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Nonlocal Landau free-energy functional: Application to the magnetic phase transition in CsNiF3
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A general nonlocal Landau-type, free-energy functional which includes magnetoelastic coupling

is described and used to study thermodynamic properties associated with the magnetic phase transi-

tion in CsNiF, . One of the possible magnetically ordered phases obtained by an analysis of the phe-

nomenological free energy is the experimentally observed three-domain antiferromagnetic structure.

Explicit expressions are also derived for the magnetic phase diagram, 6eld dependence of the mag-

netization, anomalies in thermal expansion and the elastic constants, and stress dependence of the

Neel temperature and magnetostriction. Magnetic-6eld-induced domain reorientation efFects on

these quantities are emphasized. Predictions of the theory which can be compared with available

experimental data show good agreement.

I. INTRODUerrON

Phenomenological Landau-type free energies form the
basis of many mean-Seld descriptions of properties asso-
ciated with phase transitions in a wide variety of materi-
als. ' This approach has been used to a great extent to
provide a theory of magnetic and structural phase transi-
tions in solids and is able to describe the many different
kinds of ordering which can occur, ' e.g., homogeneous
and inhomogeneous, commensurate and incommensurate
modulations, single and multicomponent order parame-
ters, etc. Fundamental expressions of the Landau free en-

ergy, obtained on the basis of symmetry considerations,
must be flexible enough to account for all of these
difFerent types of phase transitions.

Most applications of Landau theory begin with a free
energy specific to the material and type of ordering under
investigation and rely on physical arguments (often un-

stated) to have reduced the problem to its simplest ex-

pression. This procedure is not always obvious and
leaves some doubt regarding the completeness of the
description. A more formal procedure for writing the
free energy is usually desirable. In this work, the formu-
lation based on symmetry arguments is generalized for
writing the Landau free energy in a nonlocal form ap-
propriate for the study of materials (with a center of in-
version symmetry) exhibiting a magnetic phase transi-
tion. Coupling of the order parameter to the elastic
strain tensor is included and comments are made regard-
ing the extension of this approach to other systems. The
remainder (and bulk) of this work is devoted to an appli-
cation of this Landau theory to study a variety of mag-
netic and elastic properties associated with the magnetic
phase transition in CswiF3. The formalism presented
here also serves as a foundation for the investigation of
properties associated with phase transitions in related
materials (see below). We have recently used it to study
the magnetic phase diagram of CsNiC13 and further ap-
plications are in progress. For this purpose, a detailed
(and somewhat lengthy) presentation of the theory will be

given here.
CswiF3 is a member of a large class of materials with

the generic chemical formula ABX3, whose hexagonal
structures at high temperature are closely related to each
other and show a great diversity of structural and mag-
netic propreties at low temperatures. The quasi-one-
dimensional nature of the low-temperature magnetic in-
teractions in CsNiF3 (and some related magnetic com-
pounds) has been of interest in the recent past. Fer-
romagnetic short-range order of magnetic-ion moments
in chains parallel to the c axis' is observed at tempera-
tures T ~ 80 K. A large single-ion magnetic anisotropy"
between directions parallel and perpendicular to the c
axis confines the moments to lie in the hexagonal basal
plane. At a temperature T=2.65 K, there is a phase
transition characterized by a three-dimensional ordering
of the Ni + magnetic moments. ' ' The ferromagnetic
character of the spins along the c axis remains, and there
is an onset of antiferromagnetic ordering in the basal
plane. In the absence of an applied magnetic Seld, the
basal-plane ordering consists of a three-domain structure,
where the spins are directed along one of the three basal-
plane crystallographic axes, as shown in Fig. 1. The
effect of applying a magnetic field perpendicular to one of
the spin directions is to increase the size of this domain
relative to the other two. ' A nearly single magnetic-
domain crystal is achieved at a relatively small field of
—SOO Oe. A further increase in field strength reduces the
amplitude of the long-range order. The critical Seld 0,
above which order is destroyed has been measured as a
function of temperature.

The importance of relatively strong magnetic dipole in-
teractions (comparable with exchange coupling) in the
basal plane for stabilizing the observed magnetic struc-
ture was Srst demonstrated by Scherer and Barjhoux. '

These authors used a model Heisenberg-type Hamiltoni-
an which included nearest-neighbor exchange and dipole
couplings as the basis for a mean-field calculation of the
wave-vector dependent susceptibility. A similar ap-
proach was used by Suzuki, ' where basal-plane dipole
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FIG. 1. Three-domain sntiferromgnetic orderiag of CsNiF3

after Refs. 14 and 15 [where the moment directions corresponds
to g, in Eq. (3.12)] and the wave vectors are given by (3.18}.

interactions beyond nearest neighbor were included in a
more extensive numerical analysis of the possible ordered
states with similar results. Mean-Seld descriptions of this
phase transition can be expected to be adequate outside a
narrow critical region since strong, lang-range, dipole in-
teractions tend to suppress critical Suctuations. ' This is
evident in the results of critical neutron scattering, where
a mean-field exponent P=0.5 is observed' at tempera-
tures close to T~: 2.45 K 5 T 5 2.64 K. The speciSc-heat
data' at zero field is also compatible with a mean-field
discontinuity, when allowance is made for the short-
range contribution to the energy, except for an interval of
10 K near T~, where the eSeets of critical Suctuations
are evident.

The phenomenological free energy formulated in this
work also describes the observed magnetic structure in
CsNiF3. Terms which have the form of a dipole interac-
tion are shown to be responsible for the antiferromagnet-
ic ordering, which serves to corroborate the conclusions
of the above-mentioned theoretical studies. The Seld-
induced magnetization and critical field H, (T) are also
calculated within the framework of this theory and com-
pared with available experimental data showing good
agreement. A major focus of this work is the calculation
of anomalous elastic behavior induced by the magnetic
phase transition and magnetic-domain eS'ects on these
quantities. Expressions are presented for thermal expan-
sion behavior, the elastic constants, Seld-induced magne-
tostriction and changes in the Neel temperature vnth ap-
plied stress. A variety of speciSe predictions which can
be checked experimentally are made. In addition, the
possibility of magnetization-induced inhomogeneous
strain (lattice-displacement wave} is investigated.

The remainder of this paper is organized as follows. A
formulation of the nonlocal free energy is given in Sec. II
and is used in Sec. III to describe the magnetic phase
transition in CsNiF3. In Sec. IV magnetic-field efFects are
studied using the model free energy. Magnetoelastic-
coupling-induced anomalous-strain effects are investigat-
ed in Sec. V and our conclusions are presented in Sec. VI.

II. NONLOCAL FREE ENERGY

F =F,+E, +F (2.1)

where F, is a functional of s(r) only, F, is the contribu-
tion from magnetoelastic coupling and E is the elastic
energy. The important contributions to these terms for
the purposes of this work are

In this section, a nonlocal Landau free-energy func-
tional is introduced for the study of magnetic phase tran-
sitions in systems which have a center of inversion sym-
metry. Comments concerning the extension of this for-
malism for other types of phase transitions are also made.

It is assumed here that the physical properties of in-
terest can be described by the state of the long-range
magnetic ordering s(r), as well as the state of local strain
F~(r) induced by the magnetic ordering. In its usual
form, the free energy is written as an integral over a local
energy density, which is expanded in powers of s(r) and
its gradients. A gradient expansion is applicable only if
s(r) can be chosen as uniform or as a slowly varying func-
tion in space (as is the case with many systems, e.g., in-
commensurate ordering). The following nonlocal free-
energy functional is appropriate for the study of more
general types of ordering (also see Ref. 18).

