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We study the influence of quenched random fields on the ground-state properties of a Ginzburg-
Landau-Wilson model with a continuous set of energy minima corresponding to modulated phases
with a fundamental wave vector on a ring embedded in d-dimensional reciprocal space. Thus, at
low temperatures and in the absence of random fields, there is both orientational and translational
order. Arbitrarily weak random-field breaks translational, i.e., long-range modulated order for
d g4. 5. However, for d gd, for some d, long-range orientational order is also unstable. We ar-

gue that d «3. Therefore, in threeQimensional realizations of the model the modulated state
breaks into domains having random orientations of their local wave-vectors. Some magnetic sys-

tems favoring modulated order can be approximately described by models with a continuous set of
energy minima, e.g., magnetic superconductors, such as Erkh484, HoMo6S8, and HoMo6Se& ~ How-

ever, spatial anisotropy, due to a crystal lattice, breaks the degeneracy of a continuous energy
minimum down to a discrete set of energy minima in q space. Thus, the stability of the orientational
order is determined by a competition, which is studied here, between random fields and spatial an-

isotropy. %'e speculate that orientationally disordered structures, observed in the coexistence phase
of magnetic superconductors, which are composed of domains with difFerent orientations of local
wave vectors, could be a random-field efFect.

I. INTRODUCTION

Inhomogeneously ordered states, such as mass- and
charge-density waves or modulated spin states, break a
continuous symmetry of the system-translational symme-
try. In 30, arbitrarily weak random fields (RF) destroy
long-range modulated order. ' This is well-known not
only to physicists studying modulated structures but also
to those interested in RF problems since incommensurate
charge density wave systems had ofFered an experimental
con6rmation that an RF in 3D prevents a continuous
symmetry froID being broken. ' In fact, a modulated
structure exhibiting large, but Snite translational coher-
ence length, can be appropriately interpreted by an RF
model.

In this paper we study the inhuence of quenched ran-
doID Selds on systeIDS which favor a IDodulated ordeI at
one of a continuum of nonzero wave vectors. Some of
these systems are described by Ginzburg-Landau-Wilson
(GI.W) Hamiltonians with quadratic terms (i.e., inverse
susceptibilities) which attain their minimum value not at
the point q=O, but on a surface or line in tI space. The
other systems of this kind, commonly occurring in
liquid-crystal physics, are usually described by de
Gennes-type Hamiltonians. Nevertheless, for symme-
try reasons, they share with the previously mentioned
models, at least, the same spin wave description at low

temperatures. ' In both cases, at low temperatures an
inhomogeneous order of the form (M(x)) 0: cos(qo x

+qr ) occurs, with M(x } being a smectic density wave,
modulated spin moment, etc. , and with qo belonging
to the continuous energy minimum. So, the phase (p and
the wave vector qo are selected, respectively, by spontane-
ous breaking of translational and orientational sym-
metries.

The particular model we consider here is the ring mod-
el in which the energy minimum is a ring embedded in d
dimensional q space. Our most striking prediction is
that orientational order of the low-temperature phase, is
unstable against an arbitrarily weak RF in 3D. The
modulated ground state of the system breaks up into
domains with random orientations of their local wave
vectors so that there is no preferred direction at low tem-
peratures when an arbitrarily weak RF is present in 3D.
More precisely, for d g 4. S, only translational order is un-
stable. But, for d ~d', plausible arguments can be given
(Secs. II and III) that long range orientational order is
also unstable due to RF. &e argue that d' ~ 3.

An interesting application of these ideas is to magnetic
systems such as magnetic superconductors, which can be
approximately modeled by GL% models of the type con-
sidered here (Sec. IV). Indeed, the disordered state we
propose here exhibits some of the phenomenological
features, such as translational incoherence of the modu-
lated structure (reflected also in suppression of higher or-
der harmonics) and the existence of orientationally disor-
dered structure composed of domains with dNerent
orientations of local wave vectors observed in the coex-
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istence phase of these materials. ' However, in realis-
tic magnetic materials, spatial anisotropy due to the crys-
tal lattice breaks the energy degeneracy of the continuous
energy minimum set and the actual state is determined by
a competition between the quenched disorder and the an-
isotropy. %e study this competition throughout the pa-
per.

The outline of the paper is as follows: the GLW mod-
el, studied at low temperatures throughout the paper is
defined in Sec. II A, and the spin-wave {SW)model is con-
structed. The SW model is studied perturbatively in Secs.
IIB and IIC and possible limitations of a perturbative
approach are discussed in Sec. II D. The main outcome
of the SW theory is that d'~3, e.g., d'=3. 5 in the
framework of harmonic SW theory (Sec. IIB), or that
4& d* & 3, 5, as argued in Sec. II C. Topological defects,
e.g., dislocations loops, neglected by the SW approach,
are discussed qualitatively in See. III and in the
Appendix —in these sections we argue that d' =4. Com-
petition between random 6elds and spatial anisotropies is
discussed throughout Secs. II and III. %e argue that
suSciently weak spatial anisotropy, for a given strength
of RF, does not restore long-range orientational order.
Summary as well as a discussion of application of these
ideas to magnetic systems is discussed in Sec. IV.

II. MODEI. WND Spn-W~VK rHKORV

A. Spin-wave model

As announced in the Introduction, we shall focus our
considerations on low temperature properties of the ring
model ' in the presence of random fields (RF). This
GLW model has, in d dimensions, the form

H(M)= f " q, —,'K, (q)
~
M(q)

~

'

dx Mx + "x xMx (2.1)

K,(q)=a(q', +q', r)'+t g q„'—, (2.2)

h(x) is assumed to be Gaussian RF, with [h(x)]=0,
[h(x)h(y)]=Ad (x —y); RF is coupled to one com-
ponent order parameter M(x) (we shall use angular
brackets to denote thermal averages, and square brackets
for averages over RF. However, all the results are exhib-
ited in zero-temperature limit. ) As usual f (M)
=u2M +u4M + . - - . The most important difkrence
between (2.1) and the standard ferromagnetic GLW mod-
el is momentum dependence of the inverse susceptibility
KI(q), Eq. {2.2), which attains its minimum value not at

q =0, but on a ring in q space:

temperatures. Also, the phase y is not 6xed for an in-
commensurate structure, as the one favored by (2.1).
Difkrent choices of y produce the same state, only
translated in real space —so the translational symmetry is
also broken. In 3D pure ring model (b =0), both transla-
tional, in y, and orientational orders, in qo, are stable
with respect to thermal Auctuations at low enough tem-
peratures.

In real magnetic systems such as magnetic supercon-
ductors an underlying crystal lattice breaks the orienta-
tional energy degeneracy of the ring (2.3) so that the wave
vector of the condensate qo belongs to a discrete set of n

points in q space (Fig. 1). For example, n=4, for
ErRh484 (Ref. 9), and n =6 for HoMo6Ss (Refs. 10 and
11),and HOMO6SCS (Ref. 12). So, the terms of the form

K„(q)~ Re{q, +iqI )", (2.2')

g f ddxM (x)M~(x),
2(ks T)

(2.4)

is obtained from (2.1) [p is replica index, p =1,2, . . . , m;
Ho(M) in (2.4) is the nonrandom part of (2.1), and, as
usual, the limit m ~0 gives all relevant information
about the original RF problem (2.1)]. We are primarily
interested in the limit of small temperature T in (2.4), i.e.,
in the ground-state properties of the system, which are
nontrivial in the presence of RF. ' At low T an order of
the form [{M(x))]cccos(qox+y) is expected. There-
fore, small energy Suctuations should be appropriately
described by inserting the spin wave ansatz M~
=Mcos[S&(x)] in (2.4). ' Thus we obtain an efFective
S%' Hamiltoman

(b)

i =( —1)', should be added to Ki(q), (2.2), in order to
account for this spatial anisotropy. Throughout the pa-
per we shall consider also effects of these spatial anisotro-
pies on the physics of the isotropic model (2.1) and (2.2).

