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We have used the Srst Born approximation to derive analytic expressions for the scattering by an
oriented solid-on-solid rough surface. The surface roughness is described by a vertical height profile
h (r}which is a random function of the positional vector r in the horizontal plane. The mean-square
height difference for such surfaces is assumed to diverge either as a power law or a logarithm of r,
i.e., m, ~ r or m, 0:lnr. We derived expressions for both the specular re8ection and the difFuse

scattering. ESects due to the surface density pro51e and to atoms absorbed onto the surface, and
relevance to the study of the roughening transition are discussed. We also show that the angular
average of our result over all directions of the wave vector q gives a 1/q'+ dependence, in agree-
ment with an earlier calculation for inhomogeneous systems with randomly oriented internal sur-

faces.

I, IN+a@DUCTION

The scattering of a plane wave by a rough surface can
give useful information about its geometrical properties.
Submicrometer-level structures can be probed by x-ray
and neutron scattering experiments. There are two gen-
eral classes of problems. The first is scattering by inho-
mogeneous materials with randomly oriented internal
surfaces, ' e.g., colloidal suspensions, porous glass„
sedimentary rocks, cements, oil-water emulsions, fer-
romagnetic and ferroelectric materials with domain
walls, ' ' etc. The second is scattering by a sin le-
oriented surface, 'u" e.g. , the air-water interface, ' a
metal surface in vacuum, ' ' etc. If the interfaces are
smooth, the problems are well understood. Scattering by
inhomogeneous materials obeys the well-known Debye-
Porod law'5' and scattering by single surfaces obeys the
optical Fresnel law of re@ection. ' In recent years, there
has been much interest in studying systems with rough
surfaces, and it has become neccessary to understand how
these classical results are modified. In a previous paper'
(hereafter called Paper I},we have developed the scatter-
ing theory for inhomogeneous materials with rough inter-
nal surfaces. Specifically, eve have shovvn that if the sur-
faces have a power-law roughness (deSned below}, the
scattering intensity I (q) has a 1/q + dependence on the
wave vector transfer q, with 0&a &1. This type of sur-
face is also known as a self-agVne fractal and has fractal
dimension D =3—a. Thus the 1/q + behavior can also
be written as 1/q, m'hich was independently derived

by Bale and Schmidt' for self similar fractal surfaces
Such a behavior was observed in many experiments. In
this paper, ~e treat the problem of scattering by a single-
oriented rough surface and show how the roughness
a8'ects both the specular reflection (q parallel to surface
normal) and difFuse scattering (q has a component qi per-

io„=b (r/b)

with a between 0 and 1. As mentioned above, this type
of surface is also known as a self-aSne fractal, and its
fractal dimension is given by D =3—a. b is a microscop-
ic length scale that characterizes the magnitude of the
roughness. It is caBed the crossover length' because
m„pr for r gb and m, ~r for r «b. As a result, even
though m, diverges at large r, w, /r ~0 as r ~ 00, and the
surface is macroscopically smooth. Such surfaces have
been used as models for fracture surfaces of metals, '

rock formations, etc. The second type of roughness me
consider is a logarithmic one

io„=b ln(r/a), (1.3}

pendicular to the surface normal}. Our work is motivat-
ed mainly by the growing interest in using synchrotron-
generated high-intensity x-rays to study single sur-
faces. "

As in Paper I, the type of rough surface we consider is
the so-called sohd-on-solid model in which the surface
is defined by a vertical-height profile above a horizontal
xy plane and can be represented by a single-valued ran-
dom function z =h(r), where r=(x,y} is a positional vec-
tor in the xy plane. The mean-square interface width io„
is de6ned by

io„—:([h(r) —h (0)]2)o,

where ( )o denotes an average over aB choices of the ori-
gin. The surface is assumed to be sharp in the sense that
the scattering amplitude changes discretely like a step
function across the surface. (This assumption can be re-
laxed, see Sec. IV.) Two types of roughness are treated in
our calculation. The first is a power-law roughness
characterized by
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where a is the lattice constant. These surfaces arise in the
context of roughening transitions which have received
much attention recently. ' ' ' Although Eq. (1.3) can
be regarded as a type of hmiting case (a =0) of Eq. (1.2),
the calculations have to be perfornmd separately.