The amplitude of the long-range order is assumed to be
small close to the phase transition, so that the free-energy
functional may be expanded to low order of s(r). The re-
quirement of invariance with respect to time-reversal
symmetry (s~ —s) implies that only even powers of s(r)
can appear. The coeScients of each term in this expan-
sion are also assumed to depend only on differences be-
tween the space coordinates of the spins. Explicit cou-
pling between s(r) and space coordinates must also be in-
cluded in a general formulation of the free energy.

With these considerations, the free energy can be ex-
pressed by

1 1F, = dr dr' J &(r)s (r)s&(r'}+ fdr fdr'D
& s(r)~ r&s (r)ss(r')

2V 2V
1+ dr, f dr& fdr3 fdr~8~ s(r„rz, r3 I4)s (ri)s&(r2)sr(r3)ss(rz) „

1F„= dr, f dr& fdr, K~rs(r, , rz, r3)F &(r, )s ( r)s (rs)3,

F = fdr fdr' Ci(r)f;(r)PJ(r'),
1

(2.2)

(2.3)

(2.4)
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where V is the volume of the crystal; the summation con-
vention has been used with o.,P, y, 5=x,y, z and in the
Voigt notation i,j =1-6; v.=r —r', the coeScients 8 and
E depend only on differences between pairs of coordi-
nates. Inversion symmetry requires that J (r) =J ( r—)
with corresponding relationships for the other
coeScients. This symmetry also requires that only even
powers of w can appear. The structure of this phenome-
nological free-energy functional is analogous to some fa-
miliar microscopic Hamiltonians. The first term in (2.2)
is a generalization of the anisotropic Heisenberg ex-
change model, and the second term has the form of the
magnetic dipole-dipole interaction. Note also that the
elastic energy is expressed as a functional of the local
strain tensor which can be written as the sum of the usual
uniform component plus an inhomogeneous part:

F &(r}=e~+5e~{r).

The usual elastic constants are given by

C;J =f dr C;J(r) .

(2.5)

(2.6)

J(~)=(JO+J2V )5(~),

where

(2.7)

Note that the explicit r dependence of the elastic
coefficient C;,(r) is required for a complete description of
inhomogeneous strain.

The symmetry arguments used to formulate the free
energy (2.1)-(2.4) can be extended to account for other
types of phase transitions. In crystals that do not possess
a center of inversion symmetry, terms which are linear or
cubic in r are allowed. For many nonmagnetic phase
transitions, terms which are cubic in the long-range order
parameter must be included. Apart from these symmetry
considerations, there are many higher-order terms, which
could be important for some systems such as terms sixth
order in s or terms which couple r and the strain tensor.

The free energy F, given by (2.2) can easily be reduced
to a more familiar form for cases where s(r) is a slowly
varying function. For simphcity, only terms isotropic in
s and r are retained, so that J &(r)=J(r)5~, with simi-
lar relations for D and B. These coeScients can then be
expressed as a low-order gradient expansion, e.g.,

F = f dr( Ao+ A2V )s(r).s(r)
2V

+ fdr80[s(r) s(r)]
4V

(2.9)

where Ao and A2 contain contributions from both J and
D terms. The assumption that s(r) is a slowly varying
function is inappropriate for many systems (such as
CsNiF3) and the full nonlocal character of the free ener-

gy must be retained, as demonstrated below.

HI. MAGNETIC PHASE TRANSITION IN CsNiF3

A. Hexagonal symmetry

The free energy developed in Sec. II is shown in the
following to account for the observed magnetic ordering
of CsNiF3 displayed in Fig. 1. Magnetoelastic couplings
in this material are relatively weak (see Sec. V) and will
not alect the analysis of the equilibrium magnetic prop-
erties described here and in Sec. IV, so that only the con-
tribution to the free energy I', given by (2.2) will be con-
sidered.

The space group of CsNiF3 is P63 jmmc and the mag-
netic ions Ni + form a simple hexagonal lattice' with
a=6.23 A and c=2.62 A (which is one-half the size of
the chemical unit cell in the c direction), and the magnet-
ic free energy must be invariant with respect to this sym-
metry. A result of this requirement is a contribution to
F, of the form J,s, (also see Sec. IV 8). Corresponding
terms of this type in the magnetic Hamiltonian have been
investigated" with the result that J, is known to be large
and positive, so that the free energy is minimized (for T
close to Tz} with s, =0. It will be assumed for the
remainder of this work that the long-range ordered mo-
ments lie in the basal plane.

Terms in the free energy (2.2) invariant with respect to
hexagonal symmetry can be chosen to have the following
form (with s, =0}:

Jo= fdcJ(r), J~= —,
' f dv HJ(r)

with similar expansions for Dr and 8. This leads to the
usual local form

fdr fdr' J(r)s(r) s(r')+ fdr fdr'[D(a)r s(r) s(r')+D, (r)v, s(r) s(r')+d(r)v ~&s (r)s&(r')]

1
dr& fdr2f dr3 fdr48(ri, r2, r3, r4)s(ri) s(r2}s(r&} s(r4), (3.1)

where each coeScient J, D, D„d, and 8 is independent.
Note that this phenomenological free energy is more gen-
eral than one which could be derived from a microscopic
Hamiltonian which included only exchange and dipole in-
teractions' since this would lead to 1(r)= 3D(~) and—
D, (~)=0. The long-range ordering of the magnetic ions
is described here by a quantity p(r) which, for a local-
moment model, is related to the spin density s(r) by the
relation

(3.2)

p(r) =Se'~'+S'e (3.3)

where R is a lattice vector and A is the number of X, +

ions. It is further assumed that p(r) can be adequately
represented by a single component of its Fourier expan-
sion
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where 8 is the polarization vector and Q is the wave vec-
tor of the modulation, which is restricted to lie within the
first Brillouin zone. Contributions to the free energy
which are second and fourth order in S will be considered
separately in Secs. III 8 and III C, respectively.

8. Secoadmrder terms

Using (3.2) and (3.3) in (3.1) results in the following
second-order contributions to the free energy:

F,' '=(Jg+Dq+D, g)8 8'+ ,'dg—~(S Sp+S'Sp)

+ '[(J&-+D&+D &)(8 S+S'S')

J, /J, —10, so that contributions to the free energy
from the terms D, D„and d can be important for deter-
mining the basal-plane magnetic ordering. There is evi-

dence from previous theoretical studies' ' that an im-

portant microscopic origin of these terms is magnetic di-

pole coupling, so that the possibility these interactions
are long range cannot be ignored. %ith the reasonable
assumption that these interaction are isotropic in the
basal plane, we write D(R)=D(Ri, Ri}, where Ri and

Ri are the components of R parallel and perpendicular to
the c axis, with similar relations for D, and d. Using
R=Ri+ m c along with the definitions (3.5), we can write

+dq~(S Sp+S'Sp )]big G

where a,P=x,y,

Jg ———g J(R)e'~'",
R

Dg —gD——(R)R e'~'
R

D,g
—g D——,(R)R,e'~'

R

(3.4) Dg ——D, + QD(Rj)e
RJ

D,g QD,——(Ri )e
R~

dg'P ——a gZ(R, )R Rpe
R~

where (also see Ref. 14)

D, =2—g D(O, mc}m c cos(mcg, ),
m=1

(3.10)

dip ———gd(R)R Rpe'1'",
R

D(Rj)=2—QD(R~, mc)(Ri+m c )cos(mcg, )
m

y eizg R
N R

(3.6)

has been used. Note that since Q must lie within the first
Brillouin zone, 6, defined by (3.6) must be one of the
shortest reciprocal lattice vectors in the hexagonal basal
plane (if Q =0):

+ D( R iO)R—i,

D,(Ri)=2—QD, (Ri, mc}m c cos(mcg, ),
m

Z(Ri) =2a —g d (R ~, mc)cos( mcg, )

m

(3.11)

2$ ~ g 27r/1y 1T~

b
' a b

(3.7)
+a —d(Rj, O)

where b = (3—,
' /2)a and x,y are defined in Fig. 1.