In this section we shall construct a spin-wave (SW)
model for the random field problem Eq. (2.1). Prelimi-
nary, we express the problem in terms of replicas. After
a standard development, the efFective replica field Hamil-
tonian H, z.,

&.I
+HO(M, )

8 8 p

q I +q2 =&=/ 0, gk =O, k =3,4, . . .,d
2 2 2 (2.3)

At low temperatures and for zero RF, such a model
favors a linearly polarized modulated state {M(x ) )
~ cos(qo. x+q ). The only restriction on qo is that it be-
lollg to thc I'lllg (2.3). Howcvcr, it s orlcIltatloll Is Ilot
6xed—so the orientational symmetry is broken at low

FIG. 1. In magnetic systems, such as magnetic superconduc-
tors, spatial anisotropy breaks energy degeneracy of the ring
(dashed), so that energy minima occur on a discrete set of n

points in q space, (a} n =4, for ErRh484, (b) n =6, for HoMo6S8
and HoMo6Se&.
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d x cos(S —S ),i2 I' I
I ~J

(2.5a)

with a, =a2=a, t=kiiT/2M and g=b/16M, and for
the moment we set the anisotropy (2.2') zero. Within SW
theory, the phases S in (2.5a) are treated as continuous
real fields —oo ~s (x) & 00. Thus, the topological de-

6fects, e.g., dislocation loops in 30, are neglected by S%'
approach. Dislocations should not qualitatively alter the
physics at low temperatures if they are bound in a weak
RF. It is frequently and, presumably incorrectly, as-
sumed that dislocations are bound in similar RF prob-
lems, e.g., in RF XF Inodel even below the lower critical
dimension being four. '

%e treat the question of topological defects in Sec. III.
However, we note that dislocation loops are almost cer-
tainly unbound in the ground state, see Sec. III—so, the
SW theory is only a crude preliminary step in under-
standing the problem. Nevertheless, even within SW
theory, some interesting features of the present problem
become manifest, e.g., instability of the orientational or-
der in 30 due to RF. Moreover, since dislocations al-
ways tend to decrease order, it seems clear on physical
grounds that the S% estimate of the lower critical dimen-
sion of the orientational order d' should be a lower
bound (see Sec. III). We present the details of SW theory
(Sec. II 8 and II C) also because they are the unique quan-

1 —
—,'(Sp-S .) (2.5b)

However, metastable states of the S%' action, which are
not properly accounted for by a perturbative approach,
may significantly afFect the details of the physics. ' " We
discuss this problem in Sec. II D.

In the next section we present predictions of harmonic
approximation to the S%' theory, which is obtained by
substituting S~(x)=qox, +y~(x) in (2.5a) and neglecting
nonlinear gradient terms in y, such as ( aq&/ax 2 ) and
(ag/ax, )(aq/ax 2 ) . The result is

titative results which we could construct to estimate
whether the physics of the isotropic model (2.1) and (2.2)
is relevant for understanding properties of realistic, spa-
tially anisotropic, magnetic systems, such as magnetic su-
perconductors (Sec. IV). SW calculations of this work
are performed within SW perturbation theory. ' ' Such
calculations are greatly simplified in the zero temperature
( T =0) limit, since, to all orders in zero temperature per-
turbation theory, one can replace RF term cos(S -S ),
appearing in Eq. (2.5a) by a much simpler harmonic RF
term'

'=—y fd"x 4a, r ' +a, I +,' +b ykaT 2r xi axi axe k —i axk

' 2

—g g f ddx cos(pp gp ) . (2—.6)

The most prominent property of SW theory (2.6) is the
existence of a single soft direction 2, resulting from the
orientational symmetry of the problem, i.e., the fact that
the choice of the preferred direction 1 is quite arbitrary. '

As mentioned in the introduction, because of the same
reason, a number of liquid crystal systems has, at low
temperatures, the same SW theory as the magnetic model
(2.1). For example, the DeGennes' type model for pla-
nar nematics of Nelson and Halsey' which is, roughly, of
the form

f d x[
~
(V iqoN)g —

~

~

+WN)+ U(
~ f ~

)

l

U(
)
4

(
) contains, as usual, a nonlinear term stabilizing

the smectic phase at low temperatures T. %e added a
random field coupled to the smectic density wave. At
low-temperatures smectic order at wave vector qo can be
expected (

~ qo ~
=qo and qo belongs to the plane 1-2) and

the ansatz

%=+oexp[iqox, +i'(x)]
is appropriate for studying Auctuations. After inserting
this ansatz into (2.7) and integrating out of the action
nematic fiuctuations, a spin wave theory of the form (2.6)
is obtained. The form of dislocation-mediated melting
theory is the same for all pure systems with a single soft
direction, and this fact should be maintained in the pres-
ence of weak RF. %'e shall use this fact in See. III to ar-
gue about dis1ocat ion efkc ts.

+h(x) Ref(x)] . (2.7)
B. Harmonic spin-wave theory

g is a complex translational (i.e., smectic) order parame-
ter, N is planar orientational (i.e., nematic) order parame-
ter, confined to the plane 1 —2, i.e., N =(cosO, sinO,
0, . . . , 0„), &(N) is a Frank-type Hamiltonian' and

Let us consider the harmonic SW theory (2.6), with the
replacement (2.5b). A simple calculation gives

(y (q)lp ( —q))=&6 (q)5 +2g[G (q)]
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with

d

6 '(q)=4a, rq, +a q +b g q2 . (2.9}

x e(a /a )1/(9 —2d)

along the soft direction 2, or

0) =(a i «2)'"qo(z

(2.10)

(2.11)

along the wave vector of the modulated state, i.e., direc-
tion 1. The length x ', in (2.10), is

(d 7)/2
' —1/(9 —2d)

—1/(9 —2d)

p 1/2y (d —2)/2 (2.12}

(x' is related to nonlinear effects, Sec. IIC). From
(2. 10)-(2.12) we see that the domains are highly aniso-
tropic when the disorder g is weak:

' 1/2 ' ] ' 2
—)/(4. 5 —d)kg

a2 Ao
(2.13)

For 1&4.5 the average ([q)~(x)] } diverges in the
thermodynamic hrnit, indicating, by a well-known argu-
ment of Imry and Ma, ' the absence of magnetic long-
range order, even at zero temperature (r =0}. So, for
1 &4.5„large phase fluctuations split the modulated
structure into translationally incoherent domains.
As usual, ' ' the size of the domains can be esti-
mated by calculating spin-spin correlation function
[(~(x)M(y) }], which should be short ranged for
1&4.5. This calculation is simple within harmonic
theory (2.8), and gives the typical size of a domain, for
d ~4.5

K(x)=[(N(x).N(0) }]. (2.15}

This calculation is easy within the harmonic theory (2.8)
and the approximation (2.14).' For 1=3.5 one obtains
nonuniversal behavior,

FIG. 2. (aII For d ~4.5 long-range magnetic, i.e., translation-
al order is destroyed by S% 6uctuations. The system is still
translationally coherent inside of amsotropic domains of size g„
along the soft, and g„along the hard direction. For 1
gd &4.5 (d =3.5 in harmonic S% theory), the directions of
local wave vectors (specilted by N) are correlated throughout
the sample, and there is long-range orientational order. 4',b) For
d &d there is no long-range orientational order. The direc-
tions of local wave vectors are correlated only up to distance of
order f„,the orientational correlation length.

where A,o is the wavelength of the modulated structure,
)(,o=2m/qo [Fig. 2(a)].

