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Uniaxial anisotropy causes a crossover between Ising and Heisenberg behavior in a random-field

model. At random-Seld strengths and dimensionalities, intermediate between those which give ei-

ther the Ising and Heisenberg domain states, a new "boundary" domain state appears. A novel cri-
terion is also derived for domain-boundary roughening in the Heisenberg limit. The two-

dimensional version of this model can be applied to ferromagnetic-antiferromagnetic sandwiches

with interface randomness and leads to a prediction of an exchange anisotropy elect below a critical
thickness of order the domain-wall width, and an enhancement of this effect below a second critical
thickness.

I. INTRODU&-I. ION

The random-field model has been one of the most chal-
lenging and heavily studied problems in disordered
magnetism. ' Nevertheless most work (except Ref. 3)
has focused on either the pure Ising or pure Heisenberg
limits, and on the limit of a weak random field. By con-
trast this paper explores the crossover between Ising and
Heisenberg behavior in a random-field model with finite
uniaxial anisotropy and strong random fields.

This work is motivated by the recent suggestion that
an interfacial random-field effect could be responsible for
the peculiar phenomenon of exchange anisotropy in
ferromagnetic-antiferromagnetic sandwiches. A variety
of possible mechanisms, such as surface roughness or in-
terfacial alloying, may generate a random field acting
from the ferromagnetic into the antiferromagnetic layer,
causing the latter to break up into domains analogous to
those postulated by Imry and Ma. ' In typical systems,
this random field can be large, comparable in fact to the
ferromagnetic or antiferromagnetic nearest-neighbor ex-
change fields. Furthermore, uniaxial anisotropy is
present in many Heisenberg ferromagnets and antifer-
romagnets. As will be seen below, the large random field
and the anisotropy together generate novel features not
present in the conventional random-Geld problem. Of
course, by considering the staggered order parameter, the
antiferromagnetic problem can trivially be mapped into
the ferromagnetic problem, which is treated below.

The problem is addressed with domain arguments of
the type advanced originally by Imry and Ma, ' and by
Grinstein and Ma for energy minimization and domain-
boundary roughening, respectively. %hile not rigorous
in themselves, such arguments have been substantiated by
renormalization-group calculations in the Ising case,
and so it is reasonable to attempt similar arguments as a
starting point for the new limits of interest here.

The paper is structure as follows: Section II introduces
the model and carries out the Imry-Ma energy analysis,
revealing a variety of novel domain states and culminat-
ing in a phase diagram as a function of dimensionality
and random-6eld strength. Section III extends the

Grinstein-Ma Ising roughening model to the Heisenberg
limit and appHes the roughening criteria to the phase dia-
gram. Finally, Sec. IV draws the connection to exchange
anisotropy. The results correct the earlier random-field
model of exchange anisotropy by showing that the effect
occurs only below a critical antiferromagnetic layer
thickness. An enhancement of the exchange field is pre-
dicted below a second characteristic thickness corre-
sponding to the transition between a so-called "bound-
ary" domain state and the Heisenberg domain state.

II. ANISOTROPY MODEI.

Consider a homogeneous Heisenberg ferromagnet with
dimensionality d, nearest-neighbor exchange-energy J,
uniaxial anisotropy energy E per unit volume, and lattice
constant a, subjected to a random Seld at each site. Let
the direction of the random field be along the uniaxial an-
isotropy axis and its strength be fJ in units of energy.
That is, f is a dimensionless factor expressing the ratio of
the strength of the random field to the local exchange
Seld of the ferromagnet. It is also useful to introduce an
exchange stifFness A, such that the energy per unit
volume is A (hm)~, where m is the unit vector of the or-
der parameter (the magnetization). From the squared
gradient factor, it is apparent that the exchange stifFness
A scales as J/a

Following Imry and Ma, ' let us assume the ferromag-
net breaks up under the inhuence of the random 6eld into
a domain pattern of characteristic dimension I.. Let us
consider the energy terms arising from the random field,
the exchange, and the anisotropy in such a system: The
random-6eld energy per atom goes down statistically as
the inverse square root of the number X of atoms in a
domain of volume Ld. Taking I =I./a as a reduced
length, we have an energy per unit volume of

fJ/a N' or —fA/a I ~, ignor—ing numerical fac-
tors of order unity.

