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Roughening nl facet formation in the presence of suhharmonic potentials
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Roughening transitions are explored as a function of the strength V2 of a subharmonic potential,
which can be varied with the chemical potential di%rence in a two-component crystal 1ike galena
(PbS) or one of its analogs (e.g., SnTe). The dependence of both the facet size and the step energy on
V2 are given, for small V2, explicitly in terms of the surface stiffness at V2 ——O. A close connection
of the model to the I model is exploited to obtain hitherto inaccessible features of the I' model
phase diagram in direct and staggered Selds.

I. IbrraODUi;I. .xON

Roughening and facet formation have been explored in
some detail, both experimentally' and theoretical-
ly, ie during the past several years. In particular, the
prediction6 of a universal curvature (or surface stiffness)
at the roughening temperature has been veriSed to good
accuracy. z The relevant theory can be conveniently dis-
cussed in terms of sine-Gordon picture, '" with a
Hamiltonian

H= r g r — cos
CT 2'(r)
2 a2

in which r=(x,y), z(r) is the local fluid-solid interface
position variable, cr is a microscopic surface stim'ness, a is
an in-plane lattice constant, and b is an out-of-plane lat-
tice constant. V, is the strength of the periodic potential
which expresses the preference of the system to place the
interface at integral heights in units of b.

In this work, we shall be particularly interested in a
generalization of H to a situation where an additional,
subharmonic, periodic potential is present so that H be-
comes

8= r — s r — cos
0' 2~z(r)
2 a2 b

~z(r)
2

cos (2)

Such a Hamiltonian may be thought of as describing a
two-component system, composed of atoms of types A

and 8, where the natural crystal structure places alternat-
ing layers of A and 8 perpendicular to the z axis. As a
concrete example, we suggest one of the IV-VI semicon-
ductors, such as galena (PbS) or SnTe when the z axis is
along the [111]direction. The SnTe crystal in this direc-
tion is built from alternating triangular layers of Sn and
Te. %'bile the IV-VI compounds are isostructural with
Nacl, ' ' the bonding is much less ionic. ' The covalent
nature of the bonding tends to compensate for the
difference in electronegativities between Sn and Te, re-
sulting in a more neutral bond. ' According to Ref. 16,

"it is possible to use the terms of the theory of close pack-
ing of atoms in describing and interpreting these struc-
tures. " Also unlike NaC1, natural crystals of galena (PbS)
and altaite (PbTe) commonly exhibit I 111I facets. ' The
similarity in the electronegativities, atomic radii, and the
atomic electron con6gurations of Sn and Te atoms sug-
gest that along [111]in SnTe the alternating Sn and Te
layers are energetically equivalent. ' Positive (negative)
Vz may then be identiSed with a preference for the Srst
crystalline layer to consist of Sn (Te). This preference
will be realized in a situation where the Quid in equilibri-
um with the crystal contains an excess of Sn. More for-
mally, variation of Vz is amected by variation of the Sn-
Te chemical potential diI'erence.

Nienhuis, Hilhorst, and Blote (NHB) have noted the
existence of roughening transitions as a function of
subharmonic potentials in solid-an-solid (SOS) models in
general. Within a specific model (the triangular Ising
SOS model) full details were worked out. However, this
model sufFers the drawback that the temperature could
not be explicitly varied. In this work, we discuss in some
detail the roughening transition of the model specified by
Eq. (2) as a function of T and V2, making predictions
directly accessible to experiment. In addition, we discuss
the relation of the model of Eq. (2) to the I' model, not-
ing that V2 corresponds to a staggered electric field in
that model, and obtaining hitherto unnoticed results for
the phase diagram of the Fmodel.

In Sec. 11 roughening transitions as functions of V2 and
T are discussed, particular attention being paid to the V2
dependence of facet size. Section III makes contact with
the F model, and Sec. IV contains further discussion.
Some details relevant to Sec. II are relegated to the Ap-
pendix.

II. ROUGHENING TRANSITIONS

When V2 ——0, the model of Eq. (2) is well under-
stood. ' ' In this case, the (renormahzed) macroscopic
surface stiKness o obeys ' '

o(Ttt )

ka Ta,
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at the roughening temperature Ta in the presence of the

period-one potential V, . For Vi —0 and Vi~0, one has
similarly,

It is of some interest to look more closely at the in-

terplay between the potentials V, and V2 as renormaliza-
tion proceeds. This is done in the Appendix.

tr(Ta )

kB TR~ 2(2b) Sb
(4)

wktt T

Sb cr (T)

For weak potentials, tr( Ttt ) and tr& Ta ) difier httle from
2

cr, so that the approximate relation Ttt =4Ttt holds.

