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We investigate the breakdown properties of a random resistor-fuse network in which each net-
work element behaves as a linear resistor if the voltage drop is less than a threshold value, but then
“burns out” and changes irreversibly to an insulator for larger voltages. We consider a fully occu-
pied network in which each resistor has the same resistance (in the linear regime), and with the
threshold voltage drop uniformly distributed over the range v_=1—w/2 to v, =14w/2
(O<w <2). The breakdown properties of this model depend crucially on w, and also on L, the
linear dimension of the network. For sufficiently small w, “brittle” fracture occurs, in which catas-
trophic breaking is triggered by the failure of a vanishingly small fraction of bonds in the network.
In this regime, the average voltage drop per unit length required to break the network, v, ), varies
asv_+0(1/L?), and L — o, and the distribution of breakdown voltages decays exponentially in
v,. By probabilistic arguments, we also establish the existence of a transition between this brittle re-
gime and a “ductile” regime at a critical value of w =w, (L), which approaches 2, as L — «. This
suggests that the fuse network fails by brittle fracture in the thermodynamic limit, except in the ex-
treme case where the distribution of bond strengths includes the value zero. The ductile regime,
w > w.(L), is characterized by crack growth which is driven by increases in the external potential,
before the network reaches the breaking point. For this case, numerical simulations indicate that
the average breaking potential decreases as 1/(InL)’, with y <0.8, and that the distribution of break-
down voltages has a double experimental form. Numerical simulations are also performed to pro-
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vide a geometrical description of the details of the breaking process as a function of w.

I. INTRODUCTION

Breakdown phenomena have been the object of consid-
erable study, as the mechanical failure of materials is an
issue of basic importance in engineering and technology
(see, e.g., Refs. 1-10 for a sampling of recent work). Al-
though there has been a great wealth of experimental
data and modeling at the phenomenological level, much
of it has been oriented towards specific applications, rath-
er than for the purpose of identifying possible universal
principles underlying breaking. Recently, the electric
breakdown of random fuse networks has been investigat-
ed,'’ % in which breaking originates from the simple mi-
croscopic process of the failure of a single bond when the
voltage drop across it exceeds a threshold value. If the
voltage drop exceeds the threshold, the element “blows”
and changes irreversibly into an insulator, i.e., the bond
behaves as a series combination of a resistor and a fuse.
The failure of a random network consisting of these ele-
ments, as the external potential is raised, is meant to
mimic the mechanical failure of a random elastic network
under the condition of increasing uniform tension. The
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model is appealingly simple, and from investigations of
models of this type, one may hope to develop general in-
sights about failure in real materials. It is also
noteworthy that the breakdown in a fuse network in-
volves the high-voltage tail of the voltage distribution of
a random resistor network, >~ '® and this connection may
be worth developing.

In addition to defining the current-voltage response of
each network element, the kinetics of the breaking pro-
cess must also be defined in order to specify the model.
In this work, we shall assume that the breaking of a sin-
gle bond is “slow” in that the characteristic time required
to break an “overstressed” bond is much larger than the
time for the currents in the network to reequilibrate after
a bond breaks. We also assume that the bond-breaking
time is much smaller if the overstress is larger, so that
only one bond, the most overstressed one, is broken at
any stage. These basic assumptions of rapid current
redistribution and single-bond breaking form the basis of
our numerical simulations. For this model, interesting
questions to study are the detailed nature of the breaking
process itself, the average value of the external potential
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required to break the network, and the distribution of
these breakdown potentials.

For a fully occupied network consisting of nearly iden-
tical fuses, the behavior of the system is trivial, because
the failure of one bond léads to the formation of a linear
crack that breaks the entire network. More interesting is
the case of disordered networks, and perhaps the simplest
case is that of percolation disorder, in which lattice bonds
are randomly occupied with probability p by identical ele-
ments.'"12  Near the percolation threshold, singly-
connected bonds!® are most susceptible to failure, and the
burning out of a singly-connected bond will cause the en-
tire network to fail. Above the percolation threshold, the
behavior is considerably more subtle. Duxbury et al.'?
have recently argued that, for weak disorder, the break-
ing process is dominated by the largest “crack” in the ini-
tial state of the system. At the tip of this largest crack,
local current flow is enhanced by a factor which is pro-
portional to the square root of the crack length (in two
dimensions). Furthermore, in a system of linear dimen-
sion L, the length of the largest crack is proportional to
InL, and this leads to the average breaking potential of
the network vanishing asymptotically as 1/(InLY, with
1 <y < 1. This is qualitatively consistent with the numer-
ical work of Ref. 12, although the exponent y was not es-
timated from the data.

While percolation disorder may be appropriate for ac-
counting for the breaking of materials such as unwoven
textiles, the general situation where bond conductances
and/or bond-breaking strengths are drawn from continu-
ous distributions may be more appropriate for discussing
breaking processes in disordered solids. Moreover, a
completely occupied network, with the properties of each
element continuously distributed, is the situation that re-
sults if a percolating network, which is abeve the percola-
tion threshold, were coarse grained. Consequently, such
a continuous model may provide a better representation
of the thermodynamic limit than percolation models.
Another aspect of considering continuous, rather than
percolation distributions, is that the microscopic-crack
size distribution can be monitored during the breaking
process, and this may be useful for providing detailed
geometric information.