In a conventional ferromagnet, uniaxial anisotropy
gives rise to domain walls with width &A/K and sur-
face energy v AE, where again we have ignored numeri-
cal factors of order unity. Let us de6ne a normalized
domain-wall width 5~&A/E /a. This is a characteris-
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which can be reexpressed, using the definition
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2
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I/5 (q/2)'"'-", I &5.
The corresponding energies at the extrema are

iii cc(d —2)/2rl ' ' I &5

io cc(d —4)/2(rl/2) ~'d ', I &5 .

At I =5 the energy is simply

io cc —rl+(d/2) . (10)

Figure 1 plots the extrema of Eqs. (6) and (7) as a func-
tion of dimensionality d and the parameter q, which is a
normalized measure of the random-6eld strength. This
figure, and also Eqs. (8) and (9), exhibit clearly the well-
known critical dimensionalities 2 and 4 for the Ising and
Heisenberg random-field models, respectively. Contact
can be made with the Ising results of Imry and Ma' by
considering the limit f~0 and 5~0, hence rl —+0. Fig-
ure 1 shows the negative energy minima for d «2 and
I /5 & 1, which represents the Imry-Ma domain state. For

tic length in the problem, independent of the random-
field strength. For domain sizes 1»5, the domain-wall
energy per volume goes as A /I5a cc J/15a". This is an
Ising-like limit in which the bulk spins point along the
easy anisotropy axis and the domain boundary is de-
scribed by a surface energy. By contrast, if the domain
size I is smaller than 5, exchange energy dominates the
anisotropy energy, and the gradient in the magnetic unit
vector approaches 1/I. . Then the energy per unit volume
is of order 3 /I a cc J/I a . This can be called a Heisen-
berg limit because anisotropy no longer plays a role.

Combining these energy terms, we obtain the energy
per unit volume, normalized by a /A cc a /J:

w~ —
d +, 1&5, Ising,

1
(1)

Id/2

w cc —
d +—,I &5, Heisenberg . (2)

Near I =5 or L =v'A/IC, these relationships will be
modified because physically there must be a smooth tran-
sition between the two limiting regimes arising from the
gradual crossover between interacting and noninteracting
domain walls. Rather than attempt a more complex
treatment which connects the two limits analytically, the
following analysis uses only the simple limiting forms.
The smoothing of the energy as a function of domain size
near I =5 must then be kept in mind in interpreting the
results.

The simple equations (1) and (2) lead to a remarkably
diverse phase diagram. Taking derivatives, one obtains
the domain sizes at energy extrema

0 f 2 3 4 5

q = (d ja)fb(s-4}/'
FIG. 1. Normalized domain size at energy extrema of a

random-field Heisenberg model with uniaxial anisotropy, as a
function of the normahzed random field strength f, with dimen-
sionality d as a parameter. Solid lines are minima, dotted lines
are maxima, and dash-dotted lines are minima or zero energy
states at the boundary between the Heisenberg and Ising limits.
The normalized domain-wall width 5=m&A /E /a, where A is
the exchange sti8'ness constant and K is the uniaxial anisotropy
per unit volume.

d )2 there is no minimum, and inspection of Eq. (1)
confirms that the ferromagnetic state has lowest energy.
Equation (5) is also consistent with the result of Goldsch-
midt and Aharony.

A novel feature of Fig. 1 is the line at I =5 between
1 & g & 2. Here one finds a minimum at all dimensionali-
ties. Figure 2(a) shows a set of energy contours illustrat-
ing this behavior for d =2. As is evident from the g = 1.5
curve in the figure, the minimum is not characteristic of
the extrema of either limit but occurs at their nonanalytic
joining point. As discussed above, in the more complete
physical picture, this nonanalytic behavior is rounded
out. Nevertheless, since the long-range tails of domain
walls are exponential, the rounding will be small, and
the minimum can be expected to persist and remain close
to I =5.

