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The critical behavior of positionally disordered two-dimensional Josephson-junction arrays in a
transverse magnetic field is studied by Monte Carlo simulations. We consider a model in which

each superconducting element is randomly displaced from its ideal position on a square lattice by a
small amount. The elective strength of the disorder is changed by varying the magnitude of the
transverse magnetic field. We consider those values of the magnetic Seld for which the parameter
(f ) that measures the average flux through an elementary plaquette in units of the (lux quantum is

integral. For (f ) = 1 and (f ) =3, we find Kosterlitz-Thouiess-type phase transition from a normal
to a superconducting phase. For (f ) =5 and (f ) =7, the results suggest a spin-glass-like freezing
over the time scales of the simulations. We do not 5nd any evidence for a low-temperature reen-
trant transition for any value of (f ).

I. INTRODUCTIGN

H= —I g cos(8; —8, —A;, },
(i'j }

where 8; is the phase of the superconducting order pa-
rameter at the ith site of the array, (ij ) represents dis-
tinct pairs of nearest-neighbor sites, J is the Josephson
coupling for a single junction, and A," is given by

A,J (2tr/4——o)I A dl .

In Eq. (1.2), @a=he/2e is an elementary flux quantum
and A is the vector potential due to the presence of the
transverse magnetic field 8=8x. The amount of uniform
frustration, f, is then given by

(1.2)

g A,"=2trf,
P

where the sum is over the sides of an elementary pla-
quette. Consequently, f can be written in terms of the
magnetic Seld 8 as

f =BA /4o,
where A is the area of an elementary plaquette. The

Recent experiments on two-dimensional (2D} arrays of
Josephson junctions' and proximity-coupled grains in an
external magnetic field have stimulated considerable in-
terest. An ordered array of Josephson junctions in a
transverse magnetic field is described by a uniformly frus-
trated 2D XF model. The Hamiltonian of the system is
given by

P(u, ) cc exp
Q2

2h

model described by the above equations is periodic in f
with period 1 and has re6ection symmetry about f =,—,

' in

the interval [0,1]. Hence, it is necessary to consider f
only in the range 0(f & —,'. The case f =0 corresponds
to the ordinary XF model which has a Kosterlitz-
Thouless3 (KT) transition and the case f =—,

' corresponds
to the fully frustrated model investigated by several au-
thors. " For commensurate systems with f = 1/n, n being
an integer, the transition temperature T, is found5 to
vary with n, while for incommensurate systems (f is irra-
tional) the situation is not clear. Several authors have
suggested that there is no finite-temperature phase transi-
tion in this case, whereas a recent Monte Carlo simula-
tion suggests that junction arrays in an irrational mag-
netic field undergo a spin-glass-like transition.

The effects of quenched positional disorder on the criti-
cal behavior of Josephson-junction arrays in a transverse
magnetic field are also studied by various authors.
Using a randomly diluted Josephson-junction model,
John and Lubensky demonstrated the existence of a
spin-glass like phase in mean-6eld theory for a system
near the percolation threshold. This possibility has also
been suggested by Shih, Ebner, and Stroud from numeri-
cal simulations of a model of disordered super-
conducting-nonsuperconducting composite. On the oth-
er hand, Granato and Kosterlitz' have studied the disor-
dered case where the average value of f, denoted by (f ),
is an integer and each site is displaced from its ideal posi-
tion r on a square lattice by an amount u„with a proba-
bility distribution:
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They define a critical value of (f ) given by

(1.6)

where a is the lattice spacing, and suggest that when
(f ) &f„ there are two transitions: a high-temperature
transition froxn the normal to a KT-like phase and a low-
temperature reentrant transition back to the normal
state. The superconducting phase is predicted to disap-
pear for (f ) &f, . Their analysis does not suggest the ex-
istence of a glassy phase.

In this paper, we investigate the effects of quenched po-
sitional disorder on Josephson-junction arrays by doing a
detailed Monte Carlo (MC) simulation. We concentrate
on the case (f ) an integer and change the eI'ective
strength of the disorder by varying the magnitude of the
transverse magnetic field 8. Our main conclusions are
the following. For small values of (f ), the system exhib-
its a transition from the normal to the KT-hke phase.
The critical behavior at this transition is qualitatively
similar to that at the KT transition in a finite system.
The fact that weak disorder does not produce a qualita-
tive change in the critical behavior has also been seen in a
recent MC simulation" for (f ) = —,'. On the other hand,
for large value of (f ), the critical behavior of the system
is modified considerably and calculations of various quan-
tities such as the specific heat, the helicity modulus and
the Edwards-Anderson order parameter suggest that
the system behaves very much hke a spin glass over the
time scales of the simulations. The nature of the various
metastable states of the system supports the spin-glass
analogy. We do not see any signature of a reentrant tran-
sition for any value of (f ).