(More generally, T„-p2,where p is the period, for weak

potentials. ) For given Vi&0, turning on Vi immediately
raises the system's true roughening temperature to Tz as

2

V2 will be relevant for T ~ Ttt . Facets thus appear in

the interval Trt g T ~ Ttt, and these facets will vanish as
1 2

V2~0 in a roughening transition different from the con-
ventional one.

The description of the facet size RI as Vi~0 ls
straightforward. One finds, in fact,

Rg —V2, Tg g T g T~

where

III. CONNECTION TO THE EMODEL

The I' model has a well-known connection to
roughening and facet formation via its equivalence to the
body-centered solid-on-solid (BCSOS) (Refs. 6 and 23)
and face-centered solid-on-solid (FCSOS) (Ref. 7) models.
This connection has been made for zero staggered field E,
but for nonzero direct 6eld E, the direct field correspond-
ing to coordinates used in drawing the crystal shape.
Here we point out that a staggered field in the I" model
plays the role of V2 in the model of Eq. (2). We use the
results of Sec. I to derive new results for the F-model
phase diagrams for E,+0. The eff'ect of Vi is, of course,
imposed by the lattice.

For E=O, E, =O the I' model has two equivalent
ground states, A and B, corresponding in the BCSOS
model to the T =0 (100) crystal surface bang formed by
atoms at cube corners in one case (A), or at cube centers
(B) (half a cubic lattice constant o down). A sloped sur-
face will involve a sequence of steps connecting these
states in an alternating fashion (ABAB. . .). A staggered

and o ( T} is the macroscopic surface stifFness at V2 ——0.
In Eq. (5), Ttt is the hmit of TJt for small Vz. It is im-

portant to note that the exponent x is determined entirely
by the experimentally accessible quantities o and b.
Furthermore, x is a temperature-dependent critical ex-
ponent varying from —,'at Trt to oo at Ttt .

The derivation of Eq. (6) is simple, amounting largely
to a rewriting of arguments of NHB. The critical index

y2 of the field Vz at the fixe line (T p Ttt ) of the model
I

with V2 ——0, V, +Ois~

mktt T
g2 =2-

4b cr (T)

( i.oo)

( t oo)

{a)

T=O
(a=—ao

At the fixed line, V, has renormalized to zero, its effects
being incorporated in the macroscopic stiffness o (T).
For y2&0, V2 is relevant, and T„ is determined by

2

y2(Ta )=0. To connect this result to the facet size, we

merely note that in renormalization at length scale I,
V2(l) (the value to which Vz renormalizes) obeys

d lnV2

the integration of which gives the dependence of the
correlation length g on the initial value of V2 as

g-( Vi) (9)

The facet size 8& goes inversely as the correlated length,
so that the result Eq. (6) follows with x = I/y2. The clear
connection of x with the stifFness o ( T}was not noted by
NHB. Note also that the step energy is proportional to

E
S

/X

T=ZT

Ii
A

(i To) hA I (i to)~E

''"
)

FIG. 1. Phase diagrams (sketched) in E,-E„space for the
BCSOS model for (a) T=0 and (b) T=2,T& (b =0). Facets are
labeled, and the regions between facets in (b) are rough.
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field makes one of these ground states, say A, energetical-
ly favored over the other. Thus the A states, separated
by 2Xai2 —twice the natural periodicity, are favored.
This is precisely the effect of VI in the model of Eq. (2).

The phase diagram of the I' model for E,+0 and ~0
is ill understood. It is easy to construct at T=0; see Fig.
1(a), where we set E„=O,retaining E . E is rotated by
45' from the underlying F-model lattice. The phases are
separated by heavy lines and are labeled by the bcc facet
to which they correspond. The width of the (100)„and
(100)s facets is the horizontal width of the respective
unshaded regions, increasing linearly with (E, ~. The
phase diagram can also be constructed at a s~ecial tem-
perature T & TII known as the 5=0 point. 0'2 From

1

Baxter's results, we easily arrive at the sketch of Fig.
1(b). The sahent feature for our purposes is that the
phase boundaries near the origin are straight, showing
that the facet size near E, =O varies linearly with E, .
This is the case where the exponent x of Eq. (6) is unity,
corresponding to f'a ——8, and

2Irks T
bzcr 0(T)

(10)

(NHB use the notation Tz for our TII.} From the fact
that the surface stiFness is the second derivative of the
free energy with respect to slope, one readily finds the
connection

E Y=T
(6=—1)

E
/'X

P ~O

(a= I/a)
(1OO)

A

II -E'
(110 (110)~E

pI

III

III I

( 1OO)

(1To) i ~M ~
i (1 1O) ~E

II'

(1OO)
B

II

between Ts and the conventional parameter p, of the I'
model.

