentum. If the
function oi,i(q) has a region of q-qo with a Van
Hove-type singularity, where 80i,i/8q 0 (such a situa-
tion appears, for example, by hybridization of the plasmon
and phonon modes; see Ref. 15), then this region of q and
the corresponding frequency co(q) play a major role.

Plasmon branches corresponding to the poles of
I zi(tu, q) appear in the region ru&qup and I &i(ru, q) is an

where

and

Gpi{o)- dl&{q,q, )« 'a{p,+q„ru„.)

ui -t(8o/8q)'+(8o/8q, )'I'~' .

The integration is taken over the infinite set of curves
Q(q, q, ) cu; (i 1,2, . . . ,N) (see Fig. 2).

It is important that the quantity u i
' has a maximum at

q, x/c, because the derivative 80/8q, is equal to zero in
this region (see above). This fiat region of the plasmon
branch makes a major contribution to the integral.
Therefore, the main contribution to the pairing comes
from the region q, x/c. This region corresponds to the
lowest branch of the plasmon band, and this branch differs

K) K2

i

K3

FIG. 2. Schematic plot of the constant frequency surfaces
O(x,q, ) with Q~ & &m~.
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analytic continuation of the function 1 pi(m„, q). The region e (qUF does not contain any singularities of I pi(N q). In
this region one can use a static approximation and I pi(ru, q) represents the usual screening. This term (a more detailed
analysis will be described elsewhere) '7 can be combined with the usual phonon term, and we obtain

0
b, (p„m, )Z Tg, dQ Xph(Q, p,p,') 2 z

—V,8(I Q I
—ai0)

e Q + Cii& CO„

p 0
+Zpi(Q, p,p, ) 0 +(co& co„9

a(ro„,p')

I ~'I

The concept of coexistence means that the electron-
phonon interaction plays an important role. The Coulomb
repulsion is overcome mainly by the electron-phonon in-
teraction. As for the plasmon contribution, one can see
directly from Eq. (7) that the electron-plasmon interac-
tion provides an additional mechanism of electren-
electron attraction, and in the presence of electron-phonon
interaction it leads to an additional increase in T,.

The behavior of the anisotropic energy gap and T, in
the presence of the anisotropic Fermi surface and several
coupling mechanisms is a complex problem and will be
analyzed in detail elsewhere. For a rough estimate one
may use the expression obtained in Ref. 18,

e

(8)

where Tph is the critical temperature in the absence of the
plasmon mechanism. One can see that the large value of
the plasmon energy Qpi makes the plasmon contribution
noticeable, even for small A, i. For example, if X h=2
[this value corresponds to 220)/kg T, = 5 (Ref. 18/) and
we use our model of a polar phonon-plasmon hybridized
density of states'5 k~~=0.3, Qpi=60 meV, we obtain
TJ'"= 22 K and T, = 38 K. In the absence of phonon-
plasmon hybridization and using an ex~mrimental value of
1 eV for the bulk plasmon frequency, 's which is a lower
limit for the 3D to 2D crossover, we estimate a Xpi =0.2
for T, = 38 K. It is clear that an increase of Qpi results in
a decrease of Xpi.

Plasmon-induced pairing can, therefore, make a notice-
able change in T, relative to Tj'" even for small values of
A,pi, and it arises from the large value of the plasmon fre-
quency. Although we have used the random-phase ap-
proximation (RPA) in our analysis, it has been shown in
Refs. 20 and 21 that one can go beyond the RPA with
only changes in the plasmon dispersion relations. We will
return to this point in a forthcoming paper.

Although some factors such as exchangez2 and vertex
corrections (in this work an isotropic jellium model is
considered, different from the case studied here) may re-
sult in some decrease of electron-plasmon coupling we
would like to stress that our concept of coexistence of
strong electron-phonon coupling and the plasmon mecha-
nism (see below) can explain the observed high transition
temperature with weak electron-plasmon coupHng.

Our model of layer plasmons is especially appropriate
for the La2 —„(Sr,Ba),Cu04 compounds. In connection
with the structure of YBazCu307, we note that in addition

I

to the twoMimensional Cu-0 conducting sheets, there
are also additional planes consisting of one-dimensional
chains. The plasmon spectrum of such systems is very
peculiar and there are two crossover regions, namely from
one dimensional to two dimensional in the plane of chains,
and from two dimensional to three dimensional between
sets of planes. In addition, the presence of different ener-

gy bands with different effective masses results in the ap-
pearance of additional plasmon bands branches, the
"demon" states.

Similar to considerations made earlier about crossover
from three-dimensional to two-dimensional behavior and
resulting increase in the plasmon density of states, we sug-
gest that both the 1D-to-2D and 2D-to-3D crossover re-
gions will lead to enhanced plasmon densities of states (at
the corresponding frequencies) and hence T,. In addition,
we would like to stress that the carriers forming the
quasi-one-dimensional bands have heavier masses and
small carrier concentration in the chains (which is dif-
ferent from the carrier concentration in the planes). As a
result of both of these effects their effective three-
dimensional plasma frequency «i$ 4irne jm,h«, is ex-
pected to be small relative to the Fermi energy of the car-
riers in the planes. It results in strong coupling between
the carriers in the planes and quasiwne-dimensional
plasmons. This fact may be the origin of the increase in
transition temperature of the 1-2-3 material compared to
the La2-,Sr,Cu04 materials. For this situation the pair-
ing picture is similar to the usual electron-phonon prob-
lem as the plasma frequency m$ is small compared to Ep.

We have shown in this paper that treating the plasmons
of the layered cuprites more realistically supports and ex-
tends the single two&imensional plane model. The quali-
tative nature of the contribution to electron pairing by the
lowest plasmon branch resembles the pure two-dimen-
sional case, but adds strength in the low-frequency region
because of the peak in the plasmon density of states. Ad-
ditional contributions to pairing from quasi-one-
dimensional plasmon branches and possibly the effects of
crossover from 3D to 2D to 1D have been pointed out as
the poisible origin of higher T, in the YBa2Cui07 com-
pollllds.
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