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Directional solidification in the presence of an impurity may be described by a set of impurity-
concentration and thermal-diffusion equations coupled at a free boundary. Small deviations of the
interface from planarity can be described by a single fourth-order equation. This equation is de-
rived by a long-wavelength, small-amplitude expansion in the limit of a small distribution
coefficient. We present an alternative asymptotic approach that isolates and preserves the crucially
important nonlinearities in their original form, and thus preserves the proper behavior at large am-
plitudes during pattern formation. The resulting evolution equation is in better agreement with the
physical phenomena of front destabilization and droplet creation than are previously presented
models. The formation of different solidification patterns is numerically elucidated.

I. INTRODUCTION
AND STATEMENT OF THE PROBLEM

The solidification front of a dilute binary alloy is sensi-
tive to the delicate balance between competing nonlinear
processes. In deriving equations that describe the evolu-
tion of the front, it is essential to properly preserve these
nonlinearities. The amplitude equation derived using
standard asymptotic methods, such as in Ref. 1, predicts
the solution to blow up within a finite time. Generally
speaking, the exact form and nature of the blowup—and
in fact, whether or not the solution blows up at all—can
be highly dependent on how the nonlinearities are ap-
proximated by the asymptotic expansion.

To better model the interface, rather than go to a more
complex physical model, we developed a refined deriva-
tion that preserves the crucial nonlinearities of the full
equations and thus overcomes the major difficulty of Ref.
1. The derivation will be outlined in Sec. II, followed by
numerical studies in Sec. III and a discussion of the re-
sults in Sec. IV. We now give a brief description of the
solidification problem.

Directional solidification is a process in which an alloy
is transported with a fixed velocity ¥ through an exter-
nally imposed temperature gradient. This process has
many metallurgical applications, including zone
refinement. Repeated directional solidification of a dilute
binary alloy (the minor phase here is the impurity) gradu-
ally reduces the amount of impurity in the alloy. This
occurs primarily because K, the segregation coefficient
(defined as the ratio of the impurity concentration on the
solid side to the impurity concentration on the liquid side
of a planar solid-liquid interface at thermodynamic equi-
librium), is frequently much less than 1.

Written in terms of the moving coordinate frame
2=%,4— V1, and using the diffusion coefficient D of the
impurity in the solute to nondimensionalize the problem,
the equations for the impurity concentration and the
temperature profiles in terms of the spatial var-
iables (x,y,z)=(D/V)(X,¥,2) and the time variable
t =DV ~ % are (Refs. 2-4)

AC+C,—C,=0, z>9¢ (1a)
AT =0, z>9¢ (1b)
AT=0, z<v¢. (1c)

On the surface z = ¥(x,¢) we also have the conditions

T=14MC +yx=T, (1d)
R(n-VT)—(n-VT)=FV, , (le)
n-VC=(K-1)CV, , (1)

where « is the curvature, n is the unit vector normal to
the interface, and ¥, is the normal component of the ve-
locity of the interface. Here ¢(x,?) denotes the location
of the liquid-solid interface, which will be assumed here
to be sharp. The liquid (solid) side of the interface will be
located at z > ¥ (z <¢). The concentration of the impuri-
ty C(x,t) has been normalized to be unity at the liquid
side of the interface. The temperature T (x,t) [T(x,t)],
at the liquid (solid) side of the interface has been normal-
ized so that the melting temperature at a planar interface
with no impurity will be unity.

Here M =mC* /T, is the slope of the liquidus line on
the phase diagram, T, is the melting temperature (in kel-
vin) of the pure solvent, and C* is the solvent concentra-
tion in the liquid at the interface when the interface is
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planar. If we limit ourselves to supersaturated solutions,
then we may assume that m (and hence, M) is negative.
Also, y =TV /D, where T is the capillary constant, and
K (K, ) is the thermal conductivity of the solid (liquid),
F =DL /K; Ty, where L is the latent heat of fusion per
unit volume, and R =K /K;. In obtaining Egs.
(1a)—(1f), we have assumed that the thermal diffusivities,
Dg and D, are much larger than the diffusion coefficient
of the solution.?