For simplicity, we will restrict ourselves to the case
where each bond has unit conductance, while the failure-
inducing voltage drop, or current, i.e., the “strength” of
each bond, is continuously distributed over some range.
The breaking properties of the network depend on the
shape of this distribution, especially at the low-strength
limit. However, we will focus on the uniform distribu-
tion, in which the threshold voltage is uniformly distri-
buted between v_ =1—w/2 to v =1+w/2, as this case
appears to be rather typical. Notice that the average
threshold voltage is equal to unity, and the width of the
bond-breaking distribution, w, lies between 0 and 2.

In analogy with fuse networks with percolation disor-
der, the value of the external potential drop required to
break the network, i.e., the macroscopic breaking
strength, decreases as L increases,'"!? but at a rate that
depends on w (Fig. 1). For sufficiently small w, a regime
of “brittle” behavior occurs, in which one of the first few
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FIG. 1. Phase diagram for the random fuse network in the
parameter space spanned by 1/L and w. For0<w <w.(L), the
network is brittle, with trivial behavior occurring in the limit
w < Wy, while for w > w,(L), the network is ductile. The arrow
schematically indicates the expected crossover from ductile to
brittle behavior when a sequence of systems with fixed w and in-
creasing values of L are considered.

bonds broken nucleates a crack which propagates across
the system. Breaking is therefore governed by the weak-
est, or one of the weakest, bonds in the initial distribu-
tion. For larger w, breakdown of the network is more
gradual than in brittle fracture, as there is a large range
over which individual bond breakings are driven by in-
creases in the external potential. We term this regime of
behavior as “ductile.” From a probabilistic argument,
ductility is expected if the number of voltage-driven bond
breakings is more than of order L, in an L XL network.
(For a d-dimensional network of linear dimension L, this
critical value generalizes to a number that is of order
L472.) The behavior of the breaking voltage in the duc-
tile regimes seems to parallel that of the fuse network
with percolation disorder. Numerical simulations sug-
gest that the average breaking potential per unit length,
(v, ), decays as 1/(InLY as L — o, with y estimated to
be less than 0.8. However, (vb) can never be less than
v_, and this leads to an eventual crossover to brittle be-
havior as L increases (Fig. 1), except for the extreme case
w=2.

The outline of the paper is as follows: In Sec. II, we
study the failure of the fuse network in the strongly brit-
tle regime, where breaking occurs by single-crack growth.
In Sec. III, we use the approximation that a crack of
length 2 is immediately unstable to catastrophic failure,
together with general probabilistic arguments, to estimate
the location of the transition between brittleness and duc-
tility as a function of w. In Sec. IV, we employ a dilute-
crack approximation and the Lifshitz-type argument of
Duxbury et al.!> to estimate the average breaking
strength of the network in the ductile regime. The ap-
proximations used in Secs. III and IV are rather different
in nature, but we expect that they are reasonable for the
early and later stages of the breaking process, respective-
ly. In Sec. V, we present numerical results for the aver-
age breaking potential and its distribution, as well as the
total number of broken bonds at the fracture point, to
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help characterize brittle versus ductile fracture, geometri-
cally. Finally, in Sec. VI, we briefly discuss generaliza-
tions to other types of disorder and to three-dimensional
systems. We also raise some questions which may be
suitable for future work.

II. FRACTURE BY A SINGLE CRACK

To understand the breaking of a random fuse network,
first consider what happens when a single bond is broken.
The degree of stability of this initial one-bond crack is
useful for determining the subsequent breaking process.
For a sufficiently large system of linear dimension L, the
first bond will break when the external voltage drop per
unit length is v_ +0(1/L?) [see Eq. (6), below]. For the
present discussion, however, we simply take this
minimum voltage drop to be v_. After the breaking of
this weakest bond, the voltage drops across the bonds in
this new network can be calculated exactly.'>?*® One
finds that the largest enhancement of the local voltage
drops occurs across vertical bonds which are horizontally
adjacent to the initial crack; these are the bonds which
are most likely to break without any additional increase
of the external potential drop.

More generally, if the voltage drop across the system is
V and the corresponding voltage drop, v;, across bond i is
greater than v _, then the probability that this bond will
break is equal to

v, —U_

pi= (D

w

Then the probability p,, that no additional bonds break at
external potential V, after the first bond has been broken,
equals

p=TI'1-p,) . @

Here the prime on the product denotes that it is taken
over all bonds with p; > 0, that is, only those bonds where
the defect has caused an enhancement of the local voltage
drop above v_. The dependence of this stability proba-
bility on w is shown in Fig. 2 for a sufficiently large net-
work where finite-size effects are negligible. For w less
than a value w,, the initial single-bond crack is always
unstable to further cracking. This defines a “trivial” re-
gime of behavior, where the breaking of the first bond im-
mediately leads to a catastrophic failure of the network
by the growth of a straight-line crack.

