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Mean-field hopping solution in the Anderson-Hubbard model
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The tight-binding diagonally disordered Anderson model with on-site Coulomb interaction is

solved in the mean-field hopping approach. Phase diagrams of the metal-insulator transition are ob-

tained from the free energy for the half-6lled band and the binary-alloy distribution. For attractive
interaction (U ~O), the Coulomb term gives additional localizing efFect and for soxne values of the

microscopic parameters the temperature induced two transitions (insulator to metal to insulator).

For U ~ 0 two di8'erent types of behavior are distinguished. For smaB disorder (8' & U/2), the me-

tallic phase can be induced by disorder, while for large 8', the disorder always destroys the phase of
extended states.

I. INTRODUCTION

There has been a considerable amount of theoretical
effort in recent years devoted to the understanding of
disordered media. ' Many aspects of the problem are
still far from being understood; in particular, the inter-
play of the Coulomb interaction and disorder. This im-
portant question has been studied theoretically within the
framework of certain simplified models, most commonly
the so-called Anderson-Hubbard Harniltonian. 3 This
model consists of Anderson's Hamiltonian for disor-
dered media plus an on-site electron-electron interaction
(U) term.

Anderson s model is a tight-binding Hlmiltonian in
which a band is formed from atomic orbitals associated
with lattice points. Randomness is introduced in the
model by assuming that the site energies (i.e., the diago-
nal matrix elements of the Hamiltonian) are statistical
variables having given probability distribution of width
W; which is taken as a measure of the degree of random-
ness. It has been demonstrated " within Anderson's
model that a critical value of 8' 8', may exist such that
a11 eigenstates are localized for 8'& 8', . This disappear-
ance of extended eigenstates has been termed the Ander-
son transition.

This limit (U=O) of the Anderson-Hubbard model
(AHM) is still a difficult problem and only the solution in

one dimension is known. '

Without disorder (8'=0), the AHM reduces to
Hubbard's model. ' As simple as this Hamiltoman is, it
still represents a truly interacting system. Without in-
teracting ( U =0) one obtains a pure band behavior due to
the small but 6nite overlap of the atomic wave functions.
For zero hopping term (t =0), the atomic hmit occurs
and the particles are locahzed. Thus, the Hubbard Harn-
iltonian describes a system which aHows for both these
limits; naturally, the intermediate regime t = V is of par-
ticular interest, as in this range of parameters the com-
petition between band eff'eets and localization due to
correlations is most subtle. So far, only the one-
dimensional case has been solved exactly. '

One may consequently anticipate that the competition

between Anderson localization and Hubbard localization
should lead to a very interesting phase diagram. Unfor-
tunately, only numerical approximations exist for the
Anderson-Hubbard Hamiltonian.

Renormahzation-group calculations show that a small
interaction U (as compared to the degree of disorder) ac-
tually hinders localization. Results for various correla-
tion functions, ' using Monte Carlo simulation. , show an
increase of the on-site correlation when the disorder is in-
creased. Similar results are obtained in more recent nu-

merical work' for the localization length.
At present, it seems then that the common result from

many difFerent numerical approaches is that the Coulomb
term does not provide additional localizing eSect for
small U.

The aim of this work is to present a very simple ap-
proach to the AHM, but one that still retains the essen-
tial features of competition between disorder and
Coulomb interaction. In this sense, the disorder and the
interaction terms are treated exactly, but the kinetic ener-

gy of the electrons is considered in a mean-field ap-
proach. Its solution allows, due to its simplicity, a better
physical understanding of the results.

In Sec. II we set up the model Hamiltonian and obtain
the free energy for the binary-alloy distribution. Finally,
in Sec. III we present the results and discuss their physi-
cal implications.

II. THE MODEL

The Anderson-Hubbard Hamiltonian is given by

+ U g n; t n; t + ,' UN, —

where c;, c; creates and destroys an electron of spin a
at site i, respectively, and n; =c;t c;; c; is the energy Iev-
el at site i, t' the hopping parameter between nearest
neighbors, U the on-site Coulomb interaction, and p the
chemical potential. The site energies are statistical vari-
ables having a given probability distribution P~, ~.
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b, =(c, +c, )=(c,' +c,' ) . (3)

In this approximation, the Hamiltonian [Eq. (1)] can be
written in site-diagonal form,

H=g(e, p+—t)n; +¹b, tb g(—c, +c; )

+Urn, &n;i+ —,'UN .

The new hopping parameter is t =zt'„where z is the num-
ber of nearest neighbors.