Note that Eqgs. (1) admit the following stationary pla-
nar interface:

T¢=1+M 4Gz , (2a)
T¢=1+M +Gz/R , (2b)
Cé=K +(1—-K)e %, (2¢)

where G is arbitrary and corresponds to the slope of an
externally imposed temperature profile. We will assume
that far from the interface the temperature and concen-
tration profiles are not influenced by the deviations of the
interface from planarity. Hence, we impose the far field
conditions

C(x,t)—>C%z), T(x,t)>T%z), z— (2d)

T(x,t)-—»Te(z), Z—>— o0 . (2e)

In assuming this set of equations to model the behavior
of a dilute binary alloy, we have neglected the coupling of
these equations to an underlying hydrodynamic field.
Likewise, we have neglected the possibility of deviations
from local thermal equilibrium along the solidification
front as well as the possibility of nonisotropic attachment
kinetics. These other effects have recently been taken
into account elsewhere.’~7 Our goal here is to study a
simple system that is nevertheless capable of conveying
the crucial features of a typical solidification front. For
the richness of phenomena contained in this set of equa-
tions see, for example, the numerical calculations of
Brown®~!! et al.

If the solid-liquid interface is planar during directional
solidification, even if impurities still remain in the result-
ing solid, these impurities will be uniformly distributed.
If the interface deviates strongly from planarity, then the
resulting solid may contain bands of impurity zones.
These impurity striations may reduce the strength or oth-
erwise alter the properties of the resulting solid. Thus, in
applications, it is important to be able to control and un-
derstand the behavior of the solid-liquid interface, ¥(x,t).

Several authors (Refs. 1, 5-7, 12, and 13) have used
asymptotic methods to derive a single evolution equation
for ¢(x,t)=1(x,t)/€ from the full set of Egs. (1)
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Here € is a dimensionless scaling parameter. The basis
for these derivations has been the isolation of certain pa-
rameter regimes where the long-wavelength instability
dominates and enables an effective separation of scales.
This occurs when the deviations vary slower in the direc-
tion parallel to the interface than in the direction normal
to the interface. In particular, such a separation of scales
is possible if K << 1 and if L << 1 (Refs. 1 and 12).

The solutions of Eq. (3) apparently either decay to zero
or blow up in finite time. Neither behavior approximates
well or corresponds closely with the patterns that have
been observed experimentally and numerically [within
the context of the full set of Egs. (1a)-(1f)]. It is the
inadequacy of Eq. (3) to describe the phenomena con-
tained in the equations from which it was derived that
motivated us to look for an alternative asymptotic ap-
proach, which will be described next.

II. DERIVATION

Our goal is to isolate and maintain the underlying non-
linearities that are crucial to the asymptotic evolution in
our equation. The boundary condition (1d) is a nonlinear
function of the curvature. If the boundary condition in
Egs. (1e) and (1f) are multiplied by the metric, they con-
tain only polynomial nonlinearities. These boundary con-
ditions are prescribed at a free interface, which is general
is also nonlinear. It is possible to highlight this source of
nonlinearity by employing curvilinear coordinates to
“flatten out” the interface.

Similarly, to Ref. 1 we make the following simplifying
assumptions: (1) the system is two dimensional, d/3dy =0,
the interface is single valued as a function of x, and
Y=1(x,t); and (2) F=0 and R =1. (Succinonitrile
should satisfy this last assumption.)!* The last
simplification has the advantage that the stationary pla-
nar solutions Eqgs. (2b) and (2c) satisfy Egs. (1a)-(1f) and
Eqgs. (2d) and (2e), irrespective of the location of the inter-
face. This enables us to solve the remainder of the equa-
tions for C(x,z,t) with the temperature profiles given by
their stationary planar forms.

