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The efFective-medium approximation for a percolation system is used to analyze the vibrational
structure factor S(q,e), measured in scattering experiments ofF self-similar samples. A sharp cross-
over to strong localization is found at a certain frequency ~„corresponding to a crossover wave
vector qc In particular~ the linewidth v.—l obeys the Rayleigh law ~-l a)d+l» at frequencies lower
than co, (d is the Euclidean dimensionality), and the Ice-Regel strong-scattering limit, v =~, at
high frequencies, ~ ~ u, . At wave vectors less than q„S(q,cu) is sharply peaked at ~=qc (where c is
the sound velocity) and has a small structure at ~, . At wave vectors higher than q„ the sharp peak
is completely smeared out, while the small structure persists. The results are in qualitative agree-
ment with experiments and, with the fracton scabng model, regarding the frequency and wave-
vector dependence. However, they fail to scale with u, alone in the low-frequency regime.

I. INTRODUCTION

The character of the vibrational spectrum of self-
similar, fractal systems (e.g., percolation clusters, gels)
was originally discussed by Alexander and Orbach, ' who
named it the fracton model. The main feature of the
model is the crossover from low-frequency phonon exci-
tations, to relatively-high-frequency, strongly localized
fracton modes. Indications of such a behavior have been
recently observed in Brillouin scattering from silica aero-
gels and neutron scattering from magnetic excitations of
diluted antiferromagnets. 3

The fracton model is based upon scaling arguments.
As such, it cannot yield detailed information of the fre-
quency and wave-vector dependence of the structure fac-
tor, measured in these experiments. In this article we
present a calculation of the structure factor within the
elfective-medium approximation (EMA) for a bond per-
colating network. Such a network appears to be homo-
geneous over length scales larger than the connectivity
coherence length, g ~ (p —p, ) ", and exhibits anomalous
features at length scales smaller than g (here p is the per-
colation concentration and p, is the percolation thresh-
old}. In previous studies it has been found that the
EMA reveals a sharp crossover from extended, phonon-
like behavior to strongly localized, fracton behavior at a
crossover frequency to, ~ g . The density of states
changes abruptly at co„and the corresponding wave vec-
tor q, ~ g' ' marks a rapid change in the dispersion rela-
tion to(q}, interpreted as crossover to localization. These
rapid changes are caused by a singularity in the solution
of the EMA equations at ~=m, . Here we exploit the
same equations to derive the structure factor, and 6nd its
features to be dominated by the same crossover frequency

and wave vector. However, we find that the EMA fails to
yield scaling in terms of co, alone, in the frequency range
below to, . This is in disagreement with the scaling ansatz
of the fracton model, which assumes a single characteris-
tic frequency scale for the description of the excitations
of a self-similar system.

We apply the EMA to the force constants of the scalar
elasticity problem of a percolating network. In this ap-
proximation, the force constants are replaced by a uni-
form, frequency-dependent, complex force constant,
chosen in such a way that the scattering produced by one
bond, for which the original force constant is maintained,
is zero on the average. In Sec. II we present the basic
equations resulting from this form of the EMA, and the
self-consistent solution for the frequency-dependent force
constant. This provides us with an expression for the
EMA retarded Green's function. The Green's function is
then used to calculate the structure factor.

The scattering cross section for an energy transfer to
and momentum transfer q is proportional to

—[ I —exp( —Pco)] '2 ImGa(q, to),

where P=l/k&T and G"(q, to) is the retarded Green's
function of the vibrations. The experimental data is usu-
ally presented without the Bose factor, and the structure
factor is thus given by

S(q, to)= —2ImG (q, co) .

In an ordered isotropic lattice, the Green s function, in
the Debye approximation, ls

G"(q,co)=(co —Eq )

where m includes an infinitesimal positive imaginary part,
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and K is the force constant, proportional to the square of
the sound velocity (we use units in which the mass is uni-
ty). In this case, S(q, co) is of the form of a 5 function, lo-
cated at co=cq, where c is the sound velocity. When
weak disorder is introduced into the lattice (e.g., a low
concentration of defects} the 5 function broadens into a
quasi-I orcntzlRn sllRpc, centered Rfouild co=cq& with R

finite width, ~ ', whose frequency dependence obeys the
Rayleigh law, ~ '=m +', where d is the Euclidean
dlfilcilsioilallty.

In the EMA for a percolating network, the force con-
stant K in Eq. (3) is replaced by a complex, frequency-
dependent, homogeneous "force constant" IV(co), which
also depends upon p —p, . The real and imaginary parts
of W(ro) result in an effective, frequency-dependent
"sound velocity" and an efFective linewidth. We present
numerical results for these quantities for a simple cubic
lattice in three dimensions.