The shaded regions of Fig. 1(b) correspond to rough
surfaces, and OIIC readily shows from Baxter's solutionI4
that the phase transition lines are of the Pokrovsky-
Talapov type, indicating that the rough surfaces join the
facets with exponent —'„asusual.

Next, consider the phase diagram at the F-model
roughening temperature T„(=Ts in the context of this

I

paper) corresponding to 5= —1; Ts ——4.I The (100)
facet size is zero at E, =O and increases as E, ~I (x =—,')
near E, =O. We thus conjecture the phase diagram of
Fig. 2(a). The (110) and the (100) facets will have rough
regions separati. ng them at any T & 0 because of the high
degeneracy along their common boundary at T =0. %e
conjecture that, as for 6=0, the phase boundaries are of
the Pokrovsky- Talapov type.

We expect a smooth crossover from Fig. 2(a) to Fig.
1(b) as T increases. With further increase in T, the facet
size exponent x increases until it reaches 2 at T= an

(5=—,', T„=12in the F model }. The phase diagram at
T= oo Is skctchcd 111 Flg. 2(b). The case T= Ts ls Ilot"2
accessible in the Fmodel, as this corresponds to Tz ——16.

Fol' colllplctc11css, wc glvc 111 Flg. 2(c) ollr conjectured
phase diagram for 0& T & TII ( —oo & 4 & —1). As men-
tioned above, there must be rough regions separating
facets, and the facet size [the line I.R in Fig. 2(c)j at
E, =0 is nonzero. The (100) phase boundaries probably
intersect I. and 8 linearly, there being no nearby

(b}

(1To)

f

(1oo)

(1oo)

0&TENT
8

III

(110)mE

FIG. 2. Conjectured phase diagrams (sketched) in E,—E„
space for the BCSOS model for (a) T = T&, (b) T= ao, and (c)
Og Tg Tg.

roughening transition to dictate scaling, in contrast to the
T & Tg case.

IV. MSCUSSIGN

The physics of a model for roughening at a crystal Quid
interface has been explored, primarily as regards the
effect of a small subharmonic potential. In the tempera-
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ture range Ta &T&Ta, roughening occurs with facet
1 2'

sizes vanishing as Vz, where the continuously varying ex-
ponent x is given as a function of T by Eq. (6). The tran-
sition is not of the more usual Kosterlitz-Thouless
type, ' and in contrast to that case, the curvature is not
a universal quantity at the transition. As noted in the In-
troduction, I 111I interfaces of crystals of the SnTe type
are good candidates for a test of the results of Eqs. (5}
and (6).

This work has also pointed out a close connection be-
tween the model of Eq. (2} and the E model (more gen-
erally, the antiferroelectric 6-vertex model} in the pres-
ence of both direct and staggered electric fields. Certain
features of the F-model phase diagram were derived, and
it was noted that the 6=0 solution of Baxter corresponds
to the special case x = 1.
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in Eqs. (Al)-(A3) to obtain

dX 88' +21'
de X+1
dW 2W (X 3)

28K
(A6}

de X+1 X+1

(X+8W}, (A7)
de X+1

where 8 =c, i~c3 =0.96. These three renor-
malization-group (RG) equations clearly exhibit a fixed
line on the X axis, and no other fixed points. Considering
both I'and W«1 we further note that the fixed line is
attractive for X &0 (high temperature). Since trajectories
in this region terminate at potential strengths of zero, the
surface is rough A. lso, for X ~ 3 (low temperature) both
potential strengths grow with rescaling and the surface is
smooth.

We now examine in greater detail the region 0 &X & 3
which corresponds to Ta & T&Ta . In this range, Fal-

I 2

ways grows with rescaling, and the surface is thus always
pinned (see Fig. 3). We therefore associate Ta with the

2

true roughening temperature of the two-potential system.
Analogous to the one-potential case, Ta is found by con-

sidering V, , V&~0, and X~X=0, where X is the limit-
ing value of Xas e~ ao. When X=0 we have

The model of Eq. (2) is readily analyzed via the
momentum-space renormalization technique already
developed by several authors. '0 ' Under the length re-
scaling r ~r'(1+@)one finds

r

V2 2m"e3

16
L

n'k~T c, V~m
V),

ab 4V ab'

(A 1)

dV2 nk~T c Via2— N V2,
a'4b a b

where' "

c, = J xJc(x)dx=0. 44

and

c3= x Xo(x)dx =0.21

(A3)

are constants. Note that Eq. (A3) is the form taken by
Eq. (S) ofF the fixed line of the Vz ——0 problem.