An estimate for the range of w for which trivial behav-
ior occurs can be found as follows. If the weakest (verti-
cal) bond in the system fails when the voltage drop across
it is v_ =1—w/2, then the voltage drop across the two
vertical bonds immediately adjacent to the initial broken
bond is av_, where the enhancement factor a is weakly
dependent on the system size, the location of the broken
bond, and on the boundary conditions; however, in the
thermodynamic limit, a=4/7.">% If av_ exceeds the
breaking strength of the strongest possible bond in the
system, v, then the initial bond failure necessarily leads
to the formation of a linear crack that breaks the net-
work. Using a=4/w, this criterion leads to a critical
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FIG. 2. Plot of the stability probability p;, i.e., the probabili-
ty that no additional bonds break when the external potential is
set to the value which is sufficient to cause the weakest bond in
the network to break. The plots are based on data from a
91X 91 network, in which the bond at the center is removed.
For comparison, we show this probability when stability of only
the two edge bonds are tested (@), when all the bonds in the

‘same horizontal row as the initial crack are tested (O), and

when all the bonds in the lattice are tested (A ).

value of w =w,, whose numerical value, according to the
approximations employed, is given by

4—m

2 441

~0.2404 . (3)

This represents a lower bound for the true value of w,.

Since the breaking mechanism is dependent only on the
properties of the weakest bond in the entire network, the
strength of the network and its distribution can be calcu-
lated from extreme-value statistics.?! If the external volt-
age drop per unit length is v, then the probability that
any one bond breaks is simply p =(v —v_)/w. Here we
are tacitly assuming that v is less than v, so that p<1.
Therefore, the probability that none of the L? vertical
bonds in an L X L system break when the potential is v,
or less, is simply

FHv)=(1—p)L’ . (4a)

This quantity can be reinterpreted?! as the probability
that the weakest bond in the system breaks when the
voltage drop is equal to or greater than the value v. Con-
sequently, the probability that the weakest bond breaks,
when the voltage drop across it is between v and v +dv, is
given by

2
F(v)dv =%(l—p)L2_1dv . (ab)

Notice that F(v) is normalized in the sense that
v
f o F(v)dv=1. Thus the distribution of network break-

ing strengths decays exponentially in the voltage. Fur-
thermore, from (4), we can straightforwardly calculate
the mean voltage drop per unit length, at which the
weakest bond breaks,
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(v,)= fuv+vf7’(v)dv

w
L24+1
This result merely reflects the fact that when the break-
ing strengths of the L? vertical bonds are uniformly dis-
tributed within the range w, then the typical difference
between two adjacent breaking strengths will be of order
w/L?. Consequently, the weakest bond strength will typ-
ically be larger than v _ by this same amount.

=[)_—+— (5)

III. UNSTABLE-CRACK APPROXIMATION

For w > w,, there is a nonzero probability that the ini-
tial crack is stable to further breaking when the external
potential is at the value required to break the first bond.
Consequently, the potential must be increased in order to
break additional bonds. To study how the network fails
in this case, we develop a very crude probabilistic argu-
ment which is based on the approximation that a crack of
length greater than 1 is immediately unstable to catas-
trophic failure. From this argument, we also predict that
there is a transition between brittleness and ductility
which occurs at a critical value, w =w_.(L), which de-
pends on the linear dimension of the system. For
w <w.(L), a network fails by brittle fracture, while for
w > w,.(L), the breakdown process is more gradual. In-
terestingly, our argument gives w.(L)—2 as L — «, and
this prediction seems to be independent of detailed ap-
proximations. This suggests, therefore, that the random
fuse network with continuously distributed bond-
breaking strengths fails only by brittle fracture in the
thermodynamic limit, except in the extreme case where
the distribution of bond-breaking strengths extends to
zero, i.e., v_ =0 (or w=2).

First, we determine an approximate criterion for the
onset of brittle fracture. This criterion is based on the
picture in which the initial phase of breaking involves
only the failure of the sequence of weakest available
bonds in the network. Accordingly, these initial single-
bond cracks will be spatially uncorrelated. For a uniform
distribution of bond-breaking strengths, it then follows
from Eq. (5) that the average breaking strength of the nth
weakest bond in the network varies as

(U yeakest (1)) =V _ +nw /L%, (6a)

so that the voltage drop at the edge of each crack will be
{Vyeakest(n) Y. This result is verified to a good approxi-
mation in our numerical simulations. As each single-
bond crack forms, the number of bonds at the edges of all
the cracks increases by two. If these edge bonds are sta-
tistically independent, then after n single-bond cracks are
created, the average breaking strength of the weakest of
the ensemble of 2n edge bonds is [cf. Eq. (5)]

(Vegge(n)) =v_ + = (6b)

T 2n+41 7

For a network which is initially stable to breaking,
(Uyeakest (1))@ < {vegge(1)). However, as the weakest
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available bonds are sequentially broken, {vyeayest(n))
increases in n, while (v4,.(n)) decreases. Eventually a
point is reached where

<Uweakest(n)>a:(Uedgc(n)) ’ 7

and, at this stage, the unstable growth of an existing
crack is as likely to occur as forming a new crack. We
define this point as the onset of brittle fracture. The
number of broken bonds at this point, n.(w), is found to
have two possible asymptotic forms as L — . In the
general case where wy<w and 2—w >>0(1/L), then
from Eq. (7), the value of n (w) tends to a finite value as
L — o0, which is given by

111

n.(w <2)z; — 2

—_—, (8a)
v

1
Wy w

with correction terms which are of order 1/L%. On the
other hand, when 2—w <<O(1/L), i.e., w—2, then

n(w=2)~L/V2a, (8b)

with correction terms of order unity. Thus n.(w) in-
creases with w, for w > w,, and then saturates at a value
given by Eq. (8a) when 2—w becomes greater than
O(1/L). Therefore, as L — «, the random fuse net-
works fails by brittle fracture for all values of w < 2, since
the number of single-bond cracks needed before the sys-
tem undergoes brittle fracture, is finite.