The organization of the paper is as follows. In Sec. II,
we derive the general expressions for wave-vector
transfer parallel and perpendicular to the surface normal

(qi and qi, respectively) and apply them to the power-law
rough surfaces. We also show that the result we obtained
in Paper I for inhomogeneous systems can be obtained by
angular averaging the expressions for single surfaces.
Section III describes the results for logarithmic rough-
ness and possible apphcations to the study of roughemng
transition. In Sec. IV we summarize our jindings and dis-
cuss some extensions of our results.

along the z direction. Microscopically, the rough surface
is defined by a set of points (xo„yo,zo) which satisfy an
equation zo ——h(xo, yo), where h is a single-valued func-
tion. The assumption of a sharp interface implies that
the scattering-length density (amplitude per unit volume)
at a point R= (x,y, z) can be written as i)(R )

=p8(ha —z), where 8 is the step function and
h„—=h(x, y). In other words, rl is a finite constant p
below the surface and zero above it. For wave-vector
transfer q, the first Born approximation gives the scat-
tered intensity (cross section) as

I(q)= fdR' fdRe'~'"(g(R')il(R'+R) )

=p R' Re'q'

y (8(h„—z')8(ha+a —z —z') ),
II. GENERAL RESULTS AND POWER-LAW

ROUGHNESS

A. General results

A general scattering theory for surfaces has been given
previously by Andrews and Cowley. '0 We present here a
difFerent formulation which can be easily apphed to
different types of roughness such as those described by
Eqs. (1.2) and (1.3}.

Using Cartesian coordinates, we assume the surface is
macroscopically oriented in the xy plane with its normal

where h„—=h (x',y') and h„+„=h(x +x',y+y')
=ha +h, . Thus h„ is the height difference between two
points on the surface which have their horizontal coordi-
nates separated by r=(x,y}. It is a random variable with
an average value of zero and a probability distribution
P(h, lw, ), where w, is the width of the distribution andI" P(v)dv= 1. Assuming that the surface is isotropic
in the xy plane, w„depends only on the distance
r =(x2+y )'~2. By a change of variable, letting
(ha —z') ~z', the above integral becomes

I(q)=p A fdz' fdz e i fdre ' fd(h, lw, )P(h, lw„)8(z')8(h, +z' —z), (2.2)

where A = Idx' dy' is the macroscopic area of the surface. The statistical average ( ) over the random configurations

js replaced by the h jntegial over P(h /w ) By rewrjtjng e II —e II e II e II " we have

I(q)=p A fdz'e' '8(z') f dz e'1' ' '8(h„+z' z)f rdr f d—Pe' ""fd(h„lw, )e' "P(h„/w„) . (2.3)

Using the identity
—

q))N /22 2

P(qiw, )=e (2.6)

—Il /Lo„
P (h„/w„) = —e

&zw

which glvcs

(2.5)

lim f dz 8(z)e ""+"=—.
p~o —ce ik

we can see that the 6rst two integrals give a factor of
1/qi, which is equivalent to the square of the surface
form factor in the z direction. The (() integral gives
2m Jo(qir) where Jo is the zero-order Bessel function of
the first kind. The h„ integral gives generally a function
P(qi w, ). Together, we have the general result for any q:

I(q)= z f 2mr dr Jo(q~r)P(qiw„} . (2 4)
~ll

To proceed further, wc shall assume a Gaussian proba-
bility distribution function

For qi=O, Jo(0)=1 in Eq. (2.4) and the specularly
reNected intensity has the form

p A —q m, /2I(qi)= z f 2nr dr e (2.7)

We note that if the surface is perfectly smooth, then
w„=O and the integral gives a factor A. Equation (2.7) is
then reduced to

2+ 2

(2.8)