The rest of the paper is organized as follows. In Sec. II
we introduce the quantities calculated in the simulation
and describe the calculational procedure. In Sec. III we
present and discuss our results for various values of (f ).
Possible connections between our results and experiments
are discussed in Sec. IV.

To simulate the behavior of model (1.1), we consider a
magnetic field in the z direction, 8=8z, and use the
gauge A=Bxy The phase factor A," given by Eq. (1.2)
then takes the form

A; =(2n. /Cko)BX; (y, —y;), (2.1)

where X;J——(x;+x )/2 is the average x coordinate along
the bond joining lattice sites i and j. To introduce the po-
sitional disorder, we allow each lattice site to randomly
move from its ideal position (max, nay) by a small
amount such that the new position is

((m +5ri )ax, (n +Sr2 }ay},
where r, and rz are two random numbers distributed uni-
formly between —1 and +1 and 5=0.05. We keep 5
constant throughout the simulation and change the
e{Fective strength of the disorder by considering
8 =0, 1,3, 5, 7 in units of Cko/ai. These values of 8 corre-
spond to (f ) =0, 1,3,5, 7 respectively. With this con-
struction the critical value f, given by Eq. (1.6) is ap-
proximately equal to 3.45.

In these simulations we mostly considered a 32X32
lattice with periodic boundary conditions. However, we
also studied 16X 16 and 22 X 22 lattices to understand the
finite-size effects. Using a standard Metropolis algo-
rithm, we used 50000 MC steps/spin for temperatures
above J/ks and 100000—150000 MC steps/spin for
temperatures below J/ks for 32X32 samples. At each
temperature thermodynamic averages were performed
over the last half of the time steps. We also considered
averages over 5-10 independent runs with di6'erent reali-
zations of the disorder.

The specific heat per site (C) was calculated from Quc-
tuations of the internal energy and the hehcity modulus
(y) which is a measure of the stiffness of spins, was com-
puted using the relation

),„=JN ' Xxks(nns(8; —8, —A;;)) —()lkst)I
{',ij)

'

Z x,,sin(8; —8, —A,, )

&ij &

~() ik t) z sxssin(8, . —8) —A,.~))
&ij &

where x,"=x —x, and ( ) denotes a thermodynamic
(Monte Carlo) average. An analogous expression holds
for y . The helicity modulus y was calculated by taking
an average of y„and y„„and then averaging over
dim'erent realizations of the disorder.

To examine the extent to which the system is frozen
into one state, we calculate the Edwards-Anderson' (EA)
order parameter q defined by

where ( ), denotes an average over difFerent realizations
of the disorder and S;=(cos8;,sin6);). Since the Hamil-
tonian (1.1) is invariant under an overall rotation of the
spin system, the MC updating procedure generates, in
general, uniform rotations of the spins for finite samples.
Unless care is taken to correct for the effects of uniform
rotations, the EA order parameter defined as

q = ((1/N) y ) ( S; )
~

'), , (2.3) q= lim (I/N} g S;(0) RS;(r)
f ~ oo i=1

(2.4)
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vanishes' at long times. If there is no overall rotation of
the spin system then from {2A) one finds that

form rotation. For this reason, we calculated the quanti-
ty 0 ~, the "true" overlap between EC's a and P, as

(2.5) 0~=max (1/N) gS;.RS~ (2.12)

where R, is the corresponding rotation matrix. Then the
quant1ty

(1/X) g S,'(0)R ~S/'(t)

becomes equal to (1/2)Tr(RR, )q with the help of (2.6).
Now Tr(RR, ) is maximum (=2) if R =R i

' and then

max(l/N) QS, (0) RS;(t)=q . (2.7)

Thus, in order to take account of this unphysical rota-
tion we have considered the quantity

(1/N) g S;(0) RS;(t) (2.8)

~here t ~ ~, the maximum relaxation time of the system,
a,P are the cartesian components and we have omitted
the angular brackets for simplicity. Now for the finite
size of the samples, there is always some rotation associ-
ated with the updating of the spins, and SP(t) is given by