As is evident from Fig. 1, below d =2, this new
"boundary" domain state evolves smoothly as a function
of g into the conventional Imry-Ma domain states: into
an Ising-like state for g«1 and into a Heisenberg-like
state for g~2. For 2«d «4 it can evolve into a
Heisenberg-like state for q&2. The boundary domain
state can be either stable or metastable, that is, have posi-
tive or negative energy, according to Eq. (10).

At d =2, which is of interest for the problem of ex-
change anisotropy to be discussed in Sec. IV, this simple
model predicts the domain size I to be infinite (the fer-
romagnetic state) for rl & 1. It drops to I =5 for 1 & rl & 2
in the new boundary domain state. Finally, for q~2 it
goes as 25/rl according to Eq. (7) in the Heisenberg
Imry-Ma state.

However, it is by now well known that for the critical
d =2 case, the simple model of Eq. (1) does not properly
predict the equilibrium behavior. In the weak random-
field limit (small rI or f), the ferromagnetic state is bro-
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ken up, and the correlations scale as exp(1/f). Obvi-
ously, at small f, the domain size can be very large; so
the state could be called "almost" ferromagnetic. The
behavior for larger f is not known.

At dimensionalities greater than 4, as sho~n in Fig.
2(b), a metastable minimum appears at the boundary be-
tvveen the Heisenberg and Ising regions. Again, this
minimum should persist in the presence of a moderate
amount of rounding. Of course, this high-dimensionality
behavior is not relevant to experiment.

All of these observations can be summarized in the dia-
gram of Fig. 3. Here Fdenotes the ferromagnetic state, I
the Ising Imry-Ma domain state, H the Heisenberg
Imry-Ma domain state, 8 the new domain state at the
boundary between the two limits, and L the state in
which each spin follows the local exchange ffeld, which
implies the complete destruction of any short-range or
long-range order. The parentheses indicate metastable
states. Particularly the d =2 behavior will be of interest
in Sec. IV below.

In many cases the lines in Fig. 3 should not be inter-
preted as phase boundaries. In the highMimensionality

L(F), $~0

Cg

1
tl

L(F,B), i~O

L(F), 4~0

FIG. 3. "Phase" diagram for the random-field Heisenberg
model with uniaxial anisotropy, as a function of dimensionality
d and normalized random-field strength g. H denotes the
Heisenberg domain state with normalized domain size l less
than the characteristic domain-wall width. Similarly, B denotes
the "boundary" domain state, I the Ising domain state, I' the
ferromagnetic state, and I. the local state in which each spin fol-
lows the local random field. Parentheses indicate metastable
states.
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FIG. 2. Normalized energy vs normalized domain size for (a)
a two-dimensional and (b} a 6ve-dimensional random-Seld
Heisenberg model with uniaxial anisotropy, with a set of
diferent normahzed random-Seld strengths. The curves in (a}
for d =2 and 1 ~ q ~ 2 exhibit the minimum which can be called
the "boundary'* domain state because it occurs at the boundary
between the Heisenberg and, Ising regions at I =5.

limit, for example, Fig. 3 shows a fully disordered state,
while conventionally one might expect a ferromagnetic
state. ' The resolution to this conceptual difficulty comes
from recognizing that Eq. (2) is no longer valid when the
domain size approaches atomic dimensions. Thus, in cer-
tain cases the disordered state of Eq. (2) (I. in Fig. 3) is
not physically relevant and the ferromagnetic state F be-
comes the only stable solution.

Another point is that with increasing random-field
strength (r) in Fig. 3), the Heisenberg domains in region
H shrink and ultimately approach atomic dimensions.
Then the H state goes smoothly into the I. state.