We find that for q below q„ the structure factor as a
function of t0 has two peaks. The first is a high and nar-
row one, centered around cq, where c scales as Qp —p, .
The width of this peak follows the Rayleigh law. The
second peak is located around t0, and is much smaller.
As q increases towards q„ the first peak moves towards
t0, and broadens, while the second peak rises but remains
at r0, . At q =q, the two peaks merge together. For
values of q higher than q„ the structure factor exhibits a
very low and broad structure. This behavior is in accor-
dance with experimental data, ' and with the predictions
of the fracton scaling model. As q, corresponds to the in-
verse of the percolation coherence length g', the phonon-
like spectrum is expected to be reflected in S(q, co) only
for qg «1. The fracton contribution is the smaller struc-
ture at co, . For qg&1, the phononhke contribution
disappears. In other words, wave vectors q ~q, essen-
tially probe only the localized modes. These characteris-
tics appear as well in the effective sound velocity and line
width, extracted from our expressions. Above co„ the
dispersion relation deviates from linearity and the
linewidth reaches the los-Regel strong scattering limit,

—1T ~N.
We discuss in Sec. III the failure of the EMA to obey

scaling for frequencies less than c0, . However, compar-
ison of our results with experimental data can sti11 be
made because t0, dominates over all crossover behavior.
In this sense, when p —p, is Snite, the breakdown of scal-
ing within EMA is practical1y unijmportant.

II. THE STRUCTURE FACTOR IN THE EMA

In the EMA one replaces all the force constants Ki i by
an effective uniform force constant W, except for a single
bond (say, the bond 1-2). One then finds that the Green's

function is given by

2

g"(l, l', to}=G"(l,l', to) gG—"(l,i, to)T;, 6 (j,l', m) .

Here 6 is the retarded Green's function of the homo-
geneous lattice in which all the force constants are re-
placed by W, and the 2 X2 T matrix is given by

T=~ii(1+611~12) '

(9)

b 11
——( W —Kii)

where 611 is the 2X2 homogeneous Green's function of
the sites 1 and 2. More details concerning this form of
the EMA are given in Ref. S. The efFective force constant
W is determined from the requirement that the T matrix
vanishes when averaged with the probability distribution
(5). This makes the average Green's function to be equal
to the homogeneous Green's function 6"(i,i', to) [see Eq.
(8)] and leads to the EMA self-consistency equation

1—(W —K)[1—t0 6 (0,0,»»t)] —W+pK =0 . (10)

From this equation, in the to=0 hmit, one finds that the
percolation threshold in the EMA is p, = 1/d.

To solve for the frequency dependence of W, we note
that the homogeneous Green's function is

G "(l,l', a))=g exp[iq. (1—1')]6"(q,co),

The retarded Green's function of the displacements is
defined by the thermal average

ga(l, l', t)= i—e(t)([u, (t), ui ]},
where e(t) is the theta function. The vector notations
are omitted since for the scalar elastic energy (4) there is
no coupling between di8erent directions.

The Fourier transform of the retarded Green's func-
tion satis6es the equation

m —QKii. . g "(1&l'&co)++Kii-g (l"&I'&to)=5
«t»

We consider a lattice of equal masses, for which the
elastic potential energy is of the form

~here, for a simple cubic lattice in d dimensions
—1d

6"(q,co }= co —2 W g (1—cosq; ) (12)

~ XKt, i(ui —ui )
«, «'

(4)

where u« is the displacement from equilibrium of the
mass at site i, and Ki i. Ki i connects two —n—earest neigh-
bors. The force constants E««» span a bond percolatmg
system, obeying the probability distribution

P(Ki i ) =p5(Ki i K)+(1—p)5(Ki i ) .—

Here q; are the components of the wave vector in units of
the inverse lattice constant.

%e follow Ref. 4 and solve the EMA coupled equa-
tions (10}and (12) for frequencies of the order of p —p, .
Measuring W and t0 in units of K, we expand 6"(0,0, t0)
in powers of co /W&xp —p, ««1 [this is consistent with
the resulting expressions, e.g., Eq. (16a) below]
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6"(0,0,ro) = —r{r~

d/2

Xg, 2(d (4
To this end we have defined

c(co)=
i

W(a))
i
/Rev'W(ro),

'(co) =co Im'r/ W(ro)/Rev'W(~) .
(21)

W(m)= Wr(rrr) —i'(err) . (14)

The detailed solution is carried out numerically and re-
veals a sharp change of behavior at ar =co„where

where rA{r& and X& are numerical (real) constants. In con-
junction with Eq. (10), Eq. (13) leads to a complex solu-
tion,