Contrary to this expression, the Fresnel law in optics has
a qll tail for I qll The reason is that the beam size Ao
is usually much smaller than the rejecting surface in op-
tics. As a result, the re6ccting area is given by
3 = 3o /sinO, where 28 18 thc scat tcrlng angle. Slncc

q'
1
=2Q sin8, where Q is the magnitude of the wave vec-
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tor for the incident and re6ected beams, we can rewrite
Eq. (2.8) as I (qll )=4p A oQ /q

ll
which is the familiar

form of Fresnel refiectivity. Therefore, Eq. (2.7) can now
be understood simply as the Fresnel re8ectivity reduced
by a Debye-Wailer-like factor due to the surface rough-
ness. This change in the re6ected intensity becomes the
diffuse scattering in other directions

61/2 ——4 1+
y2 4

In general, 6 is a symmetric peak that centers at qi =0
with a width proportional to (bqll)'/ /b T. herefore, in
principle b and a can also be determined by di5'use
scattering measurements.

I(qi, qll }= 2nr dr Jo(qir)ep A —ig
ll

LU /2
2 (2.9) C. ~gular average

Note that qi is coupled to the in-plane distance r and qll
is coupled to the vertical fiuctuation ie„.

2b'A
I(qll)= I 2irk dk e

pb A m2'/

(q b}2+2/a
ll

(2.10}

where I' denotes the gamma function. This expression
pre icts an algebraic falloff' faster t an t e qll behavior
of a planar surface. Equation (2.10) allows beth b and a
to be determined from the specular refiection. For the
diff'use scattering, we substitute k into Eq. (2.9) and use
the fact that Jo is an even function,

)
p b A

qi'qll
( b)2+2/a

B. Power-law roughness, a & 0

The above results are general in the sense that no
specific form for w, has been assumed. I.et us now con-
sider the power-law roughness defined in Eq. (1.2}. If the
exponent a=0, io„can either be independent of r or
dependent on the logarithm of r. In the first case, the
surface roughness has no spatial correlations. The ex-
ponential factor in Eqs. (2.7) and (2.9) can simply be fac-
tored out of the integrals. The logarithmic case will be
treated in Sec. III. Here we treat the a & 0 problem.

For specular refiection, Eq. (2.7) gives

p A 2P 2 —
2a&2a/2

I(qll )
2

J2n'r dr e
~ll

With a change of variable k =(qllb )' r/b, we obtain

For qb »1, the main contribution to the integral comes
from small values of p such that the argument of 6 is of
order unity. Thus we define a new variable u p (qb)'
and transform the integral to

p2b4A
I(q)=

2
2n

(qb) +

f' lebl' du

u 2+2/a
u 2( b}2a—2

u2/

(2.13)

%e note that the integrand is suppressed at the lower
limit by the peak function 6, and at the upper limit by
the algebraic denominator. The product of the two fac-
tors peaks near u = 1 and the integral can be approximat-
ed by a constant

rdu 1

g 2+2/0,'~ g 2/a

We next compute the angular average of Eq. (2.11) to
show that it gives the same results in Paper I which were
derived for inhomogeneous systems with randomly
oriented internal surfaces. Using spherical coordinates,
let 8 be the angle between the scattering vector q and the
surface normal n, then qll

——q cos8 and qi ——q sin8. Since
Eq. (2.11) is independent of the direction of qi, it is not
neccessary to average over the azimuthal angle P. For
the average over 8, we let p =cos8 in Eq. (2.11) and in-
tegrate over p,

p2b4A
2

i dp 6 b2q'(1 —p')
b}2+2/a O p2+2/a a (b~)2/a

(2.12)

X I 2mk dk Jo[kbqi(bqll ) '/ ]e

a
'1/2 ~ l+

2
(2.14)

$ 2q 2

2mG
(q b)2+2/a a

(bq )2/a
ll ll

(2.11)

The functional form of 6 depends on the value of o;.
For special values of a, the integral in Eq. (2.11) can be
evaluated. For examples, for a=1, using Eqs. (6.631),
(9.210) and (9.215) in Ref. 25 gives a Gaussian