Terms involving J can be expected to arise mainly from
short-range exchange-type interactions so that nearest-
neighbor couplings will dominate. From (3.5), these in-
teractions give contributions to J& as follows:

J&-2J,cos(cQ, )+2J,f (x,y) (3.8)

with J, =J(c),J, —:J(a), where J(R)=( V/N)J(R) and

f (x,y) =cos(x)+2 cos( —,'x)cos(y} (3.9)

with x =ag„, y =bg The observ. ed ferromagnetic or-
dering along the c axis Q, =O is thus seen to minimize
this term if J, is negative. From an analysis of the corre-
spond1ng term ln a Heisenberg-type Hamllton1an, lt has
been concluded"' ' that this coeScient is indeed nega-
tive, as well as large in magnitud. Note that antiferro-
magnetic ordering along the c axis (Q, =m/c) results if
J, ~ 0, as observed in, e.g., CsNiC13 (see Ref. 7).

The exchange interaction between the ferromagnetical-
ly coupled c-axis chains is very weak (Refs. 14 and 17}

with Q, =0 for CsNiF3.
Suzuki' determined the possible magnetic orderings

for CsNiF3-type systems as a function of the relative
strengths of the nearest-neighbor interchain exchange
coupling [corresponding to 2J(a)] and the magnetic di-

pole strength in a model based on a Heisenberg-type
Hamiltonian. One can infer from his paper that a large
number of neighbor interactions were included in the nu-
merical calculation. The phenomenological free energy
F,' ' is a generalization of his model, but contains the
same symmetry properties, so that similar results must be
obtained from its minimization. Instead of essentially re-
peating his calculation, we choose to demonstrate here
some of the properties of the free energy with only
nearest-neighbor couplings in the basal plane included.
Corresponding results using up to third-neighbor interac-
tions are presented in the Appendix. This calculation
also serves to generalize the results of the nearest-
neighbor dipole-model calculation of Scherer and
Barjhoux' (and to indicate a discrepancy between their
results and ours} as well as to present an explanation of
the magnetic ordering in CsNiF3 from a diFerent and
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clearer point of view.
The polarization vector in (3.3} can be written in the

general form.

5 =S)+iS2, (3.12)

where S& and S2 are real vectors, and the spin density
modulation becomes

p(r) =2[S,cos(Q r) —Seisin(Q r)] . (3.13}

The Kronecker 5 function involving Q in the free energy
(3.4) requires that the two cases Q+ —,'G, and Q= —,'G, be
considered separately. For Q+ —,

' G„ the analysis of
fourth-order (in S}contributions to the free energy shows
that a helical polarization, described by S&ISA and

I Sil = IS2I =—S/2'" is stabihzed F«Q=gG con«i-
butions to the spin density (3.2) and (3.13) involving S2
are zero since R G, =2mn for hexagonal crystals. The
spin density for this case can thus also be chosen to have
a helical polarization without loss of generality, which
simpli5es the analysis below. It remains to be shown
what values of Q and which orientation of S& (with
respect to the crystallographic axes) minimize F,'2'.

With S given by (3.12) for a helical polarization and 8
the angle (measured clockwise) between S, and x {see Fig.
1), the second-order contributions to the free energy can
be expressed by (see 3.4).

(3.14)

where

Aq(8) =Jg+Dg+Dgq+ —,'(1q +dg)

+—,'[(dg —dg )cos(28) —21/sin(28)]b2q G

(3.15)

%ith only nearest-neighbor interactions included in the
basal plane, Jq is given by (3.8) and (3.9), and Dq, D,&,
and 1f, derived from (3.10}and (3.11),are given by

Dg+D,g ——D, +2D,f (x,y),
1q" —1,[2 cos(x)+cos( —,'x)cos(y)],

18' =31,cos( —,'x)cos(y),

d(f = —3'/ 1,sin( —,'x)sin(y),

where

(3.16)

D~ =D(&)+D,(~), 1& ——1(~) .

For wave vectors Q& —,'G„F,' ' is independent of 8 and

f (x,y) is minimized with

Q, = x or Qz —— x+—y if (2J, +2D, +1, ) &0,4m 2m m

F,' '( 120')=[2J,+D, —3(J, +D i + —,'1 i )]S (3.17)

which gives the 120 spin structure shown in Fig. 2. A
planar ferromagnetic structure Q =0 is reahzed if
(2J, + 2D

~ +1~ ) & 0. The free energy F,'2' is the same for
both Q~ and Qz and is given by

(b) /

FIG. 2. Two-domain 120' spin structure predicted by the
theory for weak-dipole-like coupling (also see Ref. 14) where for
(a) Q& ——4~/{3a}x,{b}Q, =2m l{3a}x+m/by

so that a two-domain structure is predicted for this case.
Spin structures characterized by wave vectors Q& and Q2
have been observed in CsNiC13 (see Ref. 7) and RbFeC13
(see Ref. 8). For the case of RbFeC13, the spins form the
120' structure at low temperatures. Note that this
analysis also applies to the case where d=0, e.g., in the
absence of dipole interactions of the models of Refs. 14
and 15. The free energy for the 120' structure is indepen-
dent of the angle 8 if terms up to fourth order is S are in-
cluded. Planar hexagonal anisotropy enters at sixth or-
der and is of the form Fc——CS cos68. This term is mini-
mized with 8=0, 60', 120' for C & 0, so that the choice of
moment alignment shown in Fig. 2 can be realized.

For wave vectors Q =—,
' G, , three nonequivalent choices

can be made from (3.7)

Q. =—y Qb= —x+ y Q, =—x-
tj

" " a 2b
' ' a 2b

(3.18)

From the analysis given above and a comparison of the
free energies (3.17) and (3.19), the following conclusions
can be made. %ith the parameter j de6ned by

j =J,+D(+ —,'d) (3.20)

we have found that the ferromagnetic state is realized for
j& 0, the antiferromagnetic state for 0 &j & 2

~
1, ~, and

For each of these wave vectors it is necessary to minimize
the free energy with respect to 8. The results are 8, =0',
8b ——60', 8, =120' for the case where 1, &0. For each
case S&lQ. The observed three-domain antiferromagnetic
ordering of CsNiF3 shown in Fig. 1 is described by these
values of Q and 8. It is reasonable to expect that 1, is
negative since the main contribution to the terms d in the
free energy (3.1) arises from magnetic dipole interactions.
The free energy for each of the three structures is the
same, given by

Fs'~'( AF) =[2J,+D, —2(J, +Di ——,'1i )]S
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the 120' state for j «2
~
d,

~
. Corresponding expressions

which result from including up to third-neighbor interac-
tions are given in the Appendix.