However, the assumption of spatial independence in
the initial sequence of single-bond cracks eventually
breaks down in a finite-size network, and we now deter-
mine whether this occurs before or after brittle fracture
has been reached. That is, in the process of breaking the
weakest available bond, it may eventually happen that
the next bond to be broken is adjacent to a previously
broken bond. If this happens before brittle fracture has
occurred, then further crack growth will not necessarily
be catastrophic, but rather, will typically be driven by ad-
ditional increases in the external potential. This change
in behavior is the criterion we use for determining the lo-
cation of the brittle-ductile transition.

We therefore reexamine the assumption of spatial in-
dependence in the sequence of initial broken bonds, by
computing the probability that the nth weakest vertical
bond will be spatially independent of all the other cracks
already in the system. The notion of “independence” is
not sharply defined in the present context, but one can
formulate an intuitively plausible criterion based on the
pattern of bond voltage drops in a network with two
closely separated single-bond cracks. Even though the
voltage drops around one crack are substantially per-
turbed by the neighboring crack, we have numerically
verified that the stability probability of the two-crack sys-
tem is very nearly equal to the square of the stability
probability for a single-crack system, for a variety of lo-
cations of the two neighboring cracks. Thus, in terms of
the susceptibility for additional bond breaking, two
cracks can be very close together and still be indepen-
dent.
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Therefore, we use the geometrical criterion that two
bonds are independent if they do not coincide or if they
are not horizontally adjacent. Consequently, each broken
bond removes three possible locations in the lattice at

L9
L*-3

L2—6
L*-2

L>-3

P =1
" L?-1

L?—3(n—1)
L*—(n—1)
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which the next broken bond is independent of its prede-
cessors. For a system of linear dimension L, the proba-
bility that the nth broken bond is independent is then
given by

(9a)

(This probability is closely analogous to the familiar problem of the probability of “birthday coincidences” in a finite
population.) We next estimate the value of n for which P, decays to approximately 1/e. Rewriting (9a) as

_ [ =G/LA1—(6/LH)J[1=(9/L")] - - - {1—[3(n —1)/L?]}

n

and then making the approximation (1 —k /L?)~e ~*/%%,

the product can be expressed as the exponential of a sum,
from which we obtain

P ~e-—n(n—1)/L2 (10)
= .
Thus we deduce a characteristic value
nindep~L ’ (1n

beyond which the independent assumption fails.

If brittle fracture has not yet occurred by the time that
Mingep DONds are broken, i.e., Mg, <n.(w), then crack
growth is as likely to occur as new crack initiation when
the external potential is increased, and the failure of the
network will be more gradual than brittle fracture. Con-
versely, for nj,q4., > n.(w), the system is brittle, as the se-
quence of weakest broken bonds are still spatially in-
dependent when failure at the edge of a newly formed
crack occurs. The brittle-ductile transition is therefore
defined by 1,4, and n,(w) being of the same order. This
then leads to a critical value of w given by

1

wo(L)~2 3

1-0 , L—>ow . (12)

This result actually represents an upper bound to the
true value of w.(L), owing to the nature of the unstable
crack approximation. Since single-crack growth does not
necessarily end in catastrophic failure, a point in the brit-
tle region of the phase diagram may actually be ductile,
and correspondingly the true value of w,(L) is lowered.
Nevertheless, attempts to develop more refined argu-
ments all lead to the feature that w.(L)—2, as L — .
Thus we predict that the random fuse network is brittle
in the thermodynamic limit, except in the special case
where w=2.

IV. DILUTE-CRACK APPROXIMATION

We now discuss the failure of the random fuse network
by using an approximation in which cracks of length
greater than unity may be stable, but also in which cracks
are sufficiently dilute so that interaction effects are ig-
nored.?? This is very similar to the approach introduced

[1—(1/LH)1=2/L)[1—=(3/LD)] -+ {1—[(n —1)/L?]}

> (9b)

by Duxbury ez al.'? for the case of percolation disorder.
We further assume that cracks are linear in shape, and
that a crack grows by advancing by one lattice spacing,
rather than by a more complicated kinetic process. This
means that the probability of finding a crack of a given
size will be independent of its history. The crack length
distribution can now be calculated in terms of a one-
dimensional correlated percolation problem, in which the
degree of correlation involves the length-dependent
amplifications of the current at the crack tip. For a given
value of w and V, there will be a critical size, n,, for
which the tip current is sufficient to lead to unstable
crack growth. The breaking potential of the network is
then given by the value at which the expected number of
cracks of size n_, or larger, is of order unity.

When an external potential V =Lv is applied, the prob-
ability that any one bond breaks, in the absence of corre-
lations, is po=(v —v _)/w. Once this has occurred, then
the probability, p,, that the next horizontally adjacent
bond breaks is larger than p,, owing to the local current
enhancement. Thus p,=(a;v —v_)/w, where for the
enhancement factor a;, we use the value 4/7 of the
infinite lattice. More generally, the probability of break-
ing the kth bond in the crack is

S (13)
pk - w ’
where v, =va, is the voltage drop at the tip of a crack of
length k, and «a, is the corresponding amplification fac-
tor. Asymptotically v, varies as,

ve~v(1+fVEk), (14)

with f numerically estimated to be 0.55. However, nu-
merical data for v; show that this asymptotic form is not
evident until k 230 (Fig. 3). As a result, calculations
based on Eq. (14) may have limited utility in accounting
for the behavior of the breaking potential for the range of
network sizes accessible in our simulations, as crossover
effects may play a relatively important role.