This provides us with natural definitions for a frequency-
dependent sound velocity c(ro) and a linewidth r '(m},
and allows us to explore their variation as a function of
frequency, from the phonon to the fracton regime. Using
the limiting behaviors, Eqs. (16},in Eqs. (21) we find

N

P —Pc

At frequencies much smaller than ar, the EMA for the
vibrational spectrum has a phononlike behavior. 4 At
r0&co„ the features of the spectrum change drastically.
Following the fracton scaling model, we denote the low-

frequency regime (ar (ar, } the phonon regime, and the
high-frequency regime (rrr&~, ) the fracton regime. We
find that the hmiting behaviors of the effective force con-
stant in the two regimes are

W&-p —p, ,

Wz-r0 /Wr /, Wq«Wi, ar«,
and

(p p )i/2

N

(p p )d/2+1

for ar « ro, (phonon regime) and

C~N 1/2

—17 ~N,
for 67 »c0 (fractoil i'egiine).

(22)

(23)

(16b)

1Q r

1oo;

I l lrrrI I r I l rrrrl

Turning now to the structure factor, we use in the
homogeneous Green's function, Eq. (12), the Debye ap-
proximation

d
2 g(1 —cosq;)=q~, (17)

31Q 2

CF

40
Alv 1Q-43

and so reduce Eq. (12} to the form {3). Combining Eq.
(14) with Eqs. (2) and {3),the structure factor in the EMA
becomes

1Q 8 i r r l rrrrl r r r l rrrrl r r r l irirl

1Q -2 1Q -1
1Q0 1Q1

2q 8'2
S(q, )=

r0 —2aPq~Wr+q
)

W
)

(18)

S(q, ro) = c {a))q '(ar )

[co—c (co)q] +r (co)

For fixed ro, the hmiting behavior of the structure factor
as a function of q, from Eq. (18), is

S(q) =q, q «q, „
S(q)=q, q »q, „

where (q,„)2=a)2/
(

W (.
The structure factor (18) can be rearranged to read

1Q«4

1Q-6

-10

1Q r r l l I I I rl r I l l r r I rl r r r l l I Ill

1Q-2 1Q-~ 1QO 1Q'

'(err )

[a)+c(ce)q] +~ ~(ro)

such that it resembles the usual quasi-I. orentxian form.

FIG. l. The structure factor S(q,m) as a function of u for
several values of p —p, and for fixed q. All quantities are mea-
sured in reduced units in terms of co, and q, . (a) q =0.1; (b)

q =10.
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S(q,ai)=q /co, ai&q

S(q, r0) =1/coq, r0 &q
(25)

Note that our results, Eqs. (22}-(25), are restricted to
the Euclidean dimensionality 2 g d g 4, for which the ex-
pansion (13) is valid. The numerical results are presented
for a three-dimensional simple cubic lattice, in the Debye
approximation. We use

1=3, p, = —,', $,=0.505, X,=1/4n. (26)

to obtain the roots of the polynomial in $V'~ resulting
from Eqs. (10) and (13).

Figure 1(a) depicts the structure factor (normalized by
co, ) as a function of c0/ra, for q less than q, and various
values of p —p„and Fig. 1(b) portrays the structure fac-
tor for q larger than q, . When q ~ q„ there is a high and
narrow peak around co=cq, and a second peak, much
smaller, around co, . In the case q ~ q„ there is only one
peak, still around ai, . Notice also the decay of the struc-

%'e see that in the EMA, the sound velocity in the pho-
non regime is independent of the frequency, and hence
one has the usual linear dispersion relation. In the per-
colating system„c also scales with p —p, . At p =p, it
vanishes, and the phonons no longer exist. Note that
combining Eq. (15) with the second of Eqs. (22) leads to
q, =(p —p, )', i.e., v= —,

' in the EMA. At co, the sound

velocity crosses over to the fracton regime and becomes
strongly frequency dependent, but independent of p —p„
in agreement with the scaling conjecture. The linewidth
follows the Rayleigh law of weak scattering, as long as
the excitations are phononlike. But in the fracton regime
it fulfills the loffe-Regel criterion for strong scattering
localization, v

Coming back to the structure factor, we now consider
its frequency dependence when q is treated as a parame-
ter. From Eqs. (16) and (18) we find

N
S(q, )= (24)

q'(u —s.)"'"
for co much less than ro„while for ai larger than ai„

1V
~

I i i [Illl[ I I I [tlfl[ i I I [llfi[n]

10 I I I [IiII[ I I I [IIII[ I I i [ IIIII

10 2 10 ' 100 10'