It is of interest to compare these results with the
Heisenberg-dipole models of Scherer and Barjhoux' and
Suzuki. ' This is achieved by setting D(R)=yD/R,
d(R) = 3D—(R), and D,(R)=0, where yn is the dipole
strength. The c-axis sums in (3.11) can then be evaluated
with a knowledge of c/a. Using the numerically deter-
mined result di ——2Di, so that j=J„the possible or-
dered states that are realized from this model are as fol-
lows: ferromagnetic (J, /yn ) & a, , antiferromagnetic
a, & (J, /yD ) & az, 120' structure (J, /yn ) «ai, where
ci-0, u2-19.1 if only first-neighbor interactions are in-
cluded, and a, =O, tz2-12.7 when up to third-neighbor
interactions (see the Appendix) are accounted for. These
results corroborate the conclusions of Suzuki" where
a, =0.4 and a2-14.2 if a large number of neighbor in-
teractions are included. Our conclusions diff'er, however,
from those of Scherer and Barjhoux' who find from their
nearest-neighbor model that the antiferromagnetic state
is realized for —2.4&(J, /yn) &4.8 and the 120' state
occurs only for (J, /yn)««l. This discrepancy is puz-
zhng since their model contains the same essential in-
gredients as ours.

From a variety of experimental data on CsNiF3 Scher-
er and Barjhoux'4 have estimated that (J, /yn ) =3.3 and
Suzuki' uses the value 2.3. The antiferromagnetic order-

ing shown in Fig. 1 is thus predicted to occur for all of
the dipole models discussed here. We emphasize that the
phenomenological free energy developed in this work ac-
counts for all types of microscopic interactions allo~ed
by symmetry and is not restricted to the dipole model.

C. Foarthmrder terms

+—'8p[(s S}2+(S'S') ]64q 6

+84(S S')[S S+S'S']62@O,
where

~~ =~a-ee-a
~2=~ee-e-O
~3=~eeea
~~=~-e,en~
with

(3.21)

(3.22}

The inhuence of contributions to the free energy of or-
der s on the types of magnetic ordering which can occur
in CsNiFi is examined here. Using (3.2), (3.3), and (3.6),
the term of order s in the free energy (3.1) can be evalu-
ated with the result

Z, 4'=8, (S S')'+ ~8,
~

S S
~

'

3
V i(q& R&+q2.R2+q3 R3)

8q ~ q q4=~q+q, +q, +q, ,G X
RIR2R3

(3.23)

where G is a reciprocal lattice vector and R; are lattice
vectors. In deriving these results, inversion symmetry
has been used as well as the dependence of 8{r,j on
diff'erences between pairs of coordinates only so that, e.g.,

8 (r„r2, r3 14) 8 (ri r4 r2 i4 r3 r4)

Consider first the case where 4Q+Gi and 2Q&Gi, so
that the last two terms of (3.21) are zero. The sign of the
coefficient 82 then determines the type of polarization S,
which minimizes the free energy. ' lt is straightforward
to show that a linearly polarized state (where S can be
taken as real) is stabilized if 82 &0 and (8i+ —,'8i)«0
whereas a helical polarization (S.S=O) is favored if
82 ~ 0 and 8& ~ 0. The coeScients 8, and $2 difFer due
to the wave-vector dependence of BI I. For CsNiF3,
where Q lies in the basal plane and there are strong ex-
change interactions along the c axis with only weak-
interchain coupling, it can thus be assumed that the
wave-vector dependence of this coefficient is weak [in a
manner similar to Aq (3.15)]. Since 8, must be positive
for stability, it is then reasonable to assume that 82 is
also positive and the helical polarization is realized.
Similar conclusions can be made for the case where
4Q=G, , so that 8i «0 also serves to stabilize the hehcal

p(4) 1gg4
S (3.24)

where 8=28;. In fact, a linear polarization has the same
total free energy if 2Q=G, since for this case the
second-order contributions appear as 2A~S [see (3.15)]
and the fourth-order terms are 28S and minimization

~ fin 2
~he]& Flin +he] This Hlust be the Case

since, as discussed after (3.13), the spin configuration (3.2)
and (3.3) is the same for helical and linear polarizations if
2Q=G, . We emphasize that the equality of the fourth-
order coeScients 8; for CsNiF3 is a consequence of the
fact that Q= —,'Gi. For systems with other types of order-
ing (apart fromQ=O) the 8; are a priori unrelated, which
can lead to some important consequences (see Refs. 18
and 30).

state.
It is not necessary to use the weak-Q dependence of 8

for the case where 2Q=G, . This is due to the fact that

8(~ +6 )
——8(~ ~, where G; are reciprocal lattice vectors,

so that —Q=Q+ G, can be used to show
8 i 82 83 84 from Eqs. (3.22). Stability requires
that 8; «0, so it would appear that the helical polariza-
tion is preferred and
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Despite the result that fourth-order terms are mini-
mized by a helical polarization of the spin vector, the
possibility exists that second-order terms could 1ower the
free energy suf6ciently with a linear polarization such
that F„„&F„„for Q& —,'G, . This has been explored in

detail in Ref. 15, where for the case of weak-dipole cou-
pling (e.g., RbFeC1&} incommensurate sinusoidal phases
can be realized. For CsNiF3, where the dipole interac-
tion is relatively strong, the possibility for the occurrence
of an incommensurate sinusoidal phase in the presence of
an applied magnetic field along the x axis was found. '

There is no experimental evidence to support the ex-
istence of such a phase in this material, ' and this possi-
bility will not be explored further here. %'e emphasize,
however, that these incommensurate states can be real-
ized using the free energy developed in this work.

IV. MAGNETIC FIELD Ea j.aCTS

A. 8 in the basal plane

An important efi'ect of applying a magnetic field in the
basal plane perpendicular to one of the moment direc-
tions of the domains in Fig. 1 is to force a single-
magnetic-domain state. For a field applied along a direc-
tion y, —,'(3'~ x+y) or —,

'(3'~ x —y), the crystal will con-
sist mainly of a spin ordering as shown in Fig. 1(a), 1(b},
or l(c), respectively, for field strengths greater than about
500 Oe. ' Domain-size efFects will not be analyzed here,
and it will be assumed that the crystal is in a single-
domains state (except for the special case where HIIx dis-
cussed below).

An applied magnetic field also induces a homogeneous
component of the magnetization m, so that [see (3.3)] the
vector p(r) is now expressed by

p(r ) =m+Se'~'+ S'e (4.1)

Using (4.1) in (3.1) with a Zeeman term added, results in
the following free energy appropriate for an analysis of
cSects induced by applying a field in the basal plane of
CsNiF3

domain case with mIIH and Sim leads to the following re-

sults. There is a critical Geld H„where for H gH,
S =0, given by

H~ =2X 8 a (TNO T) (4.3)

(4.4)

and A& =—a ( T —T~o), with TNO being the transition tem-

perature in zero field. It is assumed here that X is in-

dependent of temperature. For H &H, the magnetiza-
ti.on is given by

Apm + 28m =H

and for H ~H,

m =XH,
S = —,'X(H, —H ) .

(4.5)

(4.6)

(4.7)

Numerical estimates of the parameters a, 8, and X can
be obtained by a comparison of the above expressions
with available data on m (H), H, ( T) as well as an analysis
of the specific heat anomaly at TN. All parameters will

be given in cgs units. Unfortunately there is no published
data for m (H) at temperatures below T~o. A crude esti-
mate of X can be obtained using measured results ' for
the magnetization at T& TNO and small field strengths.
For this case, the term Bm in (4.5) is assumed to be
small and since A& is also small, AD=X ' so that
m =XH. The curve for m(H)/m, at T=2.65 K (Fig. 2
of Ref. 21) is nearly linear for fields H 5 1 kOe. Using a
value for the saturation magnetization ms ——gp&N/
V=240 emu/cm (with g taken ' to be 2.3) the esti-
mate X ' =0.13 is obtained.