Thus, the probability that there exists a (one-
dimensional) crack of size n is equal to
P(n)=pop\py - pu(1—p, )" . (15)
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FIG. 3. Double logarithmic plot of v, —1 vs k, to illustrate
the range of validity of the asymptotic form, v, ~1+fV'k. For
the data shown, the vertical position of the crack was halfway
between the bus bars on a 91 X91 network. There are periodic
boundary conditions in the transverse direction, and the voltage
drop across the network is equal to ¥'=91. The dashed line cor-
responds to the behavior where v, — 1 increases as V'k, and the
rapid increase in v, — 1 for k X 70 is due to finite-size effects.

In keeping with our assumption that a crack fails only at
the tip, Eq. (15) involves the boundary factor (1—p,, )2,
associated with the two perimeter bonds. However, as il-
lustrated in Fig. 2, this assumption yields only a fair ap-
proximation for the stability of the network to additional
breaking after the failure of a single bond. Let us now es-
timate how P(n) depends on »n in the dilute-crack ap-
proximation. If all the bond-breaking probabilities were
equal (uncorrelated percolation), then the crack-length
distribution would be a pure exponential, and the break-
ing strength of the network would decay as 1/V'InL, by
following the Lifshitz-type argument given by Duxbury
et al.'? For the fuse network with a continuous distribu-
tion of bond-breaking strengths, however, the crack-
length distribution will be modified by enhancement
effects. Using the asymptotic form for v in p;, we have

nooUgp—U_
P(m= [ =—
k=1
=1 Po+qVk), (16)

k

where po=(v —v_)/w and ¢ =vf/w. By considering
InP(n), the resulting sum can then be approximated by
an integral for n large, giving

1np(n>~f0"1n(po+qﬁ )dk

pb —
= (n—— |In(po+qV'n)
B _Po +p—‘2’1np (17)
2 q qz 0
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We are interested in the behavior of InP (n) for the sit-
uation where the voltage at the tip of the crack is close to
v . This is equivalent to the condition

Po+qVn ~1—-8 (18a)

or

v, —va
S —F——2 | (18b)
w

Now expanding In(1—8)~ —§, and dropping all lower-
order terms in Eq. (17), we find

v 1
_.i_*__
w

InP(n)~ —
nP(n) n 5

+n3/2I-v- . (19)
w

Correspondingly, the total number of cracks of size n in a
system of linear dimension L scales as

N(n)=L?P(n) . (20)

By taking this number to be unity, one finds a charac-
teristic length, 7o, for which there will be one such
crack in a system of linear dimension L, which is deter-
mined by

vy o1

v
-t —-nfo/,,zlgcst{;J—:ZlnL . #3))

n longest

For w=~2, the coefficient of n3/? is typically quite

small. Therefore, even for reasonably large values of n,
InP(n) decreases almost linearly in n, leading to
Miongest ~InL. For very large n, the n*/? term causes P(n)
to decay slower than a pure exponential, and eventually
reach a minimum at a value n =n,, corresponding to
Prn=ny= 1. Longer cracks are necessarily unstable, as the

crack-length distribution ostensibly increases with n.
However, by comparing the full solution to Eq. (21) with
that obtained by keeping only the linear term, one finds
that the two solutions differ only by a numerical factor
which is less than or equal to 4, as illustrated in Fig. 4.

Thus using 7oy, ~InL, we estimate the breaking po-
tential (v, ) from the condition

(Ub )(1+f‘/nlongcst)~v+ ’

i.e., the voltage drop at the tip of the longest crack just
equals v . This then yields

(22a)

(Ub)~ U+—

22b
ViInL (220)

However, (22b) must break down when (v, ) is smaller
than v_, corresponding to L being large enough that
there is no solution to Eq. (21). In this case, the network
is brittle, as an external potential ¥V which is
infinitesimally greater than Lv _ immediately leads to the
creation of a longest crack that is already beyond the sta-
bility limit. Only in the case w=2, does Eq. (21) have a
solution for all values of L, so that the network is always
ductile.

We now attempt to understand the influence of the in-
teractions between cracks on the breakdown of the ran-
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InP(n) n

*\ -2inL

se e s e 00 e

FIG. 4. Schematic plot of InP(n) from Eq. (19) vs n, in order
to illustrate the nature of the solution to (21). The dashed line is
the result when only the linear term in InP(n) is retained. The
corresponding approximate solution (O) and the full solution
(@) to (21) are shown. They differ only by a numerical factor
which is less than 4.

dom fuse network. Related questions have been con-
sidered previously,?? and it has been found that either
screening or enhancement effects can occur, depending
on the relative orientations and positions of nearby
cracks. We focus here on enhancement effects, as these
are more likely to modify the size and voltage depen-
dence of the breakdown voltage. Our approach is again
probabilistic; while it is very crude, it does not depend
strongly on microscopic details and may therefore have
general applicability.