For 1 &3.5 another, somewhat unusual divergence
occurs. Namely, within the harmonic theory (2.8), the
average

K(x)~ ~x) ", M ~g,
while for 1 & 3.5

K(x)= exp( —
~
x/g, „~

' '),
for x lying in x]-x2 plane, ' with

g (g /g )1/(3. 5 —d) —1/2(3. 5 —d)

(2.16)

(2.17)

(2.18)

diverges in the thermodynamic limit. Since the angle
8(x) defining local orientation of the modulated struc-
ture, i.e., the local orientation N(x}=[cosa(x), sin8(x)]
of the wave vector ((}S/(}x,, BS/(}X2 ) [Fig. 2(a)] is

BS
BX1

f}(x }=are tan
as

q(), (2.14)
(}q)

(}X2 (}X2

this last divergence indicates instability of the orienta-
tional order to an arbitrarily weak random Seld. One
might expect the local orientation N(x) of the structure
to vary randomly over the system so that there is no pre-
ferred direction in the presence of RF for d &3.5, and
particularly in 3D [Fig. 2(b}]. So, even in the ground
state, the modulated structure is broken into domains
with random orientations of local wave vectors as depict-
ed in Fig. 2(b). The size of a domain inside of which the

system is locally orientationally ordered can be estimated
by calculating orientational correlation function:

being the orientational correlation length. So, the follow-
ing picture depicted in Fig. 2(b) emerges: short-range
translational (e.g. , modulated magnetic} order exists in-
side of domains characterized by g) and (2, Eqs.
(2.10)—(2.13). These domains are very anisotropic for
weak RF—by Eq. (2.13)

'2
42

(2.13')
Xo ko

since for magnetic systems a, =a2 [see the line below Eq.
(2.5}]. For example„ for a structure coherent some hun-
dred wavelengths along the local wave-vector (g)/A, o

=100},we have by (2.13'), g2/Ao=10, for the coherence
length in the direction perpendicular to the wavevector
(in x, -x2 plane). At longer scales, spin waves destroy
translational order, so that two neighboring domains,
e.g., A and 8 in Fig. 2(b), are completely out of phase q).
Nevertheless, these two neighboring domains have almost
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the same orientation. However, pairs of dofnains, e.g., A

and C or A and D in Fig. 2(b), which are separated by a
distance bigger than g„, have uncorrelated orientations.
In 3D, we have from (2.18),

2
or 2 (2.18')

so that, for the previous example with gz/A, =10, we have

(„=100(2=100(9,0. So, for this example: (,=100k,O, (z
=10k,O and („=1000AO. This example has been chosen

dehberately, since g, /A. 0=100 could be appropriate for
magnetic superconductors (see Sec. IV}. With a typical
wavelength for these materials A,o= 100 A we have

(i--10~ A, gq=10 A, (,„=10 A

as typical figures for magnetic superconductors, however,
in the absence of spatial anisotropies to be considered
later. In spin systems, such as (2.1), it could be very
di%cult to measure orientational correlations and to
check the harmonic theory prediction (2.17). Neverthe-
less, destruction of the orientational order can easily be
observed in the simplest scattering experiment probing
two-spin correlation function in q space (Fig. 3): Below
and suiciently close to the lower critical dimension of
translational, say modulated, magnetic order, peaks cor-
responding to the modulated state are somewhat smeared
[Fig. 3(a}];however, the orientation of the pair of peaks is
well defined and Axed by spontaneous breaking of orien-
tational symmetry. Below the lower critical dimension
d' of the orientational order (being 3.5, within the har-
monic SW theory), orientational order is destroyed and
the peak is smeared all over the ring, Eq. (2.3), in q space
as shown in Fig. 3(b). The translational coherence length
along the local wave vector g, [see Fig. 2(b)] can be es-
timated experimentally, see Fig. 3(b). Then, (,„can be es-
timated by (2.13') and (2.18'):

' 3/2

ko
(2.18")

As noted above, in magnetic systems it could be very
diIIicult to measure g„directly.

Thus far we have neglected spatial anisotropies of the
form of (2.2'), which break the degeneracy of the continu-
ous energy minimum (2.3), so that condensation occurs
on one of (n/2) pairs of energy minima in q space (Fig.
1). After a development similar to that used to generate
nonlinear SW theory (2.5a), terms of the form (2.2'} pro-
duce SW terms of the form:

as, as,
'"

Re
xi Bx2

(2.20)

and also some terms containing higher order derivatives
of S . Interactions (2.20) can, in principle, be rather
eScient in stabilizing the orientational order. In the
presence of terms (2.20), the harmonic SW propagator
(2.9) is modified to

d

Go '(q)=4a, rqi+a2qz+Aqz+b g qk .
k=3

(2.21)

The term Aq 2 in Eq. (2.21) arises from the term
(Bq/Bxz) which is generated from (2.20) after the shift
S =qoxi+g and neglecting SW nonlinear (in p) terms
(which are discussed later in this section). A is propor-
tional to the strength of the amsotropic terms (2.20) or
(2.2') and direction 1 is chosen along one of (n/2) pre-
ferred directions. So, there are no soft directions in
(2.21}. The anisotropy A provides an efFective cutoff'q„
to long wavelength fluctuations,

Q2qg = Aqg, i.e. , qg =( 3/Qp)2 1/2 (2.22}

which stabilizes the orientational order within the har-
monic approximation (2.8) since, with Go(q) as in (2.21),
one obtains from (2.14) for 3.5 ~ d ~ 2

' 2(3.5 —d)

g2 g2
OI'

(2.23)

FIG. 3. Typical scattering patterns in q space (in the absence
of spatial anisotropies). (a) For 4.5 & d ~ d only translational
order is broken by a weak RF—the direction of the pair of
smeared peaks at +qo (corresponding to the modulated struc-
ture) is chosen by spontaneous breaking of the orientational
symmetry. (b) For d & d orientational order is unstable. The
peak of (a) is smeared all over the ring.

g„ is the previously introduced orientational correlation
length in the absence of the anisotropy —in (2.23) it serves
as a measure of the strength of RF [see Eq. (2.18)]. The
anisotropy length q„' measures the strength of spatial
anisotropy [see Eq. (2.22}]. So, the local orientational
fluctuations of 8, Eq. (2.14), are finite for a nonzero q„
and the orientational order is preserved at least within
the harmonic S% theory. Then, the scattering pattern in
Fig. 4(a) can be expected: a strong pair of peaks having
angular spread 8o, Eq. (2.23), along the ring (2.3). Fluc-
tuations which are not well described by the harmonic
SW theory can produce (n —2) weaker peaks at other
minima —they are also exhibited in Fig. 4(a). These other
peaks correspond to domains in the sample having
di5'erent directions from the one taken by the strongest
peak. Nevertheless, the system is orientationally ordered.

Can this picture be maintained for arbitrarily small
spatial anisotropy A7 In the absence of the anisotropy
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A &Ac A&Ac

q&

al ffuctuations and, actually, allow for the transition to
the orientationally disordered phase if the orientational
ffuctuations predicted by the harmonic theory, Eq. (2.23),
are large enough. In the absence of these nonlinearities
the harmonic propagator (2.21) stabilizes some orienta-
tional order by 6xing the orientational correlation func-
tion (2.15) at large distances to some finite value of order

E( oo)= exp( —8o)= exp( —
~
q„'/g„~ ' ') . (2.24)

However, because of the nonlinearities, a transition to an
orientationally disordered phase is expected when
80——[(8 }]'~2= 2m /n, so that by Eq. (2.23},

FIG. 4. Scattering patterns in q-space of a 3D magnetic sys-

tem with sixfold spatial anisotropy (the q &-q2 plane is exhibited).
(a) %'hen the anisotropy A is stronger than the critical value

A„ the scattering is dominated by bvo strong peaks (double
hatched} having angular spread 80, see Eq. (2.23). Weaker peaks
can be expected to be observed at other mimma if A g A, . (b)
%'hen A is somewhat smaller than A„all peaks are equally

strong and the orientational order is destroyed. The transition
at A = A, could be the Srst order.

and for d &3.5, we predicted instability of the orienta-
tional order. It is unlikely that arbitrarily weak spatial
anisotropy would restore the orientational order for
n & 2: switching on a small anisotropy would somewhat
reorientate domains in Fig. 2(b} so as to have their direc-
tions more aligned to all of (n/2)&1 preferred direc-
tions. For example, let a domain I' of size g „have
orientation N in the absence of spatial anisotropy. After
switching on a weak anisotropy, I' will take an orienta-
tion N' somewhat closer to the nearest of the n/2& 1

preferred directions. Obviously, switching on a weak an-
isotropy would turn the initial collection of randomly
orientated domains (orientated uniformly in all direc-
tions) into another collection of randomly orientated
domains (orientated in all directions, but slightly nonuni-
formly). So, sufficiently weak n-fold spatial anisotropy
would not restore the orientational order for n & 2, and a
scattering pattern with n peaks of the same intensity
should be observed [Fig. 4(b)]. However, strong anisotro-

py restores the orientational order and a phase transition
at some critical value of the anisotropy A, should exist.
A detailed study of this transition is beyond the scope of
this paper. 2' However, an estimate of the critical value of
the anisotropy can be obtained from (2.23) by imposing
80=2m/n: if 80, Eq. (2.23), is larger than 2m In, SW ffuc-
tuations would simply "melt" the orientationally ordered
state. 80, being the angular spread of orientational ffuc-
tuations is unlikely to be larger than the angle between
two neighboring preferred directions being 2m/n. For
such large orientational ffuctuations, with 80=(2m/n),
nonlinearities of the anisotropic part of SW action (2.20)
become important. These nonlinearities had been
neglected in deriving the harmonic SW propagator (2.21),
which was used to estimate orientational fluctuations in
the presence of the anisotropy (2.23). However, it is rath-
er obvious from the form of full nonlinear anisotropic S%'
terms (2.20) that these nonlinearities enhance orientation-