Using this value of X, a/8 can be estimated by a com-
parison of H, ( T) (4.3) with corresponding data from Ref.
13. The results shown in Fig. 3, with a/8 =7.5)&10,
where obtained by fitting the expression for H, ( T) to the
data close to Tzo (here taken to be 2.7 K}. Note that the
mean-field theory above predicts H, (T)~SO(T), where

I' =A&S +—,'M +—,'A m +—,'Bm"

+8(m S, ) S +—,'Bm S —m H, (4.2)

where A & is given by (3.15), A 0 = A& 0, and S, gives the
direction of the long-range ordered part of the spin densi-
ty [see (3.13}]. Note that this result is based on the as-
sumption that the coefiicient 8 (z } given by (3.23) is near-
ly wave-vector independent.

The term involving S, is minimized for mJ.S, since
8&0, and the Zeeman term lowers the free energy for
mIIH. A domain with S, perpendicular to H is thus seen
to bc cncrgctically favorable. Using numerical estimates
of relevant parameters, it is argued below that
Brn Si ~~mH so that ni will be nearly parallel to H even
for cases where 8 is not perpendicular to 3&. For some
Seld directions there may be an induced rotation of S„as
well as domain-size changes.

Minimization of the free energy (4.2) for the single-

i I

2.4
T(K)

2.6

FIG. 3. Magnetic phase diagram for CsNiF3 with 8 in the
basal plane. Circles (with broken line) are from the data of Ref.
l 3 and the solid line from the Stted theory (4.3).
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So( T) is the zero-field expression for the amplitude of the
magnetic order. The good agreement between theory and
experimental data shorn in Fig. 3 for 2.45 K g T ~ T&0 is
thus expected' (see remarks in the Introduction).

The free energy (4.2) can also be used to obtain an ex-
pression for the speci5c-heat anomaly at T =T&0. The
iileall-field theory predicts a discontlillllty (at collstallt
stress) given by (also see Ref. 23)

(4.8)

in zero field where C+~ =C(T~T~+~~ ). An estimate
of hC= —8.7X10 erg/(K-cm ) can be extrapolated
from the data of Ref. 17. Using this result and (4.8) (with
Tzo —2.65 K) along with the above estimate for a/8
gives a =0.44 and 8=5.9X10 . We emphasize that
these values may be little more than order-of-magnitude
est1Hlates.

The above parameter estimates can be used to deter-
mine the relative size of the terms Fi ——8(m S, ) S and
F2 ——m H in the free energy (4.2}. With the assumption
that, Bl is nearly parallel to H, using $2 &

~ A& ~
/8 and

(4.6), the relation

Fi /F2 5Xa ( T —TNo) 0.06( T —Tyo)

so that Fi «F2 in a temperature range not too far from
T~o. This analysis justifies the assumption that m is near-
ly parallel to H.

Yamazaki et a/. have proposed the two-domain spin
ordering shown in Fig. 4 for the case where H()t and

(
H

~

&
) H, ( (also see Ref. 15). These magnetically-

ordered domains can be obtained from the structures
shown in Figs. 1(b) and 1(c) by a rotation of the magnetic
moments. Such a state is shown here to be a consequence
of an analysis of the free energy discussed in Sec. II 8 and
the magnetic-field efFects discussed above.

For H)~x, it is assumed that as the Seld increases from
zero, domain (a) of Fig. 1 decreases in size as it is the
most energetically unfavorable due to the term
8 (m Si) S2 in {4.2). This term also causes the moments
in domains (b) and (c) of Fig. 1 to rotate towards a
configuration, where 3, is perpendicular to m (and H) un-
til the state shown in Fig. 4 is achieved. Putting 8=90'
in the expression (3.14) for Fs' ' shows that the free energy
is then minimized by the wave vectors gb and Q, of

FIG. 4. Two-domain state for H1x proposed by Yamazaki
et aL (Ref. 24).

(3.18), so that F,'2'= Aq(90')S2, where (with only
nearest-neighbor interactions included}

A q(90') =2J, +D, —2J, —2D ) (4.9)

to be compared with A&(8) for 8=60', 120' given by
(3.14) and (3.19). A detailed analysis of the 8 dependence
of the full free energy (4.2) reveals that the configuration
shown in Fig. 4 is realized only for H-+H, „,where S =0
for H ~H,„and
H2 =2& 8 '

~
Aq(90')

~
=H, +2X 8 'd, . (4.10)

This result shows that H,„&H, [where H, is the critical
fMld (4.3) for H perpendicular to one of the spin domains
of Fig. 1] since di is assumed to be negative, in agree-
ment with Ref. 24.

8. 8 yaraklel to c

Additional contributions to the free energy (3.1) for the
case where s(r) has a nonzero z component can be ob-
tained from the general expression (2.2). For hexagonal
symmetry, these terms are

1F,= fdr dr' J,(r)s, (r)s, (r')

+ fdrdr'[D„(r)r +D2, (r)r, ]s,(r)s, (r')+ fdrdr'd&(r}r, s,(r}[r„s„(r')+rs (r')]
2V

1
dr, dr2dridr4{E, [r; I[s„(r,)s„(rz)+s„(r,)s~(r2)]s, (ri)s, (r4)+E2Ir;Js, (r, )s, (r2)s, (ri)s, (r4)), (4.11)

where ~=r—r' and E],E2 depend only on differences be-
tween pairs of coordinates r&~rz. Supported by the
analysis of Sec. IV A, it is assumed here that for H[[z the
spin ordering is described by p(r) (4.1) with m[~z and the
three-domain structure of Fig. 1. This spin structure

yields the following contributions to I,:

2I i Om2+ Tlslm282+ 41E2m4

where

{4.12)
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A,o
———g [J,(R)+Di,(R)R

+D2, (R)Rg+d3(R)(R„+Ry )8,] (4.13)

F= AtlS +—,'BS +—,'(Ao+ A,o)m

+-,'B,m2S +-,'82m —rnH, (4.14)

Ei =EIq, —q, o,oy E2 =E2o,o,o,o

with E( )
defined similar to 8(s )

given by (3.23).

Adding to the free energy (4.2), with miS, and m~~H,

gives

for both H & H and H &H . The magnetization data
for H)[z of Ref. 21 (at T p TNo) shows that m (H} indeed
varies linearly with Seld, with a very small temperature
dependence of the slope for T & T&o. A comparison of
these results with {4.19}gives the estimate X,=5X10
or A,o=200. This justiffes the assumption that
A,o~~X ', b; Aq, and the critical field can thus be ap-
proximated by

H„=2 A,(8 )
'a ( T~o T) —.

It can be expected that 8& is of the same order in magni-
tude as 8, so that the estimate H„/H, -25, from (4.3)
and (4.20), can be made.

(A, + A„)m+-,'B,m'=H (4.17)

and for H ~H„, it is the solution of

(X '+ A,o—b) At})m+ —,'(2b2 —2b, —b, )Bm =H,
(4.18)

where b; =E; /8.
It is known that the coefficient corresponding to A,o

in a Heisenberg-type Hamiltonian is very large for
CsNiF3, and it is reasonable to expect the magnetization
will be dominated by these terms in (4.17) and (4.18), at
least for low ffelds. With this assumption,

(4.19)

8i ——8+E), 8~ ——8 +2E2 .