Consider two colinear cracks which, for simplicity, are
separated by a distance d, and are of equal lengths n. As
discussed in Refs. 22, the degree of correlation between
the cracks is characterized by the ratio n/d. For
n/d <1, interactions play almost no role, and the break-
down of this two-crack system is close to that of two in-
dependent single cracks. In the opposite case, there is a
strong enhancement of the two-crack failure probability.
We now ask whether there is an appreciable probability
that a network of linear dimension L contains a
configuration of two closely separated colinear cracks, in
which the sum of the lengths of the two cracks is greater
than n,g,,.- If such a configuration exists, then the re-
gion between the two cracks will likely break down
without raising the external potential beyond the point
necessary to create the initial two-crack configuration.
This two-crack configuration would then play the role of
an effective single critical crack of length n.g, which is
greater than 7y, and the independence assumption of
the dilute-crack approximation would fail.

To determine whether n g is much greater than n;,,c
we employ an exponential crack-length distribution,
P(n)~e %, from which the number of cracks of length
Miongest/2 OT greater is proportional to L. If these L
“half’-cracks are randomly distributed, then from Sec.
I11, there is a sufficient number of them to make it likely
that two of them are nearby. Furthermore, if these
cracks are on the same row, then the local current
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enhancement will typically lead to coalescence of the two
cracks. By construction, the length of the newly formed
crack is of order 7., Thus the L dependence of n g is
the same as that of 7., found in the dilute-crack ap-
proximation. The same result follows when considering k
cracks of length 7, /k in the same row. This argu-
ment therefore suggests that the L dependence of the
breaking potential should not be affected strongly by in-
teractions.

V. NUMERICAL RESULTS

In order to test the predictions of the previous sections,
and to provide a more quantitative account of the break-
ing process, we have performed numerical simulations on
L X L random fuse networks on the square lattice, with L
in the range 10-80. Opposite edges of the lattice are con-
nected to bus bars across which there is a potential drop
unity (for calculational convenience), and periodic bound-
ary conditions in the transverse direction are imposed.
Each bond is a resistor-fuse combination which has unit
resistance (in the linear regime), but in which the break-
ing voltage for the ith bond, v, (i), is uniformly distribut-
ed in the range v_=1-—w/2 to v, =14w/2, with
0 <w <2. The potential drops v; across each bond i are
calculated by the conjugate gradient method.?> We then
break the bond for which the difference A; =v,(i)—v; is
the smallest, i.e., the resistance of the bond is set to
infinity, and the procedure of solving for the voltages and
breaking bonds, one at a time, is repeated until the net-
work breaks. The breaking potential of the network (nor-
malized per unit length) v, is the value v, (i) correspond-
ing to the largest A;. For large-system sizes, and for
w ~2, many bonds need to be broken before the system
breaks down, and the computation time required to reach
this point can become quite large. For example, for
L =80 and w=2, a single configuration required approxi-
mately 2 h of CPU time on an IBM 3090, beginning with
the pure lattice and ending with the broken network after
approximately 1300 bonds were broken.

To illustrate the detailed evolution of the breaking pro-
cess, we plot the value of the external potential as each
bond is broken (Fig. 5), in which each data point is coded
according to whether the broken bond forms a new crack
(vertical line), adds to an existing crack (horizontal line),
or joins together two already existing cracks (open cir-
cles).2* For a very brittle network, the breaking process
is represented by a horizontal sequence beginning with a
single vertical line, and then followed by a sequence of
horizontal lines. As w increases, the initial stages of
breaking become closer to a percolation-like process
where independent single-bond cracks are formed. Cor-
respondingly, the evolution plot should begin with a se-
quence of vertical lines that lie on a line of slope w/L 2,
according to Eq. (6b). For the case L=50 and w X 1.3,
this initial slope agrees with (6b) to an accuracy of about
10%.

The breakdown of the network by brittle fracture is
signaled by the occurrence of catastrophic crack growth
after a relatively small number of cracks has formed [Fig.
5(b)]. In the ductile regime, there is a substantial range of
increasing external potential over which gradual crack
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growth occurs [Fig. 5(c)]. This type of behavior is gen-
erally observed when w is, typically, equal to or greater
than 1.5. In the evolution plot, we see that the initial per-
colation regime of new crack formation gradually be-
comes interspersed by crack growth and crack coales-
cence, and these events ultimately lead to network
failure.

Next we discuss the behavior of the average breaking
potential of the network, {(v,). When w <w,, Eq. (5)
gives (v, ) ~v_+0(1/L?), and for w > w,, but still in
the brittle regime, (v, ) is still expected to show this
same L dependence. This is checked in Fig. 6(a), where
(v, ) —v_ is plotted versus L on a double logarithmic
scale for the representative case of w=1. Asymptotical-
ly, this data appear to lie on a straight line of slope —2,
consistent with our theoretical expectations. This behav-
ior is found to persist for w as large as 1.2, for the range
of L accessible in the simulations, except that for w=1.2,

the asymptotic behavior sets in at larger L.