Yet another efFect arises from considering the kinetics
of domain formation and growth. In the three-
dimensional random-Seld problem, studied in doped bulk
antiferromagnets, it is well known that such kinetic
effects impede the formation of the ferromagnetic state.
Thus the I' state in Fig. 3 may be diScult to observe ex-
perimentally; this a&ill be relevant to our discussion of ex-
change anisotropy below.

III. DOMAIN BOUNDARY ROUGHENING

The simple energy analysis given above assumes that
the domain boundary is smooth. If the boundary were
rough, the boundary length or surface area could go to
inffnity even for ffnite domain diameter, invalidating the
analysis. Grinstein and Ma addressed the possibility of
roughening for the Ising case, both with a full
renormalization-group treatment and vrith a simple
domain argument. Here an analogous simple domain ar-
gument is proposed for the Heisenberg case.

First it is useful to review the Grinstein-Ma argument.
As in Fig. 4(a), assume that the center of a domain wall
bows out with an amplitude m and a wavelength b in
d —1 dimensions, in response to the local random-field



A. P. MALOZEMOFF

orthogonal to the field, and so the random-field ener~
gain per site froin local bowing goes as fJ—b,O/3/N,
where the angular shift 68 is to a first approximation
simply n.w/L, as is evident from Fig. 4(b). This energy
gain occurs in a volume b", which determines

N =(b/a) . Per area b ', this energy thus becomes

fJ~ /Lb(d —2)/2& d/2

Minimizing the energy of the combined exchange and
random-field terms, one finds

u)/L ~f (b/~)' (12)

FIG. 4. Schematic roughening of a domain wall in a Heisen-

berg domain state. (a) shows a sinusoidal distortion to be under-

stood as occurring in d —l dimensions. (b) shows the distorted
angle distribution, which extends over a thickness of order b.

potential. The volume of the bowed-out region scales as
u)b ', so the number of atoms N in this region scales as
(()b '/a, where a is the lattice parameter. The
random-field energy gain per ((2) —1)-dimensional area
scales as fJ~N/b" ', where fJ is taken as the local
random-field energy per site. The bowing also entails an
energy cost arising from the increased area of the domain
wall, which in the Ising hmit scales a Jw /b a ' per
area. Minimizing these two energies, Grinstein and Ma
found

g 2I3b (2—d) l3& (d —2) I3

which properly exhibits the Heisenberg critical dimen-
sionality of 4. This result shows that for small f (weak
random field) and 1 ~4, large domains are regular in

shape, because as b =L ~ 00, u)/L ~0. Of course, in the
model of the previous section, this limit is supplanted by
the Ising limit as soon as the domain size expands beyond
the characteristic domain-wall width.

Equation (12) can also be used to investigate the nature
of the Heisenberg domain state in the region d ~4 and
r)~ 2 in Fig. 3. One notes that b/a is always less than 5
in the Heisenberg region. Furthermore gp2 implies

f5(4 d)I2& 4/d Thus, . comparison with Eq. (12) shows
that as the domain size goes to zero, u)/L must also go to
zero for a given strength f of the random field. This vali-
dates the Heisenberg model at small domain sizes. The
degree of domain shape distortion at equilibrium in-
creases with g, and, for example, at d =2 and 3)=2,
u) /L =2, indicating a moderately distorted domain
shape. Since the Ising limit for d =2 and il & 1 has a reg-
ular and presumably circular domain shape, one can ex-
trapolate between these two limits to expect that in the
boundary domain region 1 g g g 2, the domain will be dis-
torted but roughly circular.

which exhibits the characteristic Ising critical dimen-
sionality of 2. At d =2 the relative size of the bowing
goes as f and so is small for small f.

The Heisenberg problem differs from the Ising problem
in several interesting ways. First, the exchange energy is
nonlocal, since the spi.ns are to a first approximation
wound at a constant pitch through the domain, as illus-
trated in Fig. 4(b). The center of the wall may be defined
as the point where the pitch angle 8 is zero.