Under these assumptions, C(x,z,t) satisfies

AC+C,—C,=0, z>¢ (4a)
1=g¢+C—Bk, z=9¢ (4b)
n-VC=(K-1)CV,, z=1¢ (4¢)
C—Ciz), z—>w , (4d)

where g =—G/M and B=—vy/M, and where C¢(z)
represents the planar profile [see Eq. (2)]. In terms of

curvilinear coordinates, Eqgs. (4a) and (4c) become
¢t=(_¢+%¢2)xx —Bbrxxx — Ko . Q) [z—z—¥(x,1)]
|
Cxx+(1+¢§)Cu“wxxcz—2¢xcxz+cz_ct+¢tCz=0’ z>0 (5a)
n-VC+———£———Cz=(K—1)CVn, z=0. (5b)

(14+y2)'?
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Noting that

n— ""'l’x 1
(1+'!’)2t)|/2’ (l+¢i)l/2

and V ____ﬂ_.
=g

then rewriting Egs. (5a) and (5b) in terms of ¢ =C — C*(z) [where C*=K +(1—K )e ~*~¥] yields

Cxx +(1+¢J2t )sz +cz(1_¢xx +¢t)—2¢xcxz_cl=0’ z>0

0=gy¥+c+(1—K)e ¥—1)—Bk, z=0

0=v,c, —(1—Y2)c, +(K —De(1+4,)+(K —1)(1—e~

c—0, z=ow .

All the nonlinearities in the above equations are clearly
polynomial, except for exp( —) and «.

We now employ the scaling assumptions used in Ref. 1
and assume that

g=g.(l1—€), K=€K ,

2%, t=¢€*, =z .

X =¢
This choice of scalings corresponds to the long-
wavelength instability that occurs just below the limit of
absolute stability.! We formally expand in €,

C___c(0)+€c(l)+62c(2)+ S
lll=€!f}(])+€zt/1(2)+ -
e—¢=F(O)+6F(l)+62F(2)... ,

(1) 2

k=k'"+ eV 4P - .

Note that from the scaling assumptions on ¥ and X, it
follows that k'®’=x'"=0. At this point our approach de-
viates from the standard expansion in that we shall main-
tain the distinguishing F*) — ¥ notation. This will allow
us to later restore the original e “¥-« dependence in the
O (€®) evolution equation. This will be achieved by con-
sidering the highest-order terms F? and «'?, not as
third-order terms in an infinite expansion, but as a sum of
the whole tail. For instance, F'?’ will be defined as

FP=e e ¥—F 9 _eFV). @)

In standard asymptotic expansion, a limiting, e >0+,
operation is taken in Ref. 7 and eliminates higher-order
terms. In this instance, it is the preservation of this tail
that allows us to derive an expansion valid for large am-
plitudes.

In what follows, we drop the bar notation over the
scaled variables. From the O(1) equations, it follows
that ¢ =0.

The solution of the O (€) equations,

e ieV=0, z>0 (8a)
g ¥V +c V4 FV=0, z=0, (8b)
eVyeV=0, z=0 (8c)
V=0, z=w (8d)

yields
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(6a)
(6b)
N+ (K —1D[K+(1—K)e Y|y, z=0 (6¢)
(6d)
I
W= _(FV g geye—2 .
The solution of the O(€?) equations,

e +eF+cP=0, z>0 (%a)
gV —g 'V +c P+ FPD_Be¥=0, z=0, (9b)
P +c¥=0, z=0 (9¢)
c?=0, z=00 (9d)

yields
(FD4g V) =0
and
P =(—FP 4 B® _g y¥ 4 g Ve~ .
Requiring the solution to be bounded as x — «o yields
FO4g oV=f(1) .

Without loss of generality, we may assume that
FV=_ ¢V yielding g, =1, f(t)=0, and ¢'"'=0.
The solution of the O(e®) equations

(2)

et +er +e’'=0, z>0 (10a)
¢(3)_¢(2)+c(3)+F(3)_KF(1)____BK(3)=0’ z2=0 (10b)
Ve —KFVyiV=0, z=0 (10c)
c¥=0, z=o (10d)

D= (@ >y KFD_F®
+Bc e~ (KF'" —g)ze =% , (11
and the evolution equation
0=9O 4 (—F? 4 B _y@ gV _gFD

as a consistency condition. Note that x>’ does not ap-
pear in Eq. (12), neither is it needed at this level.