{dt'4lc

FIG. 3. The sound velocity c as a function of ~, in reduced
units in terms of u„ for several values of p —p, . Almost every-
where except at the vicinity of co=co, the lines are indistinguish-
able.

ture factor as co in Fig. 1(a) and as co
' in Fig. 1(b), in

accordance with Eqs. (25). The behavior of the linewidth
is depicted in Fig. 2, where we plot (co~) ' as a function
of co/co, . Below c0, the Rayleigh law is obeyed. As p ap-
proaches p„ the jump observed at co, becomes steeper,
while the approach to (cow} '=1 becomes slower. Final-
ly, in Fig. 3, we exhibit the sound velocity {normalized by
[(p —p, )/(1 —p)]' ) as a function of ralco, . As expect-
ed, it is a constant in the phonon regime, and varies as
Ni/2 in the fracton regime. Changing p affects the plot
only around co„where it becomes sharper as p ap-
proaches p, .

III. MSCUSSION

1

)i —d j2 (27)

From Figs. 1 and 2 it is clear that in the EMA the
structure factor and the linewidth do not scale with co, at
frequencies below co, . For if it were so, all plots would
have been independent of p —p, . This is in disagreement
with the underlying ansatz of the fracton scaling model,
and also with the experimental data of Ref. 2.

This failure of scaling is most clearly seen when one
rewrites the linewidth in the phonon regime in the form

1

1OO,=, 1 I ( idyll[
I I 1 [ llif[

using Eq. (15) and the third of Eqs. (22). The extra power
of p —p, [last factor in (27)] means that the linewidth
does not scale with ~, but with a dilerent characteristic
frequency, ~,„,

(~«) =~,(p —p, )
1 —d/2 (28)

10-'0 I

1Q 2
I I [ l III[ l i i ! iiill I I I l lllij

1Q ' 100 IQ'

FIG. 2. The linewidth (u~) ' as a function of m, in reduced
units in terms of cu„ for several values ofp —p, .

at which ~e = l and crosses over into the Io6e-Regel lim-
it. The possibility that there exists a second characteris-
tic frequency within the fracton scaling model has been
discussed recently. But, in the case of the EMA, it is
conceivable that this failure of scaling is connected with
the approximation itself. This has been already pointed
out in Ref. 10, in conjunction with the vibrational density
of states. Indeed, in the fracton scaling model the density
of states is suitably normalized. " But in the EMA the
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density of states N (ro) takes the form

N(cu)=co 'l(p —p, )", co«co,

N(co)=const, co&&co, .

If we now integrate N(co) over the frequency, using the
first expression of (29) up to co, and the second from co,
up to some microscopic (Debye) frequency co, we find
that the result depends upon p —p, . This is apparent
from the complete numerical solution of the EMA equa-
tions.

The absence of scaling with respect to a single charac-
teristic frequency has imphcations concerning compar-
ison with experiments. Our results for the structure fac-
tor agree quahtatively with the experimental data of Refs.
2 and 3. But, in principle, particularly for the data of
Ref. 2, there is a diSculty. Since the value of the percola-
tion concentration p of the samples can be only roughly
estimated, the data is scaled with co, and q, . Moreover,
most of the data is in the phonon regime, i.e., below co„
where in the EMA the structure factor does not scale
with co, . In practice, p, is not closely approached and the
di8'erence between the EMA and the experimental results
cannot be markedly observed. Also, the sharp crossover
of the EMA results does occur at co, . We also note that
in three dimensions [see Eq. (28)] ro,a=co, (p —p, )
and hence, for finite values ofp —p„co, and coiR are prac-
tically the same.

Admittedly, the EMA is a rather rough approxima-

tion. It is well known that it does not yield the correct
values for p, and critical exponents. However, it does
distinguish, for example, between rigidity and scalar elas-
ticity percolation transitions. ' The EMA though, con-
siders the whole system to belong to the infinite cluster.
Thus, it does not allow for 6nite clusters, and so the form
it yields for the structure factor takes into account all the
atoms in the system. Presumably, the approximation be-
comes better as p —p, increases. However, contrary to
the traditional treatments of Anderson localization, ' it
has, at least for a percolating system, the interesting
feature that it shows a sharp change of behavior in the
single-particle Green's function. It therefore provides a
detailed form of the structure factor which exhibits a
crossover to strong localization.

Finally, we note that the magnetic excitations of dilut-
ed antiferromagnets obey a similar equation to that of the
vibrations of the scalar elasticity problem. It was indeed
found that the structure factor for neutron scattering off
magnetic excitations has the same characteristics, experi-
mentally3 and within' EMA, as those presented here.
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