Minimization of (4.14) with respect to S and m gives the
following results. The critical ffeld H„above which
S =0 is given by

H2, =2a(TNO-T)8 1-1(x-1+A,o-bAQ)2, (4.16)

where g is given by (4.4) and b =(2E2 —E&)/8, . The
magnetization m for H y H satisffes the equation

Interactions between the long-range magnetic ordering
below T~ in CsNiF3 and the lattice are investigated here
within the framework of the phenomenological free ener-

gy presented in Sec. II. The fact that a number of
difFerent magnetic orientations can be achieved by the ap-
plication of a small magnetic ffeld provides for some in-
teresting consequences of the model which can be exam-
ined experimentally. Magnetoelastic contributions to the
free energy invariant under hexagonal symmetry which
account for uniform strain-spin coupling are given in Sec.
V A. Explicit expressions for the behavior of thermal ex-
pansion and the elastic constants at T= TN are presented
in Sec. V B. In Sec. V C, the effects of applying uniaxial
stress on the magnetic domains as well as the Neel tem-
perature are considered. Dilation of the lattice in
response to an applied magnetic ffeld (magnetostriction}
is considered in Sec. V D and the possibihty of magneti-
zation induced inhomogeneous strain is investigated in
Sec. V E.

A. Hexagonal symmetry anti uniform strain

Magnetoelastic couphng contributions to the free ener-

gy (2.3}, invariant with respect to hexagonal symmetry,
which involve the uniform part of the strain tensor (2.5)
can be expressed as

F„= Jdr dr'([EC, (~)(e„„+e„)+K3(w)e„]s(r)s(r')+k(r)(e„„s~(r)s (r')+e s„(r)s„(r')

—e„~[s„(r)s~(r' }+s„(r')s~(r)]I ),

where it has been assumed s(r) lies in the basal plane.
Using s(r) given by (3.2) and (3.3) along with the assump-
tion that the long-range magnetic order can be described
as in Sec. II by Q =-,'G, as well as the angle 8 which gives
the orientation of the moments, (5.1) can be reduced to

F„=It., (e +e~)S +X3e S

+k [e sin28+e cos 8—e„„sin(28}]S, (5.2)

(5.3)

k=k~= —yk(R)e ~".V
(5.4)

All domain {spin} orientation effects are contained in the
k term, which is expected to be small since k arises from
spin-orbit coupling effects and E, are due to exchange in-
teractions. It is also convenient to express (5.2) in the
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E„=K;e;S

in the Voigt notation, where

(5.5)

I(, =E, +k sin 8, E2 ——K&+k cos 8, K3 ——K3
(5.6)

K4 ——Ks ——0, K6= —,'k sin(28) .

ha"= a—B '[Ki(s»+s, 2)+K3s»],
(5.12)

aa,", =La"—aB -'k(s„—s„),
and aa"=0.

Xg

The free energy can also be used to obtain expressions
for the mean-Seld-type d'iscontinuity in the adiabatic elas-
tic constants (also see Ref. 23) at Tz..

(5.13)

ha;= —aB 's,JKJ . (S.S)

Using the expressions for K, (5.6), the components of the
thermal-expansion discontinuity are

ba = —aB '[(K, +k sin28)s„

+(K, +k cos~8)s,z+K3$»]

b,a» aB '[(K, +—k——cosz8)s»

+(K, +k sin 8)sip +K3$,3]

ba = aB '[2Ks»+—K3s33]

ha„= ——,'aB 'k sin(28)$66

where a6=2a„has been used and

E=E)+—,'k .

(5.9)

(S.10)

Note that the theory predicts no change for a„and a~.
In the absence of an applied magnetic field (or uniaxial

stress), the crystal wiB magnetically order to the three-
domain state shown in Fig. 1. The appropriate thermal-
expansion discontinuities are obtained by averaging the
results (S.9) over the three orientations of the spin 8, =0',
8b ——60, and 8, =120' rvith the result

ha„„=ha~ = —aB '[K(s»+$,2)+K3$,3] (5.11)

along with b,a~ =b,a~ (5.9) and b,a~~ =0.
Only a small magnetic Seld of —SOO Oe is required to

achieve a nearly single-domain crystal, ' and the zero-
field results given by (5.9) remain valid for low field
strengths (see ~.VD). If such a small field is applied
along y, the crystal will be in the domain-(a) state so
that, with 8=0, a prediction of the model is

8.Thermal ex~~~ion and the elastic constamts

The change in the strain tensor induced by the onset of
long-range magnetic order is determined by minimizing
the free energy with respect to e;, with the result

e;= s; K&S— (5.7)

where s,.j is the compliance matrix, s;J ——(C '),J, ap-
propriate for hexagonal symmetry. Using the results
from Sec. IV that Sz=0 for T ~ T~o and
S =a (T~o—T)/B for T g T~o, this mean-field theory is
thus seen to predict a change in slope of the thermal ex-
pansion at T =T~o. The discontinuity in the thermal ex-
pansion coefficient ha;=a+ —a, , where a;=Be;/BT, is
thus given by (also see Ref. 23)

Using (5.6},the nonzero components of b,CJ are given by
(with ECJ; =ECJ )

bCii ——(K, +k sin 8) /B,
EC,2

——(K, +k sin'8)(K, +k cos28}/B,

hC» ——K3 (K i +k sin 8)/B,
EC&6 ———,'k(K, +k sin28)sin(28)/B,

ECzz ——(K, +k cos28)2/B,

b,Cz3 ——K3(K, +k cos8)/B,

b, Cz6 ———,
' k (K i +k cos28)sin28/B,

EC33 —K3 /B, —

ac„=-,'kK, sin(28)/B,

b, C6e ———,'k sin (28)/B .

(5.14)

5Cii hC22————(K]+K,k+ ,'k )/B, —

ac„=(K',+K,k+ ,'k')/B, -
ECi3 ——b Cg3 —KK3/B, LC—33

—K3/B, —

b, Css ,'k /B——
(5.15}

with all other hC;J =0. As with b,a;, the small magnetic
Seld required to obtain a single-domain state does not
change the results (5.14}and predictions of the model for
hC; with 8, =0', 8b ——60', and 8, =120' can be deter-
mined from these expressions.

Discontinuities in the thermal-expansion coeScients at
T =T&o in the basal plane and along the c axis have re-
cently been observed (in zero magnetic field} in a
needle-shaped sample giving

ha„„=—2.0X10 'E-', ha =0.15~10 'K-'

Estimates of the magnetoelastic coupling coeScients can
be obtained using these results and the relations (5.9) and
(5.11) along with data for the elastic constants (at 29S
K) and the estimated value a/B=7. 5X10 from Sec.
IV A.

E=17.0, K3-3.5 (S.16)

in cgs units. An estimate for the parameter k (or Ki ) is

These results show that the hexagonal symmetry of the
lattice can be destroyed by coupling to the long-range an-
tiferromagnetic order below Tz. In the zero-field case,
an average over the magnetic domains of Fig. 1 gives the
following results:
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not possible using zero-field thermal expansion data.
Some of the elastic constant discontinuities predicted by
the relations (5.15) can, however, be evaluated using the
estimates (5.16) along with 8 =5.9 X 10 from Sec.
IV A. The quantity hC» +AC&2 depends on K and is
given by 2K /B. It is thus possible to make the follow-
ing predictions:

The effects of uniaxial stress on the orientation of the
magnetic moments of Fig. I is similar to the magnetic-
field eff'ects discussed in Sec. IV A. Consider, for exam-
ple, the application of stress along the y axis. Coupling
between the orientation of SI and stress is given by the
fourth term of (5.21) with E, giv.en by (5.6}. Terms which
depend on the angle 8 between 8& and x axis are given by

(l4iC„+b,C,2)/(C„+C,2)=1.5X10

b,Ci3/Ci3-1. 0X 10

EC33/C33 -2.2 X 10-' .