At this point we identify F{¥=1, F'"'=_y'V and
k¥ =k /€*. Thus, from Eq. (7) it follows that

(12)

FO=(e V—14ep'V) /€. (13)

Finally, recalling that ¢ =1 /€ and rewriting Eq. (12) as
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$,=€ e ®—1+(1—€ledp—Pk| x—KP+E , (14)
where
k=€, /(1+€¢7)?
and E is a higher-order remainder,
E=—ep?+y2—Ku?),

which henceforth will be ignored. Thus, the evolution of
the interface is governed by

b, =[e e ®—1)+e (1—€)d
—Bo (1+€¢2)2] —K¢ . (15

When the bracketed term in Eq. (15) is expanded in
small ¢, it reduces to Eq. (3) to a leading order. Howev-
er, for large amplitudes the behaviors of Egs. (3) and (15)
are very different. The new exponential term in Eq. (15)
does not qualitatively change the solution’s behavior. It
is the term due to surface tension that introduces a mean-
ingful change in the forming pattern. Indeed replacing
the exponential by its leading approximation

¢l=[_¢+%‘¢2_B¢xx(l+e3¢)zc)_3/2]xx _K¢ (16)

results in solutions with the same qualitative properties as
Eq. (15). Thus, analytical studies of Eq. (16) can be used
to gain insight into the properties of Eq. (15).

II1. NUMERICAL STUDIES

We now present and summarize our numerical studies.
Equations (3) and (15) were solved numerically on [0,27]
with periodic boundary conditions. The spatial deriva-
tives were approximated using the pseudo-spectral fast-
fourier-transform (FFT) method and the equations were
integrated in time using the backward differential formu-
las in the MOL1D package.!* The number of spatial mesh
points was varied between 128 and 512, and the time
truncation error per unit step was varied between 10~¢
and 107!° to ensure the calculated solutions were
sufficiently accurate.

The solutions in Figs. 1-4 show the time evolution of
the initial data

¢(x,0)=A4cosx, —o0 <X <0 . (17)

Figures 1(a) and 1(b) show the evolution for Eq. (3) with
A= —10. Note again that this solution is recovered from
Eq. (14) as e—0+. Note also that as the blowup time
(i.e., the time when the solution explodes) is approached,
the main evolving pulse grows very fast and narrows
down. This is evident in the change of scale from Eqgs.
(la) and (1b) and further growth not shown here. The
amplitude blowup in finite time can be derived through
formal analysis'® and was verified numerically by calcu-
lating the rate of blowup. A similar phenomenon is ob-
served for the side lobes.

In Fig. 2, the evolution of the same initial data as in
Fig. 1 is described, but for Eq. (15) with €é=0.1. Note
that now the process comes to halt at almost one-third
the time corresponding to Fig. 1. This appears to happen
not because of the blowup of the interface, which appears

8 T
L t=0 -
L t=0.003 |
¢
t=0.0034
(a)
-20
(o] X 2w
25 T
~TNYJV | >
t=0 M t=0.0034
¢
r— —
— t=0.00368
(b)
-100 1
[+] X 2mr
FIG. 1. (a) The solution of Eq. (3) with initial data

&(x,0)= —10+cosx. (b) The evolution of the solution in (a) un-
til later times. Note the change in scale.

_8 T
L t=0 i
| t=0.001
" 7]
¢
= —
U—— 1=0.001226
-20 I
o] X 2
FIG. 2. The solution of Eq. (14) with €=0.1 and

¢(x,0)= — 10+ cosx.
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-15 |

FIG. 3.
é(x,0)=cosx.