(2.6)

where R is a general SO(2) matrix. If for any newly gen-
erated EC the overlap with any of the existing EC's is
greater than 0.95, we considered that new EC to be not
independent. We also calculated the vortex-pair density
in the metastable states in the following way. If I8, J are
the angles of the lowest-energy EC thus found, for any
other EC, I 8; I, we calculated the quantity 8,' =8;—8o for
every lattice site i W.e then computed the changes 68,' in
the angle 8,' from one spin to the next, defining the angle
difference between neighboring spins to he within the in-
terval ( rr, n )—. We then calculated the vorticity around
each elementary square in the lattice as 1/(2m) times the
sum of the b,8,"s along the four sides of the square. The
vortex pair density was then calculated as the sum of pos-
itive (or negative) vortices divided by the area of the lat-
tice. The results of the calculations described above for
various values of (f ) are discussed in the next section.
In the following, we set J,ka, and a equal to unity, so
that the internal energy is measured in units of J, the
temperature in units of J/ktt and the helicity modulus is
measured in units of Ja ~.

and determined the general SO(2) matrix R which makes
this quantity a maximum. The way it is done is the fol-
lowing. If we write S;(0)=(cos8;(0),sin8;(0)),
S, (t) =(cos8;(t),sin8;(t)) and R as R (()() then the angle (I)

which maximizes (2.8) is given by

tan())(= g sin(8;(0) —8;(t))/g cos(8;(0)—8, {t)) . (2.9)

Accordingly, we de6ned our single-spin autocorrela-
tion function as

q(()=((max (1/N( x s, (0) ss, (()
C

(2.10)

The EA order parameter q is then obtained from q (t) as 1.0—

q= limq(t) . (2.11) C/»,
0.9—

%e also looked at the various metastable equilibrium
configurations (EC) of the system. To generate the
diFerent EC's we followed the prescription given by
%alker and %alstedt' in a difFerent context. In this
method, one starts from a random con5guration of the
spins and then rotates the spins sequentially into coin-
cidence with their instantaneous local Selds. A sequence
of N such rotations constitute a single iteration. One is
guaranteed a reduction in the energy of the system at
every step with this algorithm, and one stops when the
required convergence in energy (in our case 10 ) is
achieved. EC's were generated with the above procedure
starting from 20 diFerent random con5gurations of the
spins. Since the Ha1mltonian has rotational symmetry,
one has to be very careful to d1stlngu1sh genu1nely 1G"

dependent EC's from those which dil'er only by a uni-

0.8—

0.5 0.2 0.6 0.8
»,T/y

1.0 1.2

FIG. 1. The temperature (in units of J/kz dependence of the
specific heat per spin, C/ks, for diff'erent values of (f ). The
solid lines are guides to the eye.
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III. RESULTS

Our results for the specific heat per spin (C) versus
temperature T for 32 & 32 lattice and for various values of
(f ) are displayed in Fig. 1. We note that for (f ) =1,
the e6'ect of disorder is small and the graph looks very
similar to that found' in a pure 2D XF' model. For
(f ) =3, the shape of the curve remains unchanged, al-
though the temperature at which C shows a peak is shift-
ed to a smaller value. On the other hand, substantial
modi6cation in the shape of the C versus T curve is noted
for higher values of (f ). The specific heat curve gets
more and more rounded as the disorder is increased and
the maximum value of C is continuously reduced. Most
spin-glass models exhibit a broad maximum in the
speci6c heat at a temperature close to the freezing tem-
perature. However, the progressive roundedness of the
specific heat peak observed here is not conclusive evi-
dence for glassy behavior —it might also indicate that the
phase transition disappears at larger values of the disor-
der. %e also note that any signature of a re-entrant tran-
sition at a lower temperature is absent in the specific heat
curves.

The y versus T and q versus T curves are shown in
Figs. 2 and 3 respectively. In Fig. 2 we Snd that for
(f ) = 1 and (f ) =3, the shape of the graphs is very
similar to that without disorder (f =0). A line of slope

2/m indicates the universal jump in y(T, )/T, of a KT
transition in the absence of disorder. From the intersec-
tion of this straight line with the y versus T curve, we es-
timate T, =0.94 for f =0, which agrees well with previ-
ous results. ' According to the analysis of Ref. 10, the
value of y(T, )/T, at the normal to superconducting
transition for (f ) &f, is not universal. This value is pre-
dicted to increase with (f ). The behavior of the y
versus T curves for (f ) =1 and (f )=3 is consistent
with this prediction. However, the picture completely
changes for higher values of (f ). For (f )=5 and
(f ) =7, we do not see any sign of a jump in the helicity
modulus and the graphs closely resemble those found in
simulations of dilute granular superconductors where the
authors have suggested the existence of a glassy phase.
Again, no evidence for a re-entrant transition is found in
the y versus T data.