It is convenient to make the change of variables

kaT„=—b a(Ta ),8
2 7r 2

(AS)
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where a(Tz ) is the macroscopic surface stifFness at the

roughening temperature. This universal result is in exact
agreement with the one-potential case, realizing that the
periodicity of the two-potential case is 2b, resulting in a
factor of 4 in Eq. (AS) compared to the one-potential re-
sult.

0.0
I t I

V.R 10.8 14.4 18.0

(A4} FIG. 3. Rescaling of the subharmonic potential V2 in the
temperature range T& ~ T ~ Tz with V2/oo- Fo/

2

(Xo+1)= 3 &10 ~ V&/ao-8'o/(Xo+1)= 3 &10 andT:—1/(Xo+ 1)—T/g o.
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TABLE. I. Numerical check of In/ ' ~ In Fo. R is the linear
corre1ation coeScient.

Temperature
1/(Xo+ 1)

0.30
0.50
0.70

Least-squares 6t
Slope R

0.7106
0.9978
1.6619

Slope from
Eq. (AI5)

0.7108
0.9978
1.6619

X=3—[(Xu —3) —4%0]'i

provided F remains small (see Figs. 3—5). This condition
is satisfied for Fo suSciently small, as will be made expli-
cit below. X is the terminal value of X on the trajectory
of the one-potential case F0=0. While X stays at X, F
grows as

FIG. 4. Change in surface stilness, h,o =—(o —oo), with re-

scaling in the temperature range Tz g Tg T& with V2/o. o
1 2

o/( o+ )=
3 X, V)/oo-8'o/(Xo+1)=-'y10 ',

and T =1/(Xo+1)- T/oo.

When the initial value of F (Fo) is on the order of or
greater than the initial value of fV(Wu), F grows with re-

scaling, and W becomes negative [remaining smaller in
magnitude than F until the length scale reaches the
correlation length and the perturbation approximation in
the derivation of Eqs. (A5)-(A7) breaks down].

The case of central interest here is Fu g& Wu g 1. Early
in the rescaling, W approaches zero as e increases as

2(Xu —3 )e
8'=exp (A9}

(}+

and X approaches a constant X given by

2XeY= Yoexp X+1
(Al I)

Xo+ 1

3—Xo
'

while if Fis to remain ~ Wu,

Xo+ 1 W()

(A12)

where we have ignored the small difference (for small V, }
between Xo and X. Combination of the last t~o results
gives

This is just the integral of Eq. (8), and the exponent

yz
——2X/(X+I). Eventually, F reaches Wu and both X

and W'begin to change again.
The scenario of the preceding paragraph holds if Fo is

suSciently small. To determine how small, note that if
W'is driven to e of its initial value,
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3 ln( Wo/&o)

2+in( Wo/&o)

which is satisfied for 8'0/Fo suSciently large, noting
that Xo ~ 3 if T ~ T~ .

Numerical integration of the RG equations (A5)—(A7)
was performed for

Wo l(Xo+ 1 ) = —,
' X 10

and

Yo/(Xo+ 1)=—,
' X 10

where Wo/(Xo+1) and Fo/(Xo+1) are proportional to
V, /tTo and V2/pro, respectively (oo denotes the initial
value of tr) Figu. res 3-5 show the behavior of the poten-
tials as a function of @=in(1/a) for various temperatures
[1/(Xo+1)~ Tjoo]. For temperatures consistent with
condition (A14), indeed W-+0 and (X—Xo}~(X—Xo)

before F finally becomes significant.
The correlation length was determined as the value of 1

where Fj(Xo+1)=1.45 (where Vz/kttT-1). Figure 6
of F/(Xo+1) as a function of e shows that at a given
temperature, In/ ' increases linearly with
1n[Fo/(Xo+1)]. This is consistent with the determina-
tion of g from Eq. (Al 1) [F-1at @=in(l ja}=ln(g/a)]

y —[(I+X)j2X]
b 0

Furthermore, this relation is independent within an order
of magnitude of the choice of the Fj(Xo+1) used to
determine g. For values of Fo/(Xo+1) from —,

' X 10 to
—,')&10 ', subject to Eq. (A14), the results of a least-
squares fit of in( ' versus lnI'o for three temperatures
[Tjtro~ 1/(Xo+1)=0.3, 0.5, 0.7] are summarized in
Table I. The linear correlation coeScient, 8, shows that
the relation is indeed hnear, and the slopes have excellent
agreement with Eq. (A15).
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