The solution of Eq. (14) with €=0.1 and

to grow to a finite extent, but rather due to the steepening
of the gradients at the sides of the forming finger. The
number of side lobes is determined by the mean of the ini-
tial data, A in Eq. (17). This mean determines the number
of initially unstable (linear) eigenmodes. Therefore, for a
given A, both the regularized and unregularized equations
will initially develop the same number of side lobes, even
through the subsequent evolution is quite different.

In Fig. 3 we follow the finger formation for A=0 and
€=0.1. Note that the number of side lobes is reduced.
Also, it takes longer for the side walls to become vertical
and for the finger to saturate.

In Fig. 4 we return to A= — 10 but with €e=0.2. Note
that there is the same number of side lobes as in Figs. 1
and 2 but the finger develops much faster.

Thus, Eq. (15) removes the singular growth of the am-
plitude by a weaker singularity, an unbounded growth of
its gradients. This leads to a halt in the amplitude

t=0.0003815

-13.5 |

FIG. 4. The solution
¢(x,0)= — 10+ cosx.

of Eq. (14) with €=0.2 and
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growth at a finite level. It is the unbounded growth of
the gradients that makes the modification due to the ten-
sion far more important than the replacement of the
quadratic term in Eq. (3) by an exponential one. Note
also that close to the gradient’s breakup, the main activi-
ty takes place at the tip of the finger. This is to be con-
trasted with the evolution of Eq. (3) shown in Fig. 1.

IV. CONCLUDING REMARKS

The inability of the amplitude Eq. (3) derived in Ref. 1
to model the observed physical phenomena may be inter-
preted as a sign that the basic physical model used is too
simple to describe these physical phenomena. However,
having clear numerical evidence!®!! showing that this is
not necessarily so, we opted to keep the model but to find
a better asymptotic expansion to describe its dynamics.

The advance made in the present work is the realiza-
tion that the conventional asymptotics, based on a small
expansion amplitude, are inadequate to describe large
amplitude deviation. By properly accounting for the
nonpolynomial, nonlinear terms, we obtained an equation
that does not collapse for large amplitudes. Generally,
this goal may be achieved by replacing a Taylor-type
series expansion by, say, an expansion in elementary or
rational functions. The extra degree of freedom gained in
this approach may be used to impose proper boundedness
on the approximating solution at large amplitude. This
idea was recently introduced in Ref. 17 and used in Ref.
18 where certain functions of operators describing the
discrete vibration of a lattice were approximated by ra-
tional functions of operators. Thus, even if the solution is
not expected to be of great precision at large amplitudes,
the introduced regularizing procedure enables the dy-
namics to survive these high peaks of the solution.

Because of the relative simplicity of the present prob-
lem, we were able to retain the crucial nonlinearities that
enter the problem in their original form and monitor
their action at a given asymptotic level. Thus, while
preserving the asymptotic expansion to a given order, we
avoided a direct amplitude expansion of these nonlineari-
ties. As a result, for small amplitude solutions, Egs. (3a)
and (15) are equivalent up to the third order; for large
amplitude solutions, the nonlinearities (kept in their orig-
inal form) provide the stabilizing mechanism.

In the numerical computations of Brown et al. (Ref.
10) on the full system of equations, verticality of the walls
of the fingers of impurity was also quoted as being re-
sponsible for the breakdown of their approach. Notably,
this difficulty still occurred when diffusion of the impuri-
ty in the solid was incorporated in their model. They
concluded that the breakdown occurred because the re-
quirement that the interface remain single-valued,
z =¢(x,1), was overly restrictive.'!

This type of breakdown also occurs in the closely con-
nected droplet formation problem where the droplets
cannot form at the tip of the fingers while the fingers are
constrained to remain single-valued. Equation (15) fol-
lows the evolution of the interface up to the moment of
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walls formation at which the breakdown of the gradients
signals a loss of single valuedness. Up to this moment,
Eq. (15) describes the evolution of the interface, but
beyond it, a different approach (such as a parametric for-
mulation) must be used.

The approach described here can also be applied to
other problems where a direct amplitude expansion col-
lapses. From this point of view, the present problem
should be viewed as a pedagogical example.
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