Spins a distance b away from the center of the distor-
tion will experience little or no rotation because those
spins integrate the canceling push and pull from difterent
areas of the wall. Thus, it is apparent that the bowing of
the mall center will cause spin rotations only in a region
of thickness b, as illustrated schematically by the dashed
line in Fig. 4(b). In the absence of the bowing, the angu-
lar gradient d8/dx is m/L, but the bowing shifts the gra-
dient to values of order (m/L)[1+(wlb)] in a region of
volume b . Thus, the change in exchange energy
A (Vm) per volume goes as A (w/bL), where the linear
terms in m/bL cancel out by symmetry. Per area b"
this energy can be written Jm /bL 0 ', in distinct con-
trast to the Grinstein-Ma Ising result.

A similar derivation can be given for the random-field
energy in the Heisenberg case. In contrast to the Ising
case, the Heisenberg spins in the middle of the wall are

IV. RANDOM-FIELD MODEL
OF EXCHANGE ANISOTROPY

While the random-field Ising model has been extensive-
ly investigated experimentally in random antiferromag-
nets, the random-field Heisenberg-to-Ising crossover re-
gime has not seen experimental exploration. In a recent
paper ferromagnetic-antiferromagnetic sandwiches ex-
hibiting "exchange anisotropy" were proposed to be an
experimental realization of this new kind of random-field
model. In such sandwiches, a number of unusual phe-
nomena are observed, the most characteristic being a
displacement of the ferromagnetic hysteresis loop by an
internal efkctive field which appears after the sandwich
has been cooled through its antifcrroIYlagIlctic transition
temperature in an applied field.

In the earlier work, both the ferromagnetic and anti-
ferromagnetic layers were postulated to have uniaxial an-
isotropy with easy axis in the plane and interfacial inho-
mogeneities of various sorts between the two layers which
could give rise to an efkctive random field at the inter-
face. When the ferromagnetic layer is single-domained,
the random field in efFect acts on the antiferromagnet at
the interface and tends to break it up into antiferromag-
netic domains. Accepting this model for our purposes
here, let us consider how to relate this problem to the
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f=f a /4ns~ r„. (13)

The coefficient here should be regarded as approximate,
with factor-of-two accuracy, because the actual domain
state will in general involve domains which are not per-
fectly circular and which enclose regions of either polari-
ty. Of course, since f; is not accurately known for actual
experimental situations, it is mainly the thickness scahng
of Eq. (13) which is of interest. Nevertheless, order of
magnitude estimates are possible.

Equation (13) establishes the relationship of the
random-field exchange anisotropy model to the two-
dimensional ferromagnetic random-field model, and it
has some interesting consequences. As seen in Sec. II,
the two-dimensional random-field model exhibits a transi-
tion from an "almost" ferromagnetic to a "boundary
domain" state above g=1, and a crossover to a Heisen-
berg domain state above t)=2. Equations (5) and (13)
thus imply critical thicknesses for the corresponding anti-
ferromagnetic problem

tg ~n, i f(V A/I( /4—— (14)

For thicknesses greater than t„,„, i, the almost ordered
antiferromagnetic state is favored, but below this thick-
ness a boundary domain state becomes stable, changing
to a Heisenberg domain state for thicknesses less than
&~,cat, Z.

The presence of a domain state, coupled with a coer-
civity which anchors the domain walls in place, then
leads to the exchange anisotropy e8ect. For, as argued
elsewhere, if one measures the hysteresis loop of the fer-
romagnetic layer, a field ofFset HE in the center of this
hysteresis loop arises from the dilerence ho. in interfacial
energies for the two opposite orientations of the fer-
romagnetic layer of the sandwich. For a ferromagnetic
magnetization M~ and thickness r~ (not to be confused
with the ferromagnetic random-Seld system discussed
earlier in the section), one has

earlier treatment of the generalized ferromagnetic
random-Seld problem.

The Srst point is that the problem of an antiferromag-
net in a random Seld is formally equivalent to that of a
ferromagnet in a random field. This is because switching
the direction of the random field at every second site does
not aleci the randomness of the distribution.