2

61 =exp
2q

ll

For a =—,', using Eq. (6.623) in Ref. 25, we find

In the evaluation o«»»ntegral, we have used the
definition of Ga given in Eq. (2.11). We have also verified
that using the results in Paper I to calculate the ampli-
tude of this term gives exactly the same expression for
C, . Therefore, the dominant behavior for qb »1 is a
1/q + power law, in agreement with Paper I. In the op-
posite limit qb &&1, the function 6 in Eq. (2.12) is ap-
preciable only for p= 1. Hence we define another new
variable t =(qb)' ' (1—p )' and transform Eq. (2.12)
to
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p b A [qb)'
I(q) = 2m

(qb)

fit
[1 ( b) 2+2/ar2]3+2/a + [1 (b )

—2+2/at2)l/a (2.15)

The integral converges at the lower limit due to the numerator t, and it is suppressed at the upper limit by the function
6 . The main contribution comes from t = 1, and it can be estimated by a constant

C, = f tdr 6 (r2/2)= f kdke k /'f rdr f ~e'k™

=f kdke " /2 fdte'"'
0 2'

= f kdke " /2e5(k)= fdke " /5(k)=1. (2.16}

The solid-on-sohd model predicts that the surface of a
solid can undergo a roughening transition at some tem-
perature Tz below the melting point of the solid. 2o24

The interface width is described by Eq. (1.3) for tempera-
tures T & Ta. Below T„, the width is finite, and there is
a finite correlation length g. Although there is no specific
prediction in the literature, we expect Eq. (1.3) to hold
for r «g, and for r »g, ta, should tend to a constant
value b ln(g/a). In other words, the mean-square width
should obey a scaling form

io„=b ln f(r/g)—
Q

(3.1)

where f (r/g) is a scaling function with the properties

f(0)=1 and f(rig)=g/r as r/(~00 .

For convenience of calculation, we shall assume

Hence the scattering for qb «1 is a q power law, as
found in Paper I. Substituting C2 into Eq. (2.15}gives ex-

actly the smooth-surface result derived by Debye, Ander-

son, and Brumberger in Ref. 15. This is due to the fact
that the roughness is not observable at a length scale
r -1/q »b. For the same reason, we note that while C,
depends on a, C2 does not. It is also interesting to note
that while the integrand in Eq. (2.16}contains a, the end

result does not.

III. I.OIGAMTHMIC ROUGHNESS AND
ROUGHENING TRANSfxiON

A. Syecular reSection {qj =0}in the rouiih iihase ( T & Ts )

A direct substitution of Eq. (1.3) into Eq. (2.7) gives

I(qi)= 2 2mr dr(rla)p A q 2b 2/g
(3.3)

where L is the linear dimension of a single-crystal sur-
face. Assuming L »a and A =rrL, the integral is easily
carried out and yields

—q ~b 2/2

I(q )= p'&' (L/a) i —(L/a) '
II 2

1 —q2ib2/4
(3.4)

Note that the first factor is the reflectivity of a perfectly
Sat surface as given by Eq. (2.8}. The second factor is the
reduction due to the roughness. For qb gal and I. ~pa,
this factor tends to unity because the roughness is negligi-
ble for r —1/q»b. For qb»1, this factor tends to
a2/Lzb2q~ which is less than 10 ' for a typical a/L ra-
tio of 10 . Hence we expect the effect to be unobserv-
able in this limit in an experiment. The effect of rough-
ness should only be observable in a region where qb & 1

where Eq. (3.4) can be approximated by

p g —(1/2)q~~b 1n(L/a)I (qi )= e

We note that for L/a =10, the Debye-Wailer factor is
greater than 1/e for qib &

—,'. If the reSecting surface
consists of domains of different sizes, then the above ex-
pression has to be averaged over the size distribution.

f(r/g)= (1—e ' i) .
1

r/ (3.2)

This will affect our result in the region where qg- 1, but
not for qg»1 or qg« l.