2n /n =(q„'/g„) ', n & 4 (2.25)

1 =q„'/g„. (2.27)

Equation (2.27) is appropriate for the weak RF (large g,„)
and small anisotropy (large q„'}case. For systems with

g„«qz '
( A « A, ) spatial anisotropy is quite

uninfluential —it becomes important at distances x =q„
where the orientational correlation function (2.17) is al-
ready small and, by the previous arguments, no orienta-
tional order will be restored if n & 2. So, for q„' »g„,
the system is in the orientationally disordered phase of
the isotropic model; however, local orientations of wave
vectors of the domains (of size g„}are somewhat rear-
ranged due to the anisotropy, as explained before. For
q„'«g„(A »A, ) the anisotropy dominates and the
orientational order is restored. Both situations could be
observed in scattering patterns, Fig. 4.

The reasoning leading to the condition Eq. (2.25), to be
satisfied at the transition, is similar to the classical pic-
ture of crystal melting, according to which the melting
transition is driven when atomic displacements due to
thermal phonons [corresponding to orientational ffuctua-
tions due to RF, Eq. (2.23)] become comparable to the
crystal lattice constant (corresponding to the angle be-
tween neighboring preferred directions 2m/n). In the
case of crystal melting such estimates (known as Linde-
man criterion) usually underestimate thermal ffuctua-
tions —atomic thermal fluctuations, as estimated from
harmonic phonon theory, may be much smaller than the
lattice constant at the actual Srst order melting transition
temperature. As explained before, in our case harmonic
S% theory also underestimates the disordering e8'ect of
RF—so it may happen that 80, Eq. (2.23), is much small-
er than 2m/n at the transition. However, in Sec. IV we
shall use Eq. (2.27} obtatned wlth111 a harmon1c SW

at the transition. The transition could be of the second
order [pattern in Fig. 4(a) may continuously turn into the
pattern in Fig. 4(b) at the transition point]; however, the
line of arguments presented here may suggest that the
transition is ffrst order. ' From Eqs. (2.18), (2.22), (2.23),
and (2.25) we obtain the relation between critical value of
the anisotropy A, and the strength of the RF g,

g
1/(3. 5 —d) (2.26)

which should hold for weak RF. For applications to real-
istic system (see Sec. IV}, relation (2.25) is more useful.
After omitting the numerical factor, this relation reads
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theory. In that way we shall not OUerestimute the disor-

dering effect of RF. A second point: the picture of crys-
tal melting solely in terms of phonons is poor, since topo-
logical defects are necessary to describe disordered
phases involved in melting (liquid and cubic hquid crystal
phase). However, in our case all phases involved in the
transition (orientationally ordered and orientationally
disordered one) are characterized by SW fluctuations
which disorder both of them (in the framework of this
section). So, the spin wave scenario for the transition
proposed here is rather appropriate. Ho~ever, the phys-
ics of the transition may be altered if topological defects
are relevant for a complete description of the phases al-
ready disordered by spinwaves (%c. III). Nevertheless
the crude reasoning presented here to argue that
sufficiently weak (i.e., A & A, } n fol-d spatial anisotropy
A, with n &2, does not restore the orientational order
below d* could hold quite generally —such an anisotropy
somewhat reorientates domains without producing long
range orientational order.

In conclusion, in this section we conjectured the ex-
istence of the lower critical dimension of the orientational
order d' of the model in absence of the spatial anisotropy
(within harmonic SW theory d'=3. 5}. For a given
strength of RF, sufficiently weak spatial anisotropy does
not restore the orientational order. We used crude argu-
ments to reach these conclusions —in the remaining part
of this section and in Sec. III we shall try to give some
more solid argument in favor of the same conclusions.

C. Anharmonic eSects

%hat is the nature of the instability of the orientation-
al order conjectured by the simple SW theory of Sec.
II 87 Are the orientational correlations indeed given by
(2.17) at large distances'? The results of Sec. 118 were de-
rived by means of harmonic SW theory based on the
neglect of nonlinear gradient terms. For example, in
deriving (2.9), we had neglected gradient interactions
such as (Bp/Bxz) and (By/Bx, )(By/Bxi) . Even at the
lowest order (beyond the harmonic approximation} of
perturbation theory these terms produce infrared diver-
gent behavior in the isotropic model for d & 4.5.~~ So the
results of the harmonic S% theory are suspect. Note,
however, that there were no problems in evaluating vari-
ous quantities within the harmonic theory, at least for
d 4.5. As usual, this indicates that the physics is not
drastically modified for d &4.5, and that the divergences
may be well controlled by an expansion in @=4.5 —d.
The harmonic axed point, which has been used in the
previous section, is unstable with respect to previously
mentioned nonlinear terms, and the true behavior at large
distances [e.g., along the soft direction, for xi »x ', with
x' given by Eq. (2.12}] is controlled by a non-Gaussian
6xed point. Behavior of this kind has been studied both
in pure and in random systems with soft directions and
a similar study is appropriate for the present problem.
Here we shaH omit technical details and present results
relevant for understanding the orientational order behav-
iol. The most 1ntcrcst1ng predlct1on of this section is that
the decay of orientational correlations is given by an alge-

y( p2 ) =2 —(8/9)(5 —d )+0((5—d )'), (2.28)

a quantity which will be of some interest later. Correla-
tions in the orientationally disordered phase (i.e., for
r & r, ) are easy to calculate at large distances, simply by
setting r &0 in (2.5a) (since, for all r & r, the long distance
behavior is unique) and omitting nonlinear gradient
terms, which are, in fact, irrelevant [so for a/l r &r, the

(b)

FIG. 5. Schematic RG flow and ground state phase dia-
grams. The parameters exhibited in the 6gure are m ~gr- '

and U ~ r '. (a) 4.5 ~ d & d*; the orientationally ordered state is
the domain attraction of the 6xed point p, . (1) d ~ d* the sys-
tem is orientationally disordered and RG How is away from the
f]lxed point p) .

braic law [Eq. (2.38}, below]. Also, we give a somewhat
different interpretation of the competition between disor-
der and the spatial anisotropy discussed in Sec. II B.

So, the problem at hand is the full nonlinear isotropic
SW theory (for the moment we set the anisotropy zero)
Eqs. (2.5a) and (2.5b) [replacement (2.5b) is assumed, see
Secs. II 8 and IID]. For t=g=0 there are no fluctua-
tions and the behavior is determined simply by minimiz-
ing (2.5a)—there are two phases (a) orientationally or-
dered phase for r & 0; VS =qo, with qo belonging to the
ring (2.3),

~ qii ~

=r'~; (b) orientationally disordered one
for r & 0; VS =0. For r = r, =0, a Lifshitz point with two
soft directions for S% fluctuations occurs. For d ~4.5,
the orientationally ordered phase is in presence of RF, the
domain of attraction of the previously mentioned non-
Gaussian fixed point, which is well controlled for small
@=4.5 —d. We call it p,' [see Fig. 5(a) which exhibits
schematic RG flow and ground state phase diagram].
One can pass from this phase to the orientationally disor-
dered one by crossing the Lifshitz boundary being the at-
traction domain of another 6xed point exhibited in Fig.
5(a)—we call it p2. This Lifshitz-type transition occurs,
in the presence of fluctuations, at positive values of r, i.e.,
r, g 0, instead of being zero as in the mean Aeld theory
(by the way, note that Fig. 5 exhibits interesting region,
with r & 0, favoring within mean-field theory, some orien-
tational order). For d &5, the mean-field theory of the
transition is qualitatively correct, e.g., [(VS ) ] ~ (r

r, ),8 =—,
'—. For d & 5, one obtains from a simple RG

calculation 8 =—,
' —5(5—d)/18+0((5 —d) ) and for

the single relevant eigenvalue at p2
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model (2.5a) has, at large scales, the same asymptotic be-
havior as the RF XY-model spin-wave theory]. In this
way one obtains, for example:

[(VS(x).VS(0))] li~x~" ', (2.29)

for r &r„ i.e., in the orientationally disordered phase.
On the other side, in the orientationally ordered phase we
have, for weak RF:

[&vs(*) vs(0))]=q,' (2.30)

for large x, at least for d &4.5. In this phase scaling of
SW correlations is anisotropic, e.g., within the harmonic
approximation the S% propagator has a single soft direc-
tion, see (2.9). However, as alluded before, gradient non-
linearities modify the large distance behavior for
@=4.5 —d )0, so that at small momenta SW correlations
are given by (2.8), with Go being replaced by G„such
that

G„'(qi ——0, q2, qi=0) ~q~z, q2 &&(x')

Gr (qi& q2 =0& qi=0) q 1 & ql «(+ ) /'qo ~

G. («=0 q2=o qi} lail' »yqi—1

with qi=(q3, q4, . . . , qq) and

a=2+a/3+0(e~), P=4 —4e/3+0(e'},

(2.31)

as can be obtained from calculations carried around p, ', .
These calculations, leading to (2.32), are similar to those
of Feigel'man and Ioffe for a random system with soft
directions. The exponents a and P are related by a scal-
ing relation

5 =P/a+ (6—d )P/2,
being a consequence of the orientational symmetry of the
theory (2.5a) and (2.51). For d & 4.5 the fixed point }u', is
stable —one of the irrelevant eigenvalues is

(2.33)

y(pi ) = —2(P/a —1)= —[2—2m+0(e )], (2.34a)

y(p; }=—2[d —3.5+0(e')], (2.341)

[it corresponds to irrelevant parameter U, see Fig. 5(a)].
%e are now in a position to discuss in more detail the

instability of the orientational order which occurs, within
harmonic SW theory, for d & d', d'=3. 5. The relations
(2.28) and (2.341) were obtained respectively by expan-
sions in (5-d) and (4.5-d). Of course, it is extremely risky
to extrapolate them to, say d =3.5. However, their ten-
tative extrapolation is rather suggestive. So, from (2.34a)
and (2.341) we see that nonlinearities tend to render the
S% spectrum more isotropic, so that at some d=d*
(d'=3. 5)y(}Li', ) goes to zero and a becomes equal to P.
If so, we obtain by (2.33}, a=P=8/(6 —d') to be
satisfied for d =d . With this value of a=P, the average
[& Bq&/Bxz) ) ], evaluated with the renormalized propaga-
tor, outlined in (2.31), diverges logarithmically with the
size of the system, indicating that the situation with a=P
occurs at the same dimension d as the onset of the
orientational order instability. Note that the situation
with a =P is reminiscent of a Lifshitz point behavior with
two soft directions. The single relevant eigenvalue y(pz )

at the Lifshitz point pi is given by (2.28). From this
figure it seems that, at d =3,y(p2 ) goes to zero, indicat-
ing that p, ,

' and pz presumably exchange their stabilities
at some dimension. If so, this dimension should be
identified with previously introduced d*, in which y(p', )

goes to zero. The 6xed points JM& and pz could exchange
their stabilities via merging or, in an exotic manner, via a
fixed line joining p, ', and p2 at d =d* [as suggested by
(2.16)]. Below d* we expect the situation in Fig. 5(b), an
unstable fixed point p&, and the ground state being orien-
tationally disordered, i.e., with [(VS ) ]=0. Of course,
the precise determination of d' is difficult due to stan-
dard uncertainties of an e expansion. However, it seems
clear on physical grounds that fluctuations causing diver-
gent behavior of the perturbation theory, controlled by
the e expansion, can only increase d', i.e., the harmonic
SW estimate d'=3. 5 should be a lower bound. So,
presumably, d') 3.5. Other arguments suggest that
d'&4. For example, to lowest order in perturbation
theory, the critical value r, of r at the Lifshitz transition
is given by

r, -g fd'q(qi+q2}[GLp{q)]', (2.35)

with GL„(q) being the harmonic Lifshitz point propaga-
tor, given roughly by

d

G Lp'(q) 0: (q i +q2 ) + g qk
k=3

(2.36)

3.5&d* &4 (2.37)

is plausible.
%'hat is the nature of orientational correlations below

d*—harmonic SW estimate {2.17) suggests an exponen-
tial decay. For d )d' the two phases are present in the
system, Fig. 5(a): one with long range orientational or-
der, Eq. (2.30), and the other with algebraic decay at the
orientational correlations, Eq. (2.29). For d & d', the en-
tire phase diagram [Fig. 5(b)], is occupied by the orienta-
tionally disordered phase —orientational correlations in
this phase are, at large distances, still given by Eq. (2.29)
(we remind that [Eq. (2.29)] may be obtained from the
theory {2.5a) and (2.51) by setting r &0). So, at large
enough distances, orientational correlations of the form

K(x)=[(N(x)N(0) ) ] ~ 1/
/
x

/

~ (2.38)

Then, by a simple power counting one can see that r,
diverges for d &4, indicating that an infinite value of r„
i.e., of the bare wave vector qo, is necessary to produce
long range orientational order. So, for any finite qo the
system is in an orientationally disordered phase [Fig.
5(b)]. This may suggest that d*=4. This value of d' is
probably also inaccurate, since as mentioned before, the
perturbation theory at the I.ifshitz transition is divergent
below d =5. However, as explained before, a value of d*
bigger than 3.5 can be expected. Finally, it is rather clear
that at d' the quantity [((S(x))2)] should already be
divergent in both phases in Fig. 5(a)—so the conditions
d'&4. 5 and d'&4 should be satisfied. Thus, an esti-
mate of the form
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say, for x in x, —x2 plane, should replace the harmonic
result (2.17). Crossover from (2.17) to (2.38) presumably
occurs at

I
x

( =(„.Note that at
~

x
~
=g„,K(x) in Eq.

(2.17) is still of order unity. So for
~
x

~
~ g„, the equa-

tion

E(x)=1/
i
x/g'„

i
(2.39)

should hold, while for
~

x
~ &g,„, Eq. (2.17) should be

correct. So, for
~
x

~ «g„, a system with positive bare
value of r =qo &0 behaves as a system with r &O„Eq.
(2.39), which does not favor any long range orientational
order at all (nevertheless, short-range orientational order
exists inside of domains of size g„). Random fields pro-
duce such prominent renormalization of r at distances
larger than g„. If a spatial anisotropy of the form (2.20)
is applied to the isotropic system, the orientational order
would not be restored if' the characteristic anisotropy
length q„' (defined in Sec. II 8 as the length scale where
the anisotropy starts to influence spin wave correlations}
is larger than g„—this was asserted in Sec. II 8 in frame-
work of heuristic arguments. How does this statement
cope with the picture proposed in this section'/ If
qz '&&g„ then, on scales where the anisotropy becomes
important, orientational correlations are of the form
(2.39) and the renormalized value of r is already
negative —so, no long range orientational order can be
restored by such an anisotropy. On the other hand, if
q„' «g, „ the anisotropy starts to dominate on scales on
which no significant orientational disorder had been pro-
duced by RF. Such an anisotropy stabilizes the orienta-
tional order. So, once again, we arrive at the condition
(2.27)

indicating the borderline between the two phases.

D. Discussion

Two important steps involved in deriving the results of
Secs. IIB and IIC may be troublesome. They are (1}
neglect of topological excitations (dislocation loops in 3D
and their analogs in other dimensions), and (2) in the
treatment of the S% theory we employed the replacement
(2.5b)—this is valid to all orders of zero temperature per-
turbation theory. It has already been pointed out that
the first step is presumably incorrect, as explained in
more detail in Sec. III and the Appendix. The second
step also may be troublesome, since a formal perturbation
theory almost certainly breaks down at lengthsc ales
larger than the translational correlation length. This has
been argued for other RF spin systems with continuous
symmetries, e.g., for RF XY spin wave model. ' However,
qualitative arguments in favor of the breakdown of the
perturbative S% theory could be the same for the S%
theory of our problem: at large lengthscales multiple ex-
trema (metastable states and local maxima) of the SW ac-
tion are, almost certainly, improperly taken into account
by the perturbation theory. ' So, in principle, the phys-
ics of nonlinear SW theory (2.5a) [without the replace-
ment (2.5b)] may be different at large scales from that
predicted in Secs. II 8 and II C.