The picture is very similar when we consider the q
versus T graphs in Fig. 3. Here also (f ) =1 and
(f ) =3 fall in the same class and (f ) =5 and (f ) =7
show qualitatively different behavior. The shape of the q
versus T graphs for (f ) = 5 and (f ) =7 is similar to
that found in a simulation of a model of a Josephson-
junction array in an irrational magnetic 6eld, This model
is predicted to exhibit a glass transition for finite cooling
rates. For all values of (f ), the EA order parameter in-
creases continuously as T is decreased„ thus indicating

0.9
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0.5
0.5—

0.2

0
0 0.2 0.4 0.6 0.8
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0.6 0.8
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FIG. 2. The helicity modulus y/Ja vs the temperature
ka T/I for different values of (f ). The solid curves are guides
to the eye. The straight line of slope 2/m represents the univer-
sal jump in y /T at the Kosterlitz-Thouless transition for f =0.

FIG. 3. The Edwards-Anderson order parameter q as a func-
tion of temperature (k~T/I) for different values of (f ). The
solid lines are guides to the eye.
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the absence of any reentrant transition. We looked for
finite-size eff'ects by carrying out the simulation for
16X 16 and 22 X 22 lattices. We did not find any
slgn16cant sample-Size dependence In the low-
temperature behavior of C, y, and q.

The facts that for larger values of the disorder
((f ) =5,7}, the specific heat peak gets rounded and the

y versus T and q versus T show a dilerent behavior from
those for small disorder ((f ) =1,3), suggest that the
low-temperature state for (f ) =5 and (f ) =7 may be
the glassy state predicted by various authors, although
in slightly different contexts. To investigate this possibili-
ty, we calculated C, y, q and the average energy per spin
E both on heating and cooling the samples. For small
values of disorder, these quantities are indistinguishable
in these two difFerent runs. For (f ) =5 or 7, the values
of these quantities are difFerent in the two cases for each
individual samples, whereas when averaged over different
realizations, no meaningful conclusion about the presence
or absence of freezing can be drawn, considering the er-
ror bars. We also studied the diff'erence between field-

cooling (FC) and zero-field-coohng (ZFC) behavior. In
the ZFC case we start from the configuration where all
the spina are pointing in the same direction (this is the
ground state of the system in the absence of the magnetic
field} and warm up the samples in the presence of the
transverse magnetic Seld 8. At various temperatures we
calculate the difference in energy per spin (hE) between
the FC and ZFC states for various values of (f ). The
hE versus T graph for (f ) =7 is shown in Fig. 4. The
energy-difFerences for T ~0.45 are statistically negligible
whereas for T g0.45 this difference is significant. The
temperature (T=0.45} at which b,E goes to zero is very
close to that where y goes to zero and q shows a sharp
change for the same value of (f ). This temperature is
lower than but, close to the specific heat maximum for the
same value of (f). These features strongly suggest a
frozen-in glassy state below T=0.45 for (f )=7.

The structure of the metastable EC's also supports our
conclusion of the existence of a glassy state for large
values of (f ). For small disorder (e.g., (f ) =1) we al-
ways find a lowest energy EC which is separated from
other EC's by considerable energy differences. However
as (f ) is increased, this spacing decreases continuously
and for (f ) =7 all the independent EC's have energies
very close to one another. This feature is similar to that
found'4 in simulations of spin glasses. At sufficiently
strong fields, nearly all the phase factors A; are large
compared to 2m. Thus the couplings will tencf to orient
the phases at essentially random angles and the system is
in effect a physical realization of the "gauge glass" men-
tioned by several authors. '5' Since this happens for any
chosen gauge of the vector potential A we believe that
our main conclusions are independent of any particular
choice of gauge. The other important feature is that the
EC's contain a large number of vortices when calculat-
ed with respect to the lowest energy EC. For this
reason the overlap between the independent EC's are
very small (varying from =0.01 to a maximum of =0.5)
even when they have almost the same energy. In the
SBHulatlons at very 10% temperatures, 1f true thermo-

-0.01 I

0.2
l

04,
I

0.8
I

1.0

FIG. 4. Temperature dependence of AE/J, the difference in
energy per spin between zero-6eld-cooled and 6eld-cooled runs
for (y) =7.

dynamic equilibrium were established, then the system
would have explored all of these metastable
configurations and the resultant q would have been much
smaller than what we have found. This observation,
therefore, shows that equilibrium was not established at
low temperatures due to the presence of long relaxation
times associated with a low-temperature glassy state.