B. Secular re8ection in the smooth phase {T ~ T~ }

Using Eqs. (3.1) and (3.2) in Eq. (2.7},we obtain

I(qi)= f 2srrdr (1—e "~)p A

0

—q)tb /2

(g/a) i (2f 2ms ds (1—e ')
~ll a/g

A 2b 2/2 2b2/2(j/a) i A +$2f 2ms ds[(1 —e ') i —I]
0

(3.6)



37

= ——,'q ib ln(1 —e ')

j q2b2
ll

n=1

Substituting into the integral in Eq. (3.6) and evaluating it
term by term we find the leading term in qlb to be

qib' X I "d ~ "'/-~ =~qib'&(3}
0

(3.7)

where g(3)= g„" in is the Riemann's g function.
Combining with Eq. (3.6) gives

where we have replaced r/g by the variable s and as-
sumed o «g«L. If qb &1 in an experiment, we can
rewrite

2$ 2/2
(1—e ') i —1 =exp[ ——,'qib ln(1 —e ')]—1

If g « A and qb &1,we can ignore the high-order terms.
We recall that for a reduced temperature» =1—T/Tx
below the roughening transition, the correlation length
diverges as

g/o ec/ T

where c is a constant. Thus the temperature dependence
of the intensity at Sxed qll is given by

P Q —cia l5 /2~7.
I(ql)= e

2

This expression implies that I(q() vanishes at Ta with a
zero temperature derivative. In reality, this behavior is
cut off by the Snite domain size L according to Eq. (3.5).
This result seems to be in qualitative agreement with the
recent data obtained by Mochrie' for the Cu(110) sur-
face, and Held et al. '4 for the Ag(110) surface.

I(q, }-p A —(1/2)q b 1n(g/a)

qtl

x 1+ „mg(3)q21b2+. (3.8)

C. Diffuse scattering

It is instructive to first carry out the calculation for the
smooth phase ( T & Ta ) and then take the g-+L limit for
the rough phase. We begin by rewriting Eq. (2.9}as

I(qi, ql ) = 2»rr dr Jo(qir)(e " +e ' —e " ),p A —qllw' /2 qll~ ~z ~ll~
2 (3.11)

—qm2/2
where io„:—b»(g/+). Factoring out e 1 " from the integrand, we note that the first term in the integral gives
&5» 0 which is &ust the specular re6ection. Using Eqs. (3.1) and (3.2), we have io2 io2 —b2ln(1 e

—~~l') Thus

remaining terms in the integral can be written as

2~r r Jo q&r e l
" " —1 = 2mr r Jo qzr 1 —e ' & ll' "—1

Q a

=2»rg I s ds Jo(qig, )[(1—e ') ~~ —1]

=A'(qik qib » (3.12)

where we have replaced r/g by s and assumed a «g «L. The form of the diffuse scattering is contained in the func-
tion g. Its arguments show that qi is coupled to the in-plane correlation length g and that qi is coupled to the out-of-
plane roughness amplitude b, which is what one would expect. Similar to Eq. (3.6), we can ca~lculate g in the small qib
limit by expanding the integrand in Eq. (3.12) as a power series in e '. The leading term in q lb

2 is

OQ e —ns

g(qig, qlb)= qib2 g I s ds Jo(qigr)
n=~ n

qlb g (n +'qig )
n=1

(3.13)

whe«we have used Eq. (6.623) in Ref. 25. We note that this result is a consequence of the scaling function f we as-
sumedEq {32 1herefo ewliile lt might be useful as a guide in analyzing qi scans at fixed qii' it is not expected to
be completely accurate in the qig-1 region. On the other hand, it should give the correct limiting behavior for
qig«1 and qig~~1. Combining Eqs. (3.11)—(3.13), we obtain for T & Ta,

2 g 2 2y2/2 P2 oo

I{qi qi)= ~ (g/a) t 5 0+n~qib g (n +qig )
n=1

(3.14)

where 6 denotes the Kronecker delta. A simple physical understanding of this expression is the following. The first
term represents the Bragg scattering and the second term represents the difFuse scattering. Both are attenuated by a
Debye-Wailer factor due to the surface roughness. The leading 1/ql factor comes from the form factor F(q~~) of the
surface, because it results from the Fourier transform of the scattering density profile in Eq. (2.3). We should note that
for qi =0, Eq. (3.14) reduces to Eq. (3.8) exactly. Thus the two terms in Eq. (3.8) are understood to be the Bragg and
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diffuse scattering in the specular direction. It should be noted that the distinction between Bragg and difFuse scatterings
does not exist in Eq. (2.11) for power-law roughness. There, both the specular and ofF-specular scatterings are described
by a single continuous peak function 6 .