An e8ort to go beyond the perturbative approach was
done by Villain and Fernandez, for RF XY-model spin-
wave theory, which is similar to Eq. (2.6), however, with
all directions being hard. An infinite susceptibility phase
was predicted by them to occur in the ground state of the
S%' model for 4~d g2. The perturbative treatment of
the same S% problem gives a 5nite susceptibility ground
state. ' * Aharony and Pytte considered RF continu-
ous spin systems by a scaling analysis, which, a priori,
does not exclude possible presence of topological defects
neglected by a S%' approach. Their results are in favor of
a finite susceptibility ground state. Moreover, this sus-
ceptibility scales with spin-spin coherence length in the
same way as it does in the result obtained by the pertur-
bative S% approach. ' ' Also, the experimental data on
RF and random anisotropy systems with continuous sym-
metries are frequently interpreted to indicate the pres-
ence of a finite susceptibility phase at low temperatures.
This may suggest that perturbative theory is at least qual-
itatively correct. However, this is, we believe, not neces-
sarily so, since a finite density of unbound topological de-
fects, say dislocation loops in 3D RF XI'model, might be
responsible for the finite susceptibility ground state.
%ith ' or without the use of the perturbative theory,
the SW approach, excluding the possible presence of to-
pological defects, is almost certainly a poor description of
RF problems of the kind considered here. In Sec. III and
the Appendix we shall argue that inclusion of topological
defects may greatly increase the disordering efFect of ran-
dom 6elds, e.g., by shifting the lower critical dimension
of the orientational order from the SW result 3.5 to 4.
Thus, presumably, perturbative harmonic SW theory of
Secs. II 8 and II C significantly underestimates the actual
disorder induced by RF.

III. T(OPQLOGICAL DEFECTS

Thus far we discussed the physics in the framework of
SW theory, i.e., in the absence of topological defects. As
discussed in Sec. II, they may be relevant for a complete
understanding of the problem. Dislocation-mediated
melting theories of pure systems described at low temper-
atures by a S% theory with a single soft direction, are
constructed in d =2, and d =3. The most striking
eff'ect of thermally activated dislocations on systems
favoring an inhomogeneous order on a ring in q space is
the possible appearance of a nematiclike phase character-
ized by short range translational and long-range orienta-
tional order —such a phase, which intervenes between a
low temperature both translationally and orientationally
ordered (i.e., smecticlike) and a high temperature fully
disordered phase is quite unexpected in framework of
mean-6eld theories of the majority of systems with a sin-
gle soft direction, e.g., of magnetic or hydrodynamic sys-
tems. ' This nematiclike phase is generally character-
ized by a finite density of unbound dislocations (disloca-
tion loops) in 2D (3D), which destroy translational order
above some temperature Tz, less than the transition tem-
perature to the fuBy disordered phase. In d =2, Tz is
zero, i.e., the fully ordered, smecticlike, phase exists only
at zero temperature. It turns out that d =2 is the lower
critical dimension of the orientational order of the nemat-
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ichke phase —at d =2 orientational correlations exhibit
nonuniversal algebraic decay. The existence of a 6nite
density of unbound dlslocatIons ls crucial for the Hlstabll-

ity of the orientational order, since spin waves alone are
insufficient to produce that instability in d =2. So
d =2 plays a special role for the pure systems favoring a
modulated state on a ring in q space. In the following we
shall argue that d =4 may play a similar role for these
systems in the presence of RF. In fact, we shall construct
some nonrigorous arguments for RF systems with a sin-
gle soft direction, which suggest that for d &4, disloca-
tions are unbound, presumably even in the ground state
(see the Appendix}. We suspect that the orientational or-
der of such a phase is unstable, also for d & 4.

For a system having a spin wave theory with no soft
directions, i.e., for the RF XI'model, Villain and Fernan-
dez' have constructed a simple ai'gument showing that
dislocations of arbitrarily large size are favorable in the
ground state, for d &4 (see Appendix). The argument
presumably indicates that a finite density of free disloca-
tions is created in the ground state in addition to disloca-
tion free Imry-Ma domains (which are promoted by spin
waves). The length scale on which dislocations become
important scales with the strength of RF in the same way
[up to a logarithmic factor, see Eq. (Al) J as the size of the
SW promoted Imry-Ma domains, indicating that the SW
description, in the absence of topological defects, is rath-
er incomplete. Similar arguments can be constructed for
systems with a single soft direction, to argue that disloca-
tion loops are unbound, in particular, in d =3, and, more
generally, for d &4 (not 4.5, as one might expect, so that
dislocation free phase, considered in Sec. II, may exist for
4&d &4.5), see the Appendix.

So, both for XT and single soft direction systems, a
finite density of free dislocation loops can be expected in
the presence of RF, even at zero temperature for d &4.
For the nonrandom XY' model, a Sinite density of
thermally excited dislocations creates the ordinary
paramagnetic state in any d; systematic Debye-Huckel
theory ' can be used to verify this assertion. So, free
dislocations produce a state with paramagnetic correla-
tions, at least when dislocations are thermally' unbound.
It is difficult to construct a similar systematic theory for
the XY'model at zero temperature but nonzero RF. Nev-
ertheless, the simplest and the most probable possibility
for d &4 is that the system is a disordered paramagnet
even in the ground state. 3 Similarly, ground state of RF
systems with a single soft direction behaves, presumably,
as a nematichke phase for d & 4, because of a finite densi-
ty of unbound dislocations present even in a weak ran-
dom field. Both dislocations and spin waves are active in
the destruction of the translational order of this nematic-
like phase. Is the orientational order of such a phase
stable against random fields For pure systems with a
single soft direction, orientational correlations can be
worked out easily in the phase with unbound disloca-
tions, by means of a Debye-Huckel approximation ap-
plied to the dislocatioll iilediated iileltiiig theory. As
noted above, it is difficult to implement similar calcula-
tions in the presence of RF at zero temperature. Howev-
er, as explained in Sec. II A, planar-nematic liquid crystal

systems, ' Eq. (2.7), have a SW theory with a single soft
direction, even in presence of RF. The form of
dislocation-mediated melting theory depends only on the
form of the corresponding spin wave theory and this fact
should be maintained for weak RF. This suggests that,
even without studying dislocation effects in detail, one
may draw qualitative conclusions about the nematiclike
phase in, say, magnetic systems by considering the
nematic phase of the planar nematic liquid crystal sys-
tem' in the presence of RF coupled to the smectic densi-
ty wave, Eq. (2.7). Assuming zero translational order,
[(%')]=0, as appropriate for a nematic phase, it is
straightforward to generalize the calculation of orienta-
tional correlations of Halsey and Nelson, ' ' to the case
wlieil RF coiipled to %' is preseiit, as iii Eq. (2.7). Tlie ad-
vantage of doing calculations with (2.7), with respect to
GLW model (2.1), is that the orientational order parame-
ter N(x)=[cos8(x), sin8(x), 0, . . . , Od] is explicitly
present in (2.7). To see qualitatively how the randomness
influences the orientational order parameter in the
nematic phase, it is sufficient to calculate [((8(x)) ) ] in a
manner of Halsey and Nelson, to a low (one loop) order
of the perturbation theory around the state with
[(%(x))]=0. The result is simple:

[((8( ))')] fd q(G(q))'. (3.1)

The propagator G(q) is anisotropic —however, in all
directions it behaves as q for small q. So, the feedback
of RF coupled to %(x) is another effective RF or random
anisotropy type interaction coupled to the orientational
order parameter N(x). Another way to describe this is to
state that after integrating out (or minimizing, at zero
temperature) translational degrees of freedom 4 from
(2.7) (this elimination is a priori unambiguous in the
nematic phase) a RF-like interaction coupled to the
orientational degrees of freedom is generated.