In this Hamiltonian [Eq. (4)], the sites are coupled only
by the mean-field parameter b, (to be determined from the
minimum of the total free energy) and therefore each site
can be solved independently in a subspace of four states.

If we define

H; =(e; p+t) g—n; +tb tb g (c;—+c; )

In order to obtain an exactly solvable model we make
the following approximation in the hopping term:

(c; cj +H. c. )=(c; +ci )(c, +ci ) —n; —ni

=b(c; +c,. )+(c; +ci )b,

U/2+th +(e; —p+t)/2+[(s; —p+t) /4+2t b, ]'

(b) two states mixing one and two particles (a linear
combination of c, &c, & ~

0) and (I/&2)(c,
&

—c, &
)

~

0) )

with energies

U+tb, +3(E; p—+t)/2+[(s, p+—t+U) /4+2t b ]'

(7)

The free energy for any particular site is

F, = T ln—(2)+tb, '+ U/2+(s, fl+t—)/2 T»—(Z),

where

Z=coshj/3[(s, —p+t+U) l4+2t b, ]' j

)& [exp[ —P(c,; @+t—+ U/2)] j

+coshtP[(s, p+t)—2/4+2t bi])~2j

and P is the inverse of the temperature T.
For the total free energy we perform a configurational

average, Using the "quenched-type" average' we get

Fr ——g (F; ) =N(F; ) =N J P(, )F,(, )ds; . (9)

+Un;)n;)+ ~U, (5)

In order to have a simple solution, we take the follow-
ing probability distribution (bindary-alloy approximation)
of the site energies:

the eigenstates of this Hamiltonian are the following:
(a) two states involving zero and one particle (a linear

combination of ~0) and (I/&2)(c;&+c;&) ~0)) with

energies
In this approximation, the mean free energy per site is

trivially obtained as

F=FTIN = —T In(2)+tb, + UI2+(t —p)/2 ——ln(Z ) ——ln(Z ),
2 + 2

where

Z+ ——cosh[@[(W—p+t+U) l4+2t b ]' j [exp[ —P(W —p+t+U/2)]j +cso h[)8[( W p+t) /4+—2t'b, ]'

Z =cosh[P[( —W —p+t+U) /4+2t 6 ]' j jexp[ —P( —W p+t+U/2)]j—
+cosh{P[(—W p+t) /4+2—t 6 ]'~

j .

F= —T ln(2)+t6 + UI4 W/2 —T ln(Z) ),— (12)

with

Z, = coshP[[( W+U/2)2/4+2t b j'~ j [exp( —)6lW)]

+cosh[P[(W —U/2) /4+2t b, ]' j,

For the half-ulled band case, the chemical potential p
is t+ U/2 and the free energy reduces to

where the order parameter 6 takes on a value corre-
sponding to the minimum of this F for a given 8', U, and
T. If the minimum corresponds to 5=0, the sites are
decoupled [see Eq. (4)] and the system is an insulator.
For b, =b, ;„&0, the metallic phase is obtained. At the
transition,

(13)

where the subscripts M and I refer to metallic and insu-
lating phases, should hold. %'e find first- and second-
order transitions.
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III. RKSUI.TS AND DISCUSSIQN 1.0

It is a very simple exercise in statistical mechanics to
calculate the energy and the mean-field parameter 6;„
for the model Hamiltonian at zero temperature. %e find
that for small U(

~

U
~

&4t) a critical value of W,

WcA
——U /2+2t, exists such that all eigenstates are local-

ized for W'& 8'cA and the system is an Anderson insula-

tor (AI). The ground state has W/2 sites with (e, &0) 0
particle and N/2 sites with (e, &0} 2 particles, for a
mean energy per site of E„=—W+ U/2. For
W& Wc„, the metallic phase (b, ;„&0}occurs and the
mean energy per site is given by

0.8

0.6

0.4

E~ = —(r /2)[1+( W —U /2)j(2t )]' . (14) 0.2

For large U (U &4t) a new critical value of W appears:
WcH ——U /2 —2r. For W & WcH the system is a Hubbard
insulator (HI). The fundamental state is degenerate be-

cause each site has one particle with two possible values
of the spin ( 1, 1) and the mean energy per site is EH ——0.
Thus, for large U, two possible metal-insulator transitions
can occur (HI to metal to AI) and the metallic phase only
exists when 8'CH g 8' g 8'cA.