In connection with the gauge-glass regime it is interest-
ing to note that renormahzation group calculations by
Hertz indicate that for d &4, the frustration parameter
characterizing his model exhibits a runaway. Hertz in-
terprets these results in terms of a mean-Seld theory in
which the transition possibly takes place into an ordered
phase with many local minima. We do not believe that
the freezing observed in our simulations represents a
thermodynamic phase transition to a "superconducting
glass" phase. Since short-range Ising' and XY' models'
of spin g1ass do not exhibit any thermodynamic phase
transition at a Rnite temperature in two dimensions, there
is no reason to expect the model considered here to do so.
Our results, however, do suggest that behavior resem-
bling a spin-glass like phase transition may be observed in
disordered Josephson-junction arrays in a transverse
magnetic Seld over short or intermediate time scales.

As discussed earlier, the results of our simulations do
not show any evidence for a low-temperature reentrant
transition at any value of (f ). This observation, howev-
er, does not necessarily imply the absence of a reentrant
transition, in experimental situations. Due to the fo11ow-
ing reasons, it is very diScu1t to see the low-temperature
reentrant transition predicted in Ref. 10 in a 6nite-size
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and finite-time Mc simulation. Even when the interac-
tion between vortices is screened out by the disorder, the
creation of a vortex pair requires a finite amount of ener-

gy. In a sma11 sample at a low temperature, the entropy
factor may not balance this energy cost. Secondly, since
the vortices can be pinned at favorable sites, the low-

energy states with diFerent configurations of vortex pairs
are separated from one another by energy barriers which
are dificult to overcome at low temperatures. Because of
these reasons, we can not be sure about whether our
simulation results showing the absence of reentrant be-
havior reAect the real physics in experimental situations.

IV. MSCUSSIONS

To summarize, our simulations of the thermodynamic
properties of a model of a positionally disordered
Josephson-junction arrays in a transverse magnetic field
show that for small integral values of the parameter (f )
((f ) = 1,3 } the system exhibits a Kosterlitz- Thouless
type transition from the normal to the superconducting
phase. %'e do not find any evidence for a low-
temperature reentrant transition back to the normal
phase, although we can not rule out the occurrence of
such a transition in experiments from our study of finite
samples. For larger integral values of (f ) ((f ) =5,7},
the system exhibits a spin-glass like freezing at low tem-
peratures over the time scales of our simulations. This
freezing is not expected to represent a true phase transi-
tion. However, one may still be able to experimentally
observe a "superconducting glass" transition over short
or intermediate time scales. One may possibly look for a
continuous increase of the helicity modulus from zero as
the temperature is lowered below the freezing tempera-
ture. In contrast, the helicity modulus is expected to
show a discontinuity at a KT like transition. For pure
XY case the helicity modulus is closely related to the ex-
ponent a of the nonlinear I Vcharact—eristics. One

might look for a continuous increase of the exponent u in
the disordered case as a sign of "glass" transition as the
temperature is lowered below the freezing temperature.
However, the relation between the helicity modulus and
the exponent a is not clear for the disordered case. Since
the kinetic inductance of the array is proportional to the
helicity modulus it could be used as an experimental
probe to observe the suggested freezing in the disordered
case. It may also be possible to see signatures of the pres-
ence of long relaxation times in measurements of the
low-frequency ac conductivity. One may hope to see
remanence —if the applied magnetic field is switched olf
at a low temperature, the tunneling current may decay
slowly with time. Other phenomena associated with slow
relaxation such as diFerences between ac and dc suscepti-

ilities20 and diFerences between field-cooled and zero-
field-cooled measurements may also be observable. The
type of positional disorder considered in this paper is of
direct relevance to experiments because some amount of
disorder of this type, however small, is always present in
real arrays. It would be very interesting to look for some
of the effects discussed above in experiments on such ar-
rays.

Note added. After this work was completed we came
to know of an experimental paper ' which reaches very
similar conclusion to our work.
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