The most striking effect of this random interaction is,
as one can see from (3.1), to destroy the orientational or-
der of a nematic phase for d &4. If properties of nematic
like phases are common to all systems with a single soft
direction, as we suggested before, then this instability
also occurs in magnetic systems with a continuous set of
energy minima (2.3). Moreover, as suggested in the Ap-
pendix, even the ground state of the system may be
nematiclike for d &4 due to unbound dislocations being
present even for arbitrarily weak RF. So, the orientation-
al order is unstable for d «4 probably even in the ground
state. Thus, the lower critical dimension of this order is
d =4, to be compared, e.g., with the S% estimate
d'=3. 5, Sec. II 8. Long range order of the continuous
orientational order parameter N(x} is unstable for d &4
because there is an effective random anisotropy coupled
to N(x). For realistic magnetic systems favoring an inho-
mogeneous order, continuous orientational symmetry is
broken by the spatial anisotropy due to the crystal lattice,
Sec. II A. In the context of the present discussion, these
lattice CSects act as a ploplMAdoNl anlsotropy coupled to
spin-like field N(x }. The effects of nonrandom anisotropy
in RF and random anisotropy continuous spin systems
were recently considered by Goldschmidt and Aharony.
They show that, for d ~4 and for a given quenched
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disorder, suSciently weak oonrandom anisotropy is
insufficient to restore long range order of spins. A criti-
cal value of oonraodom anisotropy is necessary to pro-
duce, via a phase transition, an ordered state (this critical
value diverges at d =2, i.e., at lower critical dimension of
RF systems with discrete symmetries). Similar physics
should occur in the present problem —for a given disor-
der suSoiently weak spatial anisotropy would not restore
the orientational order —to do this, a critical strength
(diverging for d~2) of the spatial anisotropy is neces-
sary.

Finally, let us summarize the main points of this sec-
tion: (a} Dislocations are favorable in the ground state in
RF systems with a single soft direction for d &4, as in the
RF XFmodel. ' In the XFcase this presumably indicates
the onset of a ground state with paramagnetic correla-
tions, ' while for the system with a soft direction, un-
bound dislocations probably produce a nematiclike
ground state. (b) The orientational order of such a
nematiclike state is unstable for d &4, i.e., d' =4. So, as
expected, topological defects increase the lower critical
dimension of the orientational order with respect to the
SW result. (c) Sufficientl weak spatial anisotropy ap-
plied to a magnetic system with a continuous set of ener-

gy minima does not restore the orientational order below
d' =4.

IV. SUMMARY AND DISCUSSION

We presented a detailed study of random field effects in
models with a continuous set of energy minima in q-
space, having the form of a ring [Eq. (2.3)]. The line of
arguments given in Secs. II and III, leads to the con-
clusion that, in presence of RF, the long range orienta-
tional order is unstable when the spatial dimensionality d
is below some critical dimensionality d'. Thus, in these
RF models, two lower critical dimensionalities exist: one
d, associated with instability of long-range translational
order, d, =4.5, and another one, being the lower critical
dimensionality of the orientational order d'. %'e argue
that d'&3. Harmonic SW results (Sec. IIB) indicate
that d*=3.5, while the analysis of anharmonic SW
effects (Sec. II C) indicates that 4 & d ' & 3.5. Most likely,
d*=4, as argued in Sec. III, in which the interplay be-
tween random fields and topological defects (being
neglected in framework of SW theory) has been con-
sidered.

Models with a continuous set of energy minima can ap-
proximately describe physics io some magnetic systems
favoring, at low temperatures, an incommensurate modu-
lated order. However, the presence of underlying crystal
lattice produces spatial anisotropy breaking the energy
degeneracy of the continuous energy minimum, so that
condensation is favored to a discrete set of points in q
space (see Sec. II A and Fig. 1). Spatial anisotropy tends
to stabilize the orientatiooal order. However, in presence
of RF's and for d ~ d', for any given strength of RF's g,
there exists critical strength of the spatial aoisotropy
A, (g), such that a system characterized by A & A, (g) is
orientationally disordered. Io framework of harmonic
SW theory, Sec. II 8, A, (g) ~g' ' ', Eq. (2.26). In a
scattering experiment, a system having A ~& A„should

be characterized by patterns almost like Fig. 3(b). For
A = A, a phase transition occurs, and for A = A, pat-
terns like those in Fig. 4 should be observed —they indi-
cate either relatively large orientational disorder [for
A & A„Fig. 4(a)], or absence of orientational order [for
3 & 3, Fig. 4(b)]. So, an estimate of the ratio A /3, is

important in applying ideas of this paper to realistic sys-
tems: the physics of systems having A ~~A, or even
A —A, is dominated by random field effects described
here. A ratio equivalent to A /A, was introduced in Sec.
II 8:

(4.1)

[see Eq. (2.27)]. R »1 (8 «1) corresponds to A « A,
( 3 » A, ). g„ is the orientational correlation length, in-

troduced in Sec. II B. This length is a quantitative mea-
sure of the strength of RF [see Eq. (2.18a}]. For a realis-
tic system, this length can be estimated if one has esti-
mates of translational correlation lengths [see Eqs. (2.18b)
and (2.18c)]. On the other side, the anisotropy length

q„ in Eq. (4.1) is a quantitative measure of the strength
of the spatial anisotropy [see Eq. (2.22}]. For a realistic
system, q„' can be estimated by knowing the details of
the inverse susceptibility of the Ginzburg-Landau-Wilson
Hamiltonian (see Sec. II 8).

Finally, let us give some comments on applicability of
these ideas to magnetic superconductors (MS).
Quenched disorder seems to be responsible for some of
the phenomenological features which are common to all
of these materials. For example, no higher order har-
monics of the modulated structure have been found in
neutron scattering experiments ' in all presently
known MS- this may signal the absence of true magnetic
order, likely due to a quenched disorder. A modulated
structure exhibiting a large but finite translational coher-
ence length, due to imperfections of the system, can be
appropriately interpreted by a random field model. ' This
motivated study of RF effects io the model for magnetic
superconductors Eqs. (2.1), (2.2), and (2.2') (see also Refs.
7 and 36}. We demonstrated that, in limit of weak spatial
anisotropy (2.2'), this model exhibits somewhat unusual
behavior due to RF—orientational order is unstable and
the ground state is expected to consist of domains having
difFerent orientations of their local wave vectors, Sec.
II B. Experimental data on ErRh48~, are interpreted to
indicate that the ordered magnetic state, in the coex-
istence phase of this material, is composed of domains
having different orientations of their local wave vectors.
This orientationally disordered structure can be produced
by nooequilibrium efFects, or by inhomogeneity of the
sample. This paper suggests another explanation for this
orientational disorder —it could be a random field effect
(see also Ref. 36).
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APPENDIX

E(L)=L 2lnL —g'/ L d &2 (Al)

is spent. ' The first term in (Al) is the energy necessary
to create the dislocation in a pure XF system —this is a
well known logarithm multiplied by the "length" of the
topological defect [being a (d —2 }dimensional object in a
d-dimensional system]. The second term in (Al) is the
standard energy decrease due to RF (RF is supposed to
be uncorrelated, with mean square deviation g). ' As usu-
al, this term is proportional to the square root of the
domain volume. ' In (Al) and hereafter we suppress all
proportionality factors, except g. For d g4 and L large
enough, E(L) in Eq. (Al), is negative even for arbitrarily
weak RF. So, dislocations of arbitrarily large size are ex-
pected to be present in the true ground state of the sys-
tem. That state is most likely a paramagnetic (spin glass)
state' —a conclusion drawn by analogy to the pararnag-
netic state of the pure XF system, which is also charac-
terized by the presence of arbitrarily large dislocations.
Function E(L), Eq. (Al), has, for d g4, a single max-
imum at I.=I.o given by:

—i /(4 —d((in —1 )2/(4- d(
0 g ng 7 (A2)

for small g. A loop smaller than Lo would be infavorable

As mentioned in Sec. III, dislocations are unbound
both in the XY' model and in models with a single soft
direction for d ~4 and when a weak RF is present. Here
we shall review the domain argument supporting this
statement for RF XÃ model' and present a correspond-
ing argument for models with soft directions.