Finally, for T & Ta, if we let (=L and mLz= A in Eq. (3.14), then the Bragg scattering term recovers Eq. (3.5). For
the difFuse scattering, since g~ oo, the condition qig&&1 is always satisfied. The discrete sum in Eqs. (3.13) and (3.14)
can be replaced by an integral

(52+Jig) i/2 I dn (52+q2g2) —i/2 (~ g)
—2

n=l 0
(3.15)

Thus, to first order in qlb, the decay of the difFuse scattering exhibits a qi behavior which should be valid for all
values of qi at temperatures above T„and for qig'»1 below Ta. For general values of qfb, however, this result has
to be modified. Substituting Eq. (1.3) directly into Eq. (2.9), we have

I(qi, q~~~)= ~
2ir r dr Jo(qir)(rlcr)p A qllb2m

gg ao ~„1—qb l2
2r/hm I dve '"J (v)v

2 —q 2llb
~/2 & 0

(3.16)

where v =quar, i)=q ~~b /2 and we have used Eqs. (6.621),
(8.756), (8.335), and (8.334) in Ref. 25 to evaluate the in-

tegral. The leading order qi 2 behavior found in Eq.
(3.15) is now modified to a qi—2+i) power law. This result
is intermediate between Eqs. (2.11)and (3.14) in the sense
that there is no sharp distinction between Bragg and
difFuse scattering, and yet there is a divergence at qi =0.
It is interesting to note that the qi +" behavior in Eq.
(3.16) is similar to the qi +" critical behavior of the
two-dimensional (2D) XF model except that, while il is a
constant, g varies with qi. The reason is that the ex-
ponent g in the 20 XF model is proportional to the am-
plitude bi in the solid-on-solid model and b is coupled to
qi in a scattering experiment. This understanding may
be useful in analyzing the recent experimental studies of
the roughening transitions on Cu(110) and Ag(110) sur-
faces ' '

IV. SUMMARY AND DISCUSSIQNS

To summarize, we have calculated the scattering from
a single-oriented rough surface within the first Born ap-
proximation. The results should be useful for x-ray and
neutron scattering experiments, where the scattering is
weak and multiple scattering can be ignored. The most
general result is given by Eq. (2.4). With the assumption
of a Gaussian probability distribution in Eq. (2.5},we ob-
tained the expression in Eq. (2.9) which should be ade-
quate for most practical purposes. The assumption of a
power-law roughness leads to Eq. (2.11}which allows one
to determine the amplitude b and the exponent a. The
angular average of Eq. (2.11) agrees with the results first
derived in Paper I for inhomogeneous systems with ran-
domly oriented surfaces. The calculations for the loga-
rithmically rough surface are carried out with an as-
sumed scaling function defined by Eq. (3.2). This leads to
the expressions in Eqs. (3.14) and (3.16), which can in

principle be compared with experimental studies of the
roughening transition.

It is important to point out that Eqs. (3.14), (3.16), and
(2.11) represent three classes of behavior. Equation (3.14)
has a clear distinction between Bragg and difFuse scatter-
ings. There is a discontinuity at qua=0. The physical
reason is that the height Suctuations are only correlated
over a Snite distance g, and they are bounded. The Bragg
intensity is that of a perfectly Sat surface modified by a
Debye-%aller factor. %'e expect this general behavior to
hold for all surfaces with finite wz. Equations (3.16) and
(2.11) apply to situations where w„diverges. Neither of
them contains a Debye-Wailer factor and there is no
discontinuity at q~ to distinguish Bragg and de@'use

scatterings. However, the weak logarithmic divergence
of icz in Eq. (1.3) leads to a qi +) divergence in Eq.
(3.16), whereas the strong power-law roughness of Eq.
(1.2) leads to a smooth peak function G, in Eq. (2.11). If
the surface consists of many domains of size L, then Eqs.
(2.11) and (3.16) should only hold for qiL &1. For
qiL & 1, the scattering should evolve into separate Bragg
and diBuse components, and they can be calculated by
Eqs. (2.7) and (2.9} with tol . If there is a distribution of
domain size, the result has to be averaged over I..