Let the thickness of the antiferromagnetic film be t„.
A cyhndrical antiferromagnetic domain of diameter L oc-
cupies half the area of the square region L'tlat/2 on a
side. Its wall energy per area of interface is thus
St& &AE /L, where A and K are now the
antiferromagnet's exchange stifFness and anisotropy ener-
gies per unit volume. The random-field energy per inter-
facial area is thus approximately —f;J/~Ma z or

2f;Jj—+nLa, where f;J is the local random-field ener-

gy at the interface and J= Aa.
Then it can easily be shown that if the total energy per

interfacial area is normalized by a2/Sert„A, and if
5=n& A /—E, the total energy can be expressed in the Is-
ing form of Eq. (1),but with

L =Sm i tqlf; (18)

for t„&t„,„,z. Substituting Eq. (18) into Eq. (17), one
finds

HE 2fgv'A——E /n MFtp, tw, „,2&to &tA„;, i, (19)

HE=f, A/4n M~tFt„, tg &rg,„,2 .

HE as a function of thickness is plotted as the solid line
in Fig. 5. Above a critical antiferromagnetic Nm thick-
ness, the elect is predicted to vanish in the simple theory
[Eq. (I)]. This thickness depends on f;, which is not ac-
curately known but which can be expected to be of order
one for transition-metal exchange interactions which are
primarily local or short range. Then the critical thick-
ness scales as the characteristic domain-wall parameter
&A /E, which is typically several hundred Angstroms in
transition metals.

However, as mentioned above, a more complete theory
of random-field phenomena predicts a large, but finite,
domain size or correlation length, corresponding to a
small but finite offset field. Moreover, kinetic effects are
expected to impede the formation of large domain sizes,
especially when the material is cooled through its transi-
tion temperature in the presence of the random field.

M

CQ

Q4

i !

th„critR

i

tk, eriti

FIG. 5. Predicted exchange anisotropy offset versus antifer-
romagnetic 51m thickness. The dotted line indicates schemati-
cally a low-thickness instability due to insuf6cient coercivity for
stabilizing the domain structure during the hysteresis loop ex-
periment. The dashed line indicates a hypothetical rnetastable
exchange anisotropy coming from domains which are kinetical-
ly impeded from attaining their equilibrium size (see text).

H@ b——,a /2Mpt~ .

Changing the ferromagnetic layer orientation corre-
sponds to changing the sign of the random-Seld energy
term, which is the first term in Eqs. (1) and (2). Thus,
two times the random-6eld energy term gives ho. Using
the coefficients of the simple model given above, one finds

HE 2f;——A /&nM~tFL,

where L is in turn given by m& A /K in the boundary re-
gion between r„,„,, and r„,„,2, and, according to Eq. (4)
or (7), by
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Then the upper critical thickness may be dificult to ob-
serve experimentally because metastable domains mould

give a metastable exchange 6eld as suggested by the
dashed horizontal line in the large thickness region of
Fig. 5.

In the ultrathin 61m limit, one can expect a lower criti-
cal thickness for exchange anisotropy, as indicated by the
dotted line in Fig. 5. The stability of the domain
configuration depends on the interplay of (a) destabilizing
forces generated at the interface when the ferromagnetic
layer is reversed and (b) the stabilizing coercive force.
The relative strength of the coercivity mill decline with
decreasing antiferromagnetic layer thickness if the coer-
civity arises from bulk inhomogeneities in the layer.
Therefore, below a critical thickness, the domain walls
will depin during the hysteresis loop experiment, annihi-
lating the domain structure and so reducing ho and Hz
to zero.

At first glance experiments ' ' ~ould appear to sup-
port some, but not all, of these predictions. The early ex-
periments on Co-CoO layers appeared to show an ex-
change field independent of antiferromagnetic layer
thickness down to a lower cutoff' of a few tens of
Angstroms. Such a lower cutoff' has also been observed
in more recent experiments on the FeNi-FCMn system.
However, the experiments show neither the higher thick-
ness cutofF' nor the rise at low thicknesses, predicted in
Fig. 5.