%hen excited from the ferromagnetic state of the XF
model, a Thouless-Kosterlitz dislocation pair in 2D [Fig.
6(a)], or dislocation loop in 3D [Fig. 6(b)], create domains
which are dephased (i.e., with reversed spins) with respect
to the rest of the system. Random Selds may favor
creation both of such domains belted by dislocations and
of dislocation free domains (as in the original arguments
of Imry and Ma'). When a dislocation of size L (creating
a domain of volume I. , see Fig. 6; L is, in 20, the dis-
tance between opposite dislocations in a pair, or the
length of a dislocation loop, in 3D, etc.) is excited, then
the energy of order:

H

9, z~'I LH

FIG. 7. Domains (dashed) created by dislocation pairs in a
2D system with a soft (S) and a hard (0) direction.

E(Ls)=const —g' Ls (A3)

obviously, RF favors unbound dislocations [similar argu-
ment applies for dislocations in Fig. 7(b)].

The situation is more subtle for 30 systems with a sin-
gle soft direction —but the conclusion will be the same.
To see this, let us consider a dislocation loop lying in a
plane perpendicular to a hard direction (Fig. 8). For sim-
plicity, we take the loop to have the form of a rectangle

in the ground state —such a loop would shrink to a point
in order to decrease the energy. However, at distances
larger than I.o the system is disordered both by spin
waves and by unbound topological defects (note that Lo
is, up to the logarithmic factor, the same as the size of
dislocation free Imry-Ma domains, being of the order—1/{4—d)sg

Now we are going to present sifnilar arguments for sys-
tems with soft directions. For example, in a 20 system
with a soft and a hard direction, a pair of opposite
dislocations, separated by the distance Ls along the soft
direction [see Fig. 7(a)], creates a domain of area LsLH,
with Lz-Ls. 0 So the energy gain due to RF is

(gLsLH')'/ —= —g
' Ls . Nonrandom part of the

dislocation pair energy [corresponding to the first term of
(A 1 }] is a constant independent of Ls (for large Ls, see
Ref. 30). So

L =min (L. ,L )H' 5

H

/ r r r
rr &rrrr r.r +r, + r' ~

c /rr g r / r'r rr
r rrrr rrr

FIG. 6. Topological defects in XF model (a system with no
soft directions). Pair of opposite dislocations, in 2D, (a), or a
dislocation loop, in 3D, (b}, create domains (dashed) which are
dephased (i.e., anth reversed spins) with respect to the rest of
the systems.

FIG. 8. Dislocation loop (thicl{; line with arrows) in a 3D sys-
tem with a single soft direction (S) and two hard directions (H).
The loop produces a domain (dashed) of height L.
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with one pair of its edges (of length LH) parallel to the
remaining hard direction and the other pair (of length
Ls) being parallel to the soft direction (Fig. 8). The loop
produces a domain of height L (Fig. 8). It is easy to esti-
mate the dependence of L on Ls and LH. When LH is
infinite (or very large) for fixed Ls, then L =Lz, as for the
pair of point dislocations in 2D [Fig. 7(a)]. When Ls is
infinite (or large enough) for fixed LH, then L =LH, as in
a 2D system with no soft directions [Fig. 6(a)]. Crossover
between the two regimes occurs obviously when Lz =LE
So, it follows:

L =L(LH, Ls)= mintL~, Ls ) .

Then the energy gain due to RF is given by

(A4)

Ei = (gL—sLHL )'" .

By a similar reasoning it is easy to estimate the energy
necessary to create the loop in the absence of RF. It is of
the form

S
FIG. 9. Schematic topography of the function E(I.q, LH).

Solid lines are levels of constant E. The dashed arrowed lines
are the flow, Eq. (A9); E decreases along the Aow. The region
~ith E gO is dashed. The line LH ——I.& is dotted.

Ei =LH+Ls lnL(LH, Ls) . (A6)

The first term in (A6) is the contribution from the edges
of the loop being parallel to the hard direction —there is
no Kosterlitz-Thouless logarithmic factor multiplying
this term —since there is only one hard direction being
perpendicular to these edges; see Fig. 8.M However, such
a factor is present in the second term of (A6), which gives
the contribution to the energy from edges which are
parallel to the soft direction (so that there are two hard
directions perpendicular to these edges}. Finally, from
(A5} and (A6) we have total energy gain:

«LH Ls)=~i+Ei
=LH+Ls lnL(LH, Ls)

lgLHLs-«LH Ls)]'"

Lgo ~g,I00~g lng (AS)

for small g. In Fig. 9 we indicated the lines of the Bow

with L (Lz,Ls ) given by (A4).
Now, it is easy to see that dislocations of arbitrarily

large size are favorable: e.g., take Ls=LH~ce [then
L(LH, Ls)=LH], or Lz=kLs~co, k ~1 [then
L(LH, Ls)=Lsd]—in both cases E(Ls,LH) tends to —ao.
So, the ground state of the system should be populated by
loops of arbitrarily large size. Most likely, this state is
nematiclike by analogy to the nematic state of the pure
system with a single soft direction, which is also charac-
terized by the presence of arbitrarily large loops, see
Refs. 6, 22, and 30. If so, one of the consequences is the
instability of the orientational order, as explained in Sec.
III.

In the case of RF XF model a single extremum of (Al)
occurs at L =Lo, Eq. (A2): Lo serves as the estimate of
the minimal size of dislocation loops, as explained before.
Function E(LH, Ls}, Eq. (A7), also has a single ex-
tremum S at (LHO, Lso) being a saddle point (Fig. 9},with:

az aE
aL, ' aL„ (A9)

so that the energy decreases along the flow. If starting in

the region below the separatrix s-s, How lines terminate at
Ls —LH ——0. T—his corresponds to dislocations for which
it is favorable to shrink in order to decrease the energy.
Flow lines, starting above s-s, terminate in the region of
negative energy and arbitrarily large dislocation loop
size. The How starting at the separatrix s-s terminates at
(Lso, LHO}—that point determines in framework of a
domain argument, the smallest size of dislocation loops
present in the system. At distances shorter than Lso,
along the soft direction, and LHO, along hard directions,
the system is disordered only by spin waves. Note that,
up to a logarithmic correction in (A8), LHO =Lso =g
while the corresponding SW lengths are given by Eqs.
(2.10)-(2.12): g'0 =ps =g —so, the disordering effect
of spin waves on translational correlations should dom-
inate for weak RF.

The most interesting aspect of these considerations is
the isotropic scaling (up to the logarithmic correction) of
the dislocation coherence lengths I.zo and I.Ho, see Eq.
(AS). One might expect that, say L~O=Lso, rather than
I.Ho=I.&0. However, the present domain argument is en-
tirely inconsistent with such anisotropic scaling. In par-
ticular, all How trajectories leading to the region with
E «0 and starting in the region with I.H & I.z eventually
terminate in region with I.H =I.g ««I.g, see Fig. 9. So
the state with the isotropic scaling is energetically
favored. In this respect, the situation in 3D systems with
a single soft direction is similar to 3D RF XI'model, hav-
ing all directions hard. Moreover, straightforward exten-
sion of these considerations to d ~ 3 sho~s that this iso-
tropic scaling persists below d =4, which turns out to be
the marginal dimension for dislocation unbinding for
models with a single soft direction. Thus the dislocation
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free disordered phase, considered in Sec. II, may exist for
4 &d &4.5. Similar domain arguments applied to RF d-
dimensional systems with m soft directions, show that if
1&m+2, then dislocations are unbound below @ =4
and the scaling of dislocation coherence lengths is isotro-
pic (up to logarithmic corrections). For systems with
d =m +1 (i.e., with a single hard direction) scaling is an-
isotropic, with LH =Lz and dislocations are unbound
below d =5 due to RF (the simplest of these systems is
m+ 1=d =3; for this system it is easy to check that
dislocation loops are favorable by considering a loop ly-
ing in the plane defined by the two soft directions). Un-
bound dislocations produce, presumably a nematiclike
ground state in all of these systems and the orientational

order should be unstable for d ~4, for reasons similar to
those presented in Sec. III.

Note that we have drawn conclusions on dislocations
in a 3D system with a single soft direction by considering
a dislocation loop perpendicular to a hard direction.
Similar considerations show that loops perpendicular to
the soft direction are unbound in 30. However, their
minimal size is, for weak RF, much larger than that
given by (AS)—it scales as g . So, these dislocations are
much less efficient in disordering the system. In reality,
orientations of loops are not restricted as in the examples
considered here, and, in principle, characteristic coher-
ence length due to dislocations should be determined by
loops which are the most strongly unbound, i.e., by (AS).
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