(5.17a)

(5.17c)

F (8}=kcr2(s»cos 8+s,2sin""8)S

so that

BF/B8= kc—r 2(s „—s, 2 )sin28S

(5.23)

These order-of-magnitude estimates appear to be con-
sistent with the ultrasonic measurements of Ref. 25.
Anomalous behavior in an elastic constant was found at
TNo giving an estimated discontinuity l5,C/C -6
X 10 . Unfortunately, it was not possible to determine
which sound mode was being measured although it is be-
heved to contain elements of C44 and C». An interpreta-
tion that the data corresponds partially to a C» mode is
consistent with the results (5.17a). No anomaly in C44 at
T~o is predicted to occur as a result of the theory present-
ed in this work. The only other elastic constant mea-
sured at Tzo was C33. No anomaly is observed to one
part in 10, which is consistent with the theoretical pre-
diction (5.17c).

For CsNiF3, (s» —s,2) pO and 8=0 minimizes the free
energy if ko 2 & 0. The sign of k is not yet known. These
results indicate that if k ~ 0 ( k & 0) then uniaxial
compression (tension) applied along the y axis would tend
to drive the crystal into a single-magnetic-domain state as
shown in Fig. 1(a}. For ko 2 p 0, 8=90' minimizes (5.25),
and the state shown in Fig. 4 should be stabilized at
sufficiently large stress. For the case of applied hydro-
static pressure, o; = —p for i = 1-3, or stress along the c
axis, the crystal remains in the three-domain state of Fig.
1.

The Neel temperature is also affected by the state of
applied stress. The coefficient of the terms proportional
to S in (5.21) sum to zero at a temperature T~ given by

C. Applied stress TXD ~ +i SI~O 1 (5.24)

G =F—n;e; (5.18)

is considered, where rr; is the stress tensor (i =1-6 and
o; p 0 corresponds to applied tension) and

The elects of applying uniaxial stress on the long-
~ange magnetically-ordered state of CsNiF, are con-
sidered here. Following the formalism given in Ref. 23,
the Gibbs free energy

where AQ ——a(T —Tzo) has been used. For the case of
applied stress along y with ko2&0, so that 8=0, the
change in Tz with stress is characterized by

BT~/Bcr2= —a '[E,(s„+s,2)+ks, i+K3s,3] . (5.25)

The relation (5.24) can also be used to show that for ap-
plied hydrostatic pressure

BTN/Bp =a [2E(sll +$12+$13)+K3(2s13+s33)]
F = AQS + ,'M + ,'C, j—.e;ej+K—,e, S2 .

At equilibrium, BG/Be; =0 and the result

e;=s;J(crj E'JS )—
(5.19)

(5.20}

and for stress applied along the c axis,

BT&/Bo 3
———a '[2Ksi3+K3s33] .

(5.26)

(5.27)

follows from (5.18) and (5.19). The Gibbs free energy as a
function of S and o, can be obtained using (5.20) in (5.18)
with the result

Using the previously determined estimates for a, K, and
E3 (along with data on the elastic constants ), the above
theory can be used to make the foBowing predictions:

G =Go(T)+ AQS2+Tla'S4+a, sJKJS2 llsj~, ai, —

(5.21}

BT&/Bp =0.12 K/kbar,

BT /B~ =4.4X10 X/~Sar.
(5.28)

8'=8 —s,JK;K- . (5.22)

Estimates for the stress dependence of the Nccl tempera-
ture for other cases can be made only with a knowledge
of the coefBcient k.

This renormahzation of the fourth-order coef5cient
8~8' is a consequence of magnetoelastic coupling only
and occurs independent of the state of applied stress. In
the analysis given in the previous sections of this work, it
has been implicitly assumed that 8 ~8. For CSNlF3,
with E; &20 and s;. 10 ", this is seen to be a valid ap-
proximation since 8'= 5.9& 10

D. Magnetostriction

Dilation of the crystal as a function of magnetic field is
investigated here (also see Ref. 3). For the case where H
is in the basal plane, contributions to the free energy
which involve the induced uniform magnetization I can
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1 2 2+Yko( xxmy +eyymx 2'4ymxmy ) ~ (5.29)

where Kjo—K,q o and ko —kq o [see (5.3) and (5.4)]
With the assumption that the magnetoelastic coupling
coefilcients are determined mainly by c-axis couplings,
the approximations K;o-KJ& and ko=k& analogous to
the previous approximations for the coellcient 8, can be
made. Together with the m=0 terms given by (5.5), the
total magnetoelastic energy can now be expressed as

be obtained from (5.1) using p{r) given by (4.1). along
with s(r) expressed by (3.2). The additional magnetoelas-
tic terms are

F,=—,'Kio(e„„+e„)m + —,'K&oe m

Ji- —1.3x10 ", J3-—9.7X10 (5.36)

Finally, we consider magnetostriction for the case with
H is along the c axis, where the three-domain spin struc-
ture of Fig. 1 remains unperturbed. Additional terms
must be added to E, given by (5.29) which are invariant
under hexagonal symmetry (for this case where m~~z}

given by

is predicted to be independent of the field and that the
quadratic Seld dependence of e, and e2 is proportional to
the parameter p cck, which is therefore expected to be
weak. Numerical estimates for JI and J3 can be obtained
using K and KI given by (5.16) with the result (in cgs
units)

(5.30) 2
Fme = ,'ki{e,-+eyy)mg+Tkle~mz (5.37)

where K; is given by (5.6) and

K', =K, +kg, Kq ——K, +kP„, KI —KI, —
(5.31}

K4 ——Ks =0, K6 ———kP„P»

with P„P», P, being the direction cosines of m (and H }
with respect to the crystallographic axes.

The change in the strain tensor induced by the magnet-
ic field and long-range magnetic order is given by

e, =el -(J1 + u }X,H

e&-(JI+u)X,H
(5.38)

The independent coeScients k] and k3 have not been

previously introduced. Using the results and approxima-
tions given in Sec. IV B, with H„given by (4.20), the field

dependence of the strain tensor can be shown to have the
following behavior for H y H„,

e, = s,,(K,—S + ,'K,'m )—. (5 32) for H (H~z,

The field dependence of e; for cases where H is apphed
perpendicular to one of the magnetic domain orientations
of Fig. 1 can be described using results for $(H} and
m (H) of Sec. IV. It is assumed here that the field is of
suScient strength (e.g., H~ 500 Oe), so that the crystal is
in a nearly single-domain state. Since SJ.m, the relations
sin8=P„and cosH=Py can be used to express the results
as3 for H g H,

u = ——,'[(k, ——,'kq)(s„+siq }+kqsII],

u = ——,'[2(ki ——,'k3)sII+kssII] .
(5.40}

e, =el-(J, +u)X,H„+(J,b, —u)X,(H„H}, —
5.39

el =(JI+u)XIH„+(Jib, u)X, (H„—H), —

and e4 ——es =e6 ——0, where b, is defined in (4.18), X, by
(4.19), and

e, =(Ji ——,'p)mI,

el ——(J,+ ,'p)m—
2

e3 ——J3m

e6 ———,'ks66P„P m

for H gHc~

e, =(J, ,'p)XIH, +pX (—H—,—H ),
e&

——(Ji+ ,'p)X H, pX (H,—H),— —

e3 ——J3X 0, ,

e6 ———,'ks66P„P XI[H, —2(H, —H )];

Ji = ——,'[«sil+s12)+Klsl31

Jq ————,
' [2Ks,q+ Kqslq ],

p =k(s» —s,I)(P ——,'),

(5.33a}

(5.33b)

(5.33c)

(5.33d}

(5.34a}

(5.34b)

(5.34c)

(5.34d)

(5.35)

These results de'er from the corresponding basal-plane
expressions (5.33)-(5.35) by the introduction of new pa-
rameters u and v and by the prediction of quadratic field

dependence in the region H ~ H„.