For w=2, we first test whether the decay of (v,,) is
consistent with power-law behavior in L by plotting (v, )
versus L on a double logarithmic scale [Fig. 6(b)]. This
plot suggests that (v, ) decays slower than any power of
1/L, although we cannot definitively exclude the possibil-
ity of a power-law decay with a very small exponent
value. A plot of (v, ) versus InL on a double logarithmic
scale is more linear [Fig. 6(c)], and this suggests that
(v, ) does vary as 1/(InLY. However, there is a slight,
but systematic, curvature in the data and by successively
deleting the smaller-L points, the slope of a linear fit
changes from 1.05 (when all the data is fit), to ~0.8, sug-
gesting that y $0.8. This behavior appears to follow,
qualitatively, the finite-size crossover found in the depen-
dence of v, on k (Fig. 3). Thus, it is conceivable that
(v ) varies asymptotically as 1/VInL, as predicted by
Duxbury et al.'? for the case of percolation disorder, but
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that crossover and finite-size effects mask this result for
values of L accessible in our simulations.

We have also studied the distribution of (v, ), as this is
a relatively sensitive probe of the underlying breaking
mechanism, which is often used as a tool for reliability
analysis. It is conventional to consider the probability
that a network has failed at a voltage v,, or less, F(v,).
In Fig. 7, we plot this distribution for two examples
whose behavior is representative of brittle and ductile be-
havior. In the brittle regime, 1—F(v,) decays exponen-
tially in v, [cf. Eq. (4)], and our data is in excellent agree-
ment with this prediction. In the ductile regime, two nat-

ural choices to consider for F (v, ) are the Weibull form,
F(v,)=1—exp(—av]"), (23a)

which is often invoked in many investigations of mechan-

ical failure, and the double exponential form

F(v,)=1—exp[ —aexp(—bL%; ™)], (23b)
which has been argued to be appropriate in accounting
for the distribution of breaking strengths for the random
fuse network with percolation disorder. 2 1 this case,
the underlying source of the double exponential form is
the exponential form of the microscopic crack-length dis-
tribution.

In Fig. 7(b), we first show the result of attempting to fit
the distribution of breakdown strengths to a Weibull
form, for the case L=50 and w=2. There is a relatively
poor fit, with X>=11, and the corresponding parameter
values Ina = —37.8 and m=12.4 from the best fit are
rather anomalous. The double exponential form with
a=28.5, b=6.36, and m=2.8 provides a much better
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quantitative account of the data. Notice that if the distri-
bution of crack lengths was purely exponential, and if the
asymptotic relation that the voltage at the tip of a crack
of length k increases as V' k is used, then we would expect
the exponent m to be equal to 2. The discrepancy with
the simulations suggests that the crack-length distribu-
tion may not be a pure exponential, as was found within
the dilute-crack approximation. Furthermore, interac-
tions between cracks might be expected to cause further
modifications in the crack-length distribution.

While measurements of {v,) and its distribution are
basic quantities which characterize breaking, it is also
useful to study properties which are sensitive to geometri-
cal aspects of the breaking process. One such property is
suggested by looking at ‘“‘snapshots” of the network at
the breaking point, for values of w which are representa-

tive of the brittle and ductile regimes (Fig. 8). In Fig.
8(a), fracture is caused by single-crack growth, while in
8(b) there is a small degree of microcracking, consistent
with our qualitative picture of brittle behavior. Finally in
8(c), the critical crack has become less straight, and there
is considerable ‘““damage” to the network, in addition to
the critical crack.

These pictures suggest that it is useful to study the w
dependence of the average number of bonds that have
failed, (N, ), when the breaking point of the network is
reached. For convenience we consider the scaled quanti-
ty, x={(N, ) /L —1, which appears to be a sensitive way
of discerning between brittle and ductile behavior. In the
trivial regime, x is identically equal to zero, as the system
fails by the formation of a single linear crack which spans
the network. In the brittle regime, only a finite number
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(O). The statistical error bars on the data points are all smaller
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asymptotically lie on a straight line of slope — 1, indicating that
x vanishes as 1/L. When w=1.2, the data is nonmonotonic, in-
dicative of the crossover from brittle to ductile behavior as L in-
creases. From the figure, we see that the value of w at the cross-
over point, w.(L) increases with L. For w=1.5, note that x is
growing approximately as L%®. Typical error bars are shown.

of bonds need to break before there is catastrophic for-
mation of a linear crack which spans the network. Con-
sequently, (Nb ) ~L +const or x ~const/L, as L — oo.
We have verified this behavior for w in the range 0.7-1.0
(Fig. 9), and this plot provides a useful check of the as-
sumptions used in our theoretical treatment of brittle
fracture. Thus in both the trivial and vrittle regimes, the
order parameter vanishes, asymptotically.

For larger values of w (w>1.5), x is an increasing
function of L for all values of L attainable in the simula-
tions, and this is indicative of ductile behavior. More-
over, x appears to be growing as a noninteger power of L
in this regime, with a characteristic exponent that seems
to be approaching 1 for values of w approaching 2.
Furthermore, a nonmonotonicity in x may occur, and
this provides a sensitive way of observing the crossover
from ductile to brittle behavior as a function of L, for in-
termediate values of w (cf. Fig. 1). For example, when
w~1.2 and L sufficiently small, the network seems to be
in the ductile regime of the phase diagram, and x is an in-
creasing function of L. However, for larger values of L,
the network is predicted to cross over to brittle behavior,
as predicted by Eq. (12), and x will correspondingly van-
ish as L — « (Fig. 9).