These results can be interpreted in terms of the energy
levels scheme at each site. For small U the conducting
states arise from the mixture of zero and one particles at
N/2 sites and the mixture of one and two particles at the
other N/2 sites. As U is switched on, for U &0, the lev-
els of zero and two particles move away from the one-
particle levels and hinder the conducting mixture; as a
consequence WcA goes to zero. For U &0, the levels of
zero and two particles approach the one-particle levels
and the mixing is improved; thus, 8'cA increases with U.
This result has been observed in various numerical ap-
proaches. ' '

For 8'=0, it is interesting to note that the energy in
the metallic phase [Eq. (14)] reduces to the well-known
Gutzwiller result,

0.0
0.0 1.0 2.0 3.0

FIG. 1. Variation of the metal-insulator transition tempera-
ture T, as a function of the disorder W for diferent values of
the interaction U; (A) U=O, (8) U= —1.5t, (C) U= —3t, and

(D) U= —3.8t.

1.0

of the phase diagram.
For U~O, in the limit of small Coulomb repulsion

( U &2t ) we observe that increasing the disorder leads to
a decrease of the transition temperature down to zero for
8'=8'CA. For 3t & U a new feature appears: as 8' is
switched on, T, increases with 8'. As a consequence, the
combined action of both mechanisms gives a function of
T, versus 8 with a maximum as shown in Fig. 2 and Fig.
3.

For large U (U&4t), the HI phase appears. For
W& 8'cH, at very low temperature a first-order transi-

EM~ a=os= —Eo(1—U /U. }

where Eo=t/2 and U, =SEO. In order to solve the Hub-
bard model at T=O, Gutzwiller applied a variatiollal
method. At finite temperature, the phase diagrams can
be obtained in a straightforward way from the free energy

0.8

0,6

In Fig. 1 we show the variation of the metal-insulator
transition temperature T, as a function of the disorder 8'
for different values of the attractive interaction (U &0).
In Fig. 2 the results for small Coulomb repulsion
(0 & U &4t ) are presented and the results for U & 4t are
shown in Fig. 3.

For U &0 the phenomenon of reentrance appears. As
the temperature is lowered a second-order transition to
the metallic phase is observed; at even lower temperature
a new transition occurs back to the AI phase (Fig. 1, C
and D). In terms of our levels scheme this can be ex-
plained as a consequence of the fact that the competing
states have difterent entropy contributions. %'e have ex-
plored the possibility of metallic reentrance in disorder
media and have found that it can appear in a small region

0.4

0.2

0.0
0.0 2.0 4.0

FKJ. 2. Variation of T, as a function of 8' for U ranging
from 0 to 4t. (A ) U=O, (8) U=1.5t, {C)U=3t, (D) U=3.8t,
and (E) U=4t.
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(Fig. 1, A ) for T, is obtained. As the transitions are of
second order, Eq. (16) gives

T, /T, o=( W/W, )[arctanh( W/W', )] ' for U=0

T, /T, o=(U/U, )[arctanh(U/U, )] ' for W=O, (18)

where T,o——t, 8', =2t, and U, =4t. Therefore, we con-
clude that the interaction U or the disorder 8' always
destroys the phase of extended states.

0.0
0.0

FIG. 3. Variation of 1, as a function of 8 for U ranging
from4. 5t to10t. (A) V=4.5t„(8) U=6t, and {C)U=10t.

tion occurs between the HI and metallic phase (Fig. 3).
Here also we find that the competing states have difkrent
entropy contributions.

%hen the transitions are of second order, it is easy to
get an explicit relation for T„

1 2tA—/8=0, (16)

where

A =( I/W )sinh( W /2T, )

+ ( 1/ W+ )[exp( —W /T, ) ]sinh( W'+ /2 T, ),
8 =cosh( W /2T, )+ [exp( —IV /T, )]cosh( W+ /2T, ),
8 = W —U/2,

W+ ——8 +U/2 .

Finally, it is interesting to analyze the two limiting
cases: 8'=0 and U=o. In either case, the same law

%e have studied the competition between disorder and
Coulomb interaction in the Anderson-Hubbard model.
%e solve the problem in the mean-6eld hopping solution,
and recover in this approach Gutzwiller's solution in the
Hubbard limit (zero disorder). Despite this simple ap-
proximation very interesting phase diagrams are ob-
tained. These results can be interpreted in a very simple
energy levels scheme. We believe that this approximation
conserves the essential features of the competition be-
tween disorder and Coulomb interaction and gives good
qualitative results.

For attractive U, we find that the interaction gives ad-
ditional localizing effect and the possibility of metallic
reentrance, For Coulomb repulsion two diA'erent types of
behavior are distinguished. For small disorder the metal-
lic phase can be induced by disorder, while for large W
the phase of extended states is always destroyed.
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