E. Inhomogeneoul strain

We have also investigated the possibility that the long-
range antiferromagnetic ordering in CsNiF& can induce a
periodic distortion of the lattice. The appropriate mag-
netoelastic coupling which involves Se~(r) of (2.5) is

simply a generalization of the form (5.1), and can be de-
rived from (2.3). In analogy with s(r) written in the form
(3.2) and (3.3), we define (also see Ref. 3)

Bu~ Buy
5e II(r)= ——g + 5(r —R)2% ~ Brp Br

with the lattice displacement [from the zero-field
paramagnetic configuration u(r )] expressed by the
Fourier sum

(5.42)

alld e4 =e5 =0. FOI' H )H, m {H) ill (5.33) is detel'-
mined by the solution of (4.5). Note that for H &H„el %'ith these de5nitions, the elastic energy I, and the mag-
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netoelastic energy F„can be expressed in terms of the
polarization vectors U~ and S. For the zero-field case, it
can be shown that F„ is zero as a consequence of the
magnetic ordering being antiferromagnetic. In the pres-
ence of an applied magnetic Seld, the free energy is mini-
mized vnth U& ——0. No inhomogeneous strain is thus pre-
dicted to occur in CSN1F3.

VI. CONCI. USION5

A versatile nonlocal free-energy functional, based on
the Landau theory of phase transitions, has been
developed in this work and used to describe a variety of
properties associated with the low-temperature magnetic
ordering of CsNiF3. The nonlocal character of this mod-
el difFers from usual expressions of the Landau free ener-

gy and is crucial for a complete treatment of phase transi-
tions to ordered phases, which can exhibit a wide variety
of structure. The utility of this approach is that it pro-
vides a general starting point from which the develop-
ment of a Landau free energy can be made appropriate
for the study of speciflc systems, characterized by sym-
metry. The application of this formalism to correctly
predict the three-domain antiferromagnetic structure of
CsNiF3 has been demonstrated in Sec. 111 of this work.
This structure was shown to be a consequence of strong
magnetic dipole-type coupling (corroborating the work of
Refs. 14 and 15}which enters the free energy in a nonlo-
cal form.

The strong anisotropy between the c axis and basal
plane plays an important role in determining the behavior
of the magnetic and elastic properties of this hexagonal
crystal. These effects account for the alignment of the
magnetic moments in the basal plane and the ferromag-
netic character of the ordering along the c axis, as well as
the anisotropic behavior predicted and observed for the
critical field H„ field-induced magnetization m (H), and
all of the magnetoelastic properties.

A major focus of this work has been an investigation of
the efFects of magnetic domain reorientation under the
influence of a magnetic fleld applied in the basal plane. A
crystal with predominantly only one of the three domains
can be achieved by applying a small fleld. The calculated
elastic properties are then predicted to depend on the
orientation of the magnetic moments through the magne-
toelastic coupling parameter k. Experiments have not yet
been performed, which would show these efFects and en-
able a numerical estimate of k to be made by a compar-
ison with the corresponding theory Agood .candidate
for such a comparison is magnetostriction, using sensitive
dilatometry where quadratic Geld dependence propor-
tional to k is predicted for H ~H, . Although magnetic-
moment orientation is also predicted to inhuence results

I

for the discontinuities in the thermal-expansion
coeScients and the elastic constants at T~, these effects
may be obscure if k is small, as may be the case. The
theory presented in this work is not applicable for the
study of the field dependence of properties in the very
small field regime (H ~ 500 Oe} where the crystal consists
of the three magnetic domains of unequal size. A theory
of thermodynamic properties for these field strengths re-
quires a detailed analysis of the dependence of the
domain wall sizes on the 6eld.

The theory was also used to study the influence of uni-
axial stress on magnetic-moment orientation, and it was
shown that a single-domain state can be achieved in anal-

ogy with the application of a magnetic field. Expressions
for the stress dependence of the Neel temperature were
also derived with the result that these moment-
orientation etFects also depend on the parameter k. These
results also suggest that sample-dependent internal
stresses may influence the relative size of the three mag-
netic domains and therefore could aff'ect the experimental
results for many thermodynamic properties.

Even though no explicit calculation is pursued here, it
is interesting to envisage the possibility of measuring the
magnetic properties of CsNiFi through dielectric and op-
tical methods. The magnetic contributions to the
birefringence2s' should be affected by the apphcation of
a magnetic field or stress. Direct refractive index mea-
surements are also a candidate to probe magnetostriction
and applied stress eFects through the modiflcations of the
photo-elastic coefficients.

As indicated in the Introduction, the rich variety of
phase transitions which can occur in ABX3 type c-om-

pounds ofFers many possibilities for the apphcation of the
nonlocal Landau theory presented in this work. An in-
vestigation of the magnetic phase diagram of CsNiC1, has
recently been completed. Work is in progress on a
description of the magnetic phase transitions in CsCoC1&
and CsCoBri based on the Landau free energy. A study
of what appears to be a structural phase transition25 at
190 K in CsNiF3 is also planned.

This research is supported by the Natural Sciences and
Engineering Research Council of Canada and Le Fonds
Formation de Chercheurs et 1'Aide a la Recherche
(FCAR) du Quebec.

APPENDIX

Including up to third-neighbor interactions for D&,
D, &, and dg given by (3.5), (3.10), and (3.11) leads to the
following form for the free energy at order S [see (3.15)]:

E,' '= I2J, +D, +(2J, +2D, +d, )[cosx +Icos( —,'x)cosy]+(2Dz+3d2 }[cos(2y)+Icos(y)cos(—', x)]

+ ( 2Di +4cf 3 }[cos(2x }+2 cosx cos( 2p )]jS

+(cos28I8, [cosx —cos( —,'x)cosy]+3d2[cos(y)cos( —,'x) —cos(2y)]+4di[cos2x —cosx cos(2y)]]

+3'~ sin28I d, sin( —,'x)siny+ 3dzsiny sin( —,'x)+4d &sinx sin(2y) I )S 62& G
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j=J,+D, + —,'d, —6D2 9d—2+4Ds+8d) (A2)

and (x,y)=(0,0) for j~0. For Q= —,'G&, angles 8 {be-

x =ag„y =bQ

D„=D(R„)+D,(R„),
and d„=Z(R„}with R„equal to the nth neighbor dis-
tance in the basal plane. For Q+ —,G„minimization of
(Al) gives (x,y}=(4sr/3, 0) or (2e/3, e) if j~0, where

tween the spin vector and the x axis) equal 0', 60', 120'
for Q„Q&, and Q, [given by (3.18)], respectively, mini-

mize the free energy provided that (d& —3d2)&0. A
comparison of the free energies for the 120' structure and
antiferromagnetic orderings shows that for

j & (2Dz —5Ds —2d, +9dz —10ds) (A3)

the antiferromagnetic structure (Fig. 1}of CsNiFs is sta-
bihzed, and for j greater than this quantity the 120' or-
dering is realized.
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