A closer look at the experiments reveals that the thick-
ness dependence was probed only out to a few hundred
Angstroms, which is not significantly larger than the ex-
pected critical thickness, of order the antiferromagnetic
domain-wall width. Most other experiments ' have
been on antiferromagnetic layers less than 150 A thick.
One possible exception is experiments" on relatively
thick single crystal NiG layers with Ni on top. However,
while a unidirectional anisotropy term was observed in
torque measurements, direct hysteresis loop ofFsets were
not reported. Other work on thick FeMn layers' is com-
plicated by the fact that the antiferromagnetic y phase is
apparently only stable near appropriate fcc interfaces like
copper or FeNi; thicker FeMn Alms show formation of
the nonmagnetic (at room temperature) a phase further
away from the interface.

In summary, there has been insufficient probing up to
now of the high-thickness regime of Fig. 5. Experiments
are needed to test the onset of metastability above the
upper critical thickness. Existing data also does not show
the predicted rise at low thicknesses, but this could be the
result of some smearing as a function of thickness, an
eff'ect difficult to control on this abnost-atomic scale.
Some other considerations important in comparison to
experiment will be reviewed elsewhere. '

The prediction of an upper critical antiferromagnetic
fllII1 t11icklicss [Eq. (14)] above wlllcll cxchaIlgc aIllsotlo-

py disappears could be questioned in view of the cylindri-
cal domain approximation. As the thickness increases
above a domain wall width, one must also consider the
possibility of a horizontal domain wall which "caps" the
cylindrical domain and limits its height. Such an analysis
was performed in Ref. 4, where the total energy was, in

fact, calculated to be positive. Therefore, in contrast to
the implications of that paper, thick antiferromagnets are
not likely to give the exchange anisotropy effect through
the random-field mechanism, unless metastable states are
obtained.

Further insight into the physics of the domain state
can be obtained by returning to the formal equivalence of
a ferromagnet and an antiferromagnet in the presence of
a random 6eld. Consider a region where, by chance, the
local 6elds acting on the antiferromagnet are all fer-
romagnetically aligned in the same direction. It is well

known that above a threshold field, the antiferromagnet
"spin-Qops" into a con6guration in which the staggered
magnetization points primarily orthogonal to the Aeld

direction, but with a certain degree of canting. In the
corresponding ferromagnetic problem, this would be the
case of a ferromagnet under the inhuence of a staggered
field, where the ferromagnet takes up a canted
configuration with the moments primarily orthogonal to
the staggered 6eld.

By a classic spin-fiop energy analysis, it can be shown
that the canted state is favored over the easy axis antifer-
romagnetic state provided f J &Ka, where, as before,

fJ is the local field energy per site. Substituting Eq. (13),
one immediately predicts that the canted phase is only
stable below a critical thickness of order f;&3/K, the
same result as in Eq. (14).

This coincidence can be understood by recognizing
that in the ferromagnetic Imry-Ha Heisenberg model, the
canted ferromagnetic structures in which the moments
point orthogonal to an antiferromagnetically staggered
local field are just the domain walls separating the
domain regions. In other words, regions with a tendency
to regular alternation of the local field are regions where
domain walls congregate, while regions with ferromag-
netic alignment of local 6elds attract the centers of the
domains. Similarly, the spin-Hopped regions of the anti-
ferromagnet will form the antiferromagnetic domain
walls, while the easy-axis regions form the centers of the
antiferromagnetic domains. %hen the canted or spin-
Aopped regions are no longer energetically stable, the en-
tire domain structure disappears.

There are many other interesting aspects of this prob-
lem, particularly the topological structure of the circular
domains considered above, which can be characterized by
winding numbers, much as in the well-studied case of
magnetic bubbles. Also of interest is the cubic anisotro-

py and unusual spin structure of FeMn, which is not a
simple linear antiferromagnet, as assumed here, but rath-
er has a spin structure in which the four sublattice mo-
ments point toward the four faces of a tetrahedron.
These effects also inAuence the predictions of the theory
and its comparison to experiment. These issues will be
discussed in a separate publication.
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