Throughout our calculation, two other assumptions
have been made for the sake of convenience. Both of
them can be relaxed. First, we have assumed a continu-
um scattering density in Eq. (2.1) which gives the p2 fac-
tor in all our results. Modification for a lattice structure
is a simple procedure. One simply replaces p by

(4.1)

where the sum is performed over a unit cell, f, is the.
form factor for the &th atom, and r; its position. As usu-
al, the discrete nature of the lattice also changes q to
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mS' mS'

siniqll W~ i sinh~qll IV
' (4 2)

where me have used u —=e'~~. For
q~~

8'~~1, expanding
the sinh function recovers the sharp interface form factor
F (qll )= 1/iqll exactly. For any other values of qll,

qll '
I

& 1/qll and "ence 'he 'ca ering intensity is a
ways less than that by a sharp interface. There are many
systems for which the knowledge of F(qll) is useful, e.g.,
Bloch walls of magnetic domains, surfactant layers oil
and water, heterojunctions in semiconductor devices, etc.

Finally, we should point out that all of the above calcu-
lations apply to the general situation where there is a
scattering density ddference across the interface. A
closely related problem is to have strong scatterers lining

q —G in all the results (G is any reciprocal lattice vector
with a bulk scattering Bragg peak} so that all the predic-
tions can be tested near a Bragg peak. The second as-

sumption me made is the inSnite sharpness of the density
proSle, which is represented by the step functions in Eq.
(2.1). This leads to the 1/q

ll
prefactor that appears in all

the expressions, and it can be understood as due to the

form factor E(qll ) of the surface along the normal direc-
tion. In general, the interface can have a Suite internal
width 8'over which the density changes gradually. For
such cases, we can replace the 1/qll factor by

~ F(qll) ~

in all the expressions above. For qll & 1/W, the internal
structure cannot be probed and E(qll ) must tend to 1/qll.
For larger values of qll E(q ll) should fall om' faster than

1/qll, and this can gIve information about the density
variation proSe across the interface. To give an explicit
example, we consider a Fermi-function type density
proSle p(l+e'~ ) '. Using Eq. (3.222} in Ref. 25, it is

easy to show that

dz e "ll*
~«ll)=J,gw(1+e' )

i/I) $Y —1

~f ~dgtt
0 1+u

a rough interface with weak scatterers on both sides, e.g.,
x-ray scattering by Xe or Kr atoms absorbed on berylli-
um or graphite surfaces. This problem is also related to
the scattering at the anti-Bragg points in the previous
(clean surface) problem. ' The reason is that the anti-
Bragg vector q correspond to p~=O in Eq. (4.1) and
hence only the partially-Slled unit cells at the surface lay-
er contribute to the scattering. Although the scattering
amplitude for each sell is different, there is an average
value (pz) which gives rise to a coherent scattering and
the fluctuations about (p ) gives an incoherent back-
ground. The solution to the coberent scattering is qmte
simple. We only have to replace the step-function
scattering densities in Eqs. (2.1)-(2.3) by delta functions.
The end result is that the qll factor in Eq. (2.4) drops
out and p is redefined to be (pq) for the surface layer.
This simple change applies to all the subsequent expres-
sions. For example, Eq. (2.11) would have its prefactor
qll replaced by qll, Eqs. (3.14) and (3.16) would
simply not have the 1/q

ll
prefactor.

Another interesting variation on the same theme is to
have step-function scattering density profile with
in6nitely strong amplitude. This "hard mall" model ap-
plies to atomic beam scattering by the surface, z3 because
the atoms interact so strongly that they cannot penetrate
the surface. The Srst Born approximation is clearly
inadequate. This problem has been studied by Villain,
Grempel, and I.apujoulade.
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