VI. DISCUSSION

We have investigated the breaking of a two-
dimensional fuse network, with random, continuously
distributed breaking strengths, as a function of the ap-
plied external potential. From a general probabilistic ap-
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proach, we can distinguish between the brittle and the
ductile regimes by the number of bonds broken at the
fracture point. In the brittle regime, the average break-
ing strength of the network, and its distribution, can be
found from elementary aspects of extreme value statistics.
These theoretical predictions are in excellent agreement
with simulation results. In addition, our theoretical ap-
proach quantitatively accounts for the number of broken
bonds at the fracture point.

In the ductile regime, we used a dilute-crack approxi-
mation together with a Lifshitz-type argument to esti-
mate the average breaking strength of the network. This
approach is based on approximations whose accuracy is
not easily assessed, however. Interactions between cracks
might be anticipated to play a role in the breakdown pro-
cess. Furthermore, the behavior in the ductile regime
may be influenced by a variety of crossover effects. These
unresolved issues are reflected in our numerical results
for the ductile regime. The data does suggest that v, )
decays as 1/(InL Y, with y $0.8, and that the distribution
of breakdown voltages is of a double exponential form,
with a characteristic exponent m ~2.8. In comparison,
the approximations of dilute uncorrelated cracks and a
Lifshitz-type argument give y=0.5 and m=2. Further
work is needed to understand whether these apparent
differences arise from interaction and enhancement
effects, or whether the differences are merely a manifesta-
tion of the fact that in our simulations we cannot treat
large enough systems.

For the future, three-dimensional fuse networks should
also be considered. Much of the analysis of Secs. II and
III can be readily extended to arbitrary spatial dimension
d, from which one can identify two competing influences
which govern the transition between brittle and ductile
fracture as a function of d. First, for larger d, the local
enhancement of current flow around a small defect is less
pronounced. (For a single-bond crack on the simple-
cubic lattice, the voltage drop across the nearest-neighbor
bonds is approximately equal to 1.0926. . ., compared to
the corresponding value of 4/m~1.2732... in two di-
mensions.) On the other hand, a single-bond crack is
horizontally adjacent to 2(d —1) “edge” bonds. Thus,
while local current enhancement diminishes with increas-
ing d, there are many more possible ways, geometrically,
by which the initial crack could propagate. From numer-
ical simulations, the w dependence of the stability proba-
bility (cf. Sec. I A), for an L=51 simple-cubic network,
when a single vertical bond at the center is removed, is
quite similar to that of the square lattice. Thus the com-
petition between lessened current enhancement and more
routes for crack propagation nearly balances out, at the
level of a single bond breaking. Moreover, the transition
between the brittle and ductile regimes is predicted to
occur when O(L%’?) bonds have broken, and the
corresponding transition value of w is w.(L)
~2[1—0(L ).

Another interesting aspect of three-dimensional break-
ing is that the fracture interface will be considerably
more complex than in two dimensions. In two dimen-
sions, it is clear how two nearby cracks which are noncol-
inear can join by the formation of a “kink.” However, in
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three dimensions, the manner in which two nearby planar
cracks join will be more complicated. It is also interest-
ing to inquire how linear cracks, which occur in the ini-
tial stage of a breaking process, will evolve into the pla-
nar cracks, which are experimentally known to be the
basic ingredients of breaking in three dimensions.

A second general question to consider is the influence
of the form of the bond breaking and bond conductance
distributions on breaking. To account for more general
bond breaking strengths, consider the power-law distribu-
tion

P)~w—v_) v_<v<v,, (24)

and with v_ >0. By following the reasoning in Sec. II,
the breaking strength of the weakest bond in a finite sam-
ple of L? bonds, whose strengths are distributed accord-
ing to Eq. (24), is given by

( Uweakest > =v_+ (Ezllzj_i ’ (25)
where pu=1/(k +1). Thus for a system with relatively
few weak bonds, i.e., the case k> 1, the weakest bond in
the system is further from the theoretical minimum than
in the uniform distribution. In addition, the strength of
the nth weakest vertical bond in an L X L network is, in
analogy with Egs. (6),

(Vpeakest (1)) =v _ +bw , (26a)

L

and the expected strength of the weakest of the 2n bonds
at the edges of the n single-bond cracks is

aw

(Vegge(n) ) =v_ + Py
with @ and b constants of order unity. From these re-
sults, it follows that the nature of the brittle-ductile tran-
sition is qualitatively similar to that found for the uni-
form distribution, except that crossover effects may be
expected to play a relatively more important role. How-
ever, in the extreme case where v_ =0, the breaking of
the network might be expected to be more sensitive to the
low-voltage tail of the distribution.

An additional question to consider is the kinetics of the
breaking process. We have considered the general situa-
tion where the stress relaxation time is less than the
bond-breaking time. The opposite case where all the
“overstressed” bonds break at a single time step may be
worth pursuing. This “rapid breaking” rule is also much
less demanding computationally, and simulations could
be extended to larger system sizes to help clarify some of
the slow crossover effects discussed above. The rapid
breaking rule also gives rise to interesting geometric pat-
terns. From small-scale simulations, we observe features
which are similar to the crazing that is sometimes ob-
served at the tip of a crack in various materials. These
features are also reminiscent of the patterns observed in
dielectric breakdown phenomena.?® This also leads to
the related question in the time dependence of the break-
ing process, and we hope to develop models by which the
breakdown time can be calculated.

(26b)
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