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Directed percolation in four dimensions is of direct physical relevance to the world with three

space and one time dimension. %'e present a comprehensive analysis of recently extended series for
the moments of the cluster-size distribution and for the percolation probability in a "Seld" on the

hypercubic lattice. We fiind a critical threshold, p, =0.302S20.0010, and dominant critical ex-

ponents y = 1.21+0.05, for the mean cluster size; P=0.82+0.03 and 1/5=0. 45+0.02 for the per-
colation probability in the thermal and field directions respectively; and a gap exponent of
6=2.03+0.06. We Snd a thermal-correction exponent h, &=0.SS20.1S and a Seld correction of
0=0.3+0.1. We also calculate some universal critical-amplitude ratios.

I. MraODUc:rxON

Directed percolation in three spatial and one time di-
mension (d=3+1, or four dimensions in total) is of
direct physical relevance to the real world. Applications
include the spread of disease through any three-
dimensional container of stored produce, Bow in a three-
dimensional crack network in a porous rock, and certain
questions in galactic evolution. Notwithstanding these
possibilities, relatively little high-precision numerical
work was undertaken for this problem until quite recent-
ly. Short series expansions' and e-expansion calculations
within Reggeon Seld theory (RlT) led to the early ex-
ponent estimates which are given in Table I together with
some very recent Ri'1' results. Ri 1' is beheved to be in
the same universality class as directed percolation (DP),
and since the upper critical dimension for this theory is
(4+ 1 ) =5 dimensions, the e-expansion exponents in
(3+1)=4 dimensions could be expected to be reliable.
Critical thresholds, however, cannot be obtained from
RPI' and it is most desirable to be able to determine
high-precision exponents directly within the percolation
model in order to check the universality question. It is
also of interest to evaluate correction to scaling ex-
ponents in order to determine whether the correspon-
dence between Dp and Rkl extends to the irrelevant
operators.

In order to obtain thresholds and dominant and correc-
tion exponents directly for the d=4 DP problem, the
generation and analysis of extended low-density power-
series expansions would appear to be the approach of
choice. Such series generations have recently~ been car-

ried out for the moments of the DP cluster distribution
for the hypercubic d=4 site problem and this generation
will be discussed more fully in Sec. II.

The moments, m t+J(p) of the distribution of the num-
ber of connected clusters per site with s sites and perime-
ter t are believed to behave as

ttt t+j(p)
~ p p ~

r (t+j 1Hy+P)— — —
C

X(1+8 ~p —p, (
'+ ) .

The sites are occupied with probability p, and i and j
(i+j &0) deSne the moment weighting with respect to
the number of sites in the cluster and to the cluster per-
imeters, respectively. The trt'+'(p) will also be denoted
as (s'tO The expon.ent sum y+P is usually known as
the gap exponent and is sometimes denoted by h. The re-
sults of some preliminary threshold and gap exponent es-
timates from these series~ are presented in Table I. The
gap estimates were obtained by division of the series to
give series with a dominant critical exponent of 6,. Series
for the full perimeter polynomials for the d=4 hypercu-
bic site problem up to order s =13 are also now avail-
able. ' These have been used by Carvalho and Duarte
to deduce the scaling function in general dimension and
to give a p, estimate for the hypercubic site problem.
This estimates is given in Table I together with some re-
sults from two order s =12 calculations. ' In addition to
the above studies, knowledge of these polynomials en-
ables us to deduce the full percolation probability P(p, A, ),
where A, =e +, and JI is analogous to a magnetic Seld.
This percolation probability is assumed to have the criti-
cal behav2or
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TABLE I. Critical-exponent and temperature estimates for four-dimensional hypercubic-site percolation.

RFT e expansion
1.21425 0.79410

0.82
2.01
2.03

0.3

Mean cluster size (s =8)
Moments (s =13)
Cluster no. (s =13}

0.303+0.0015
0.30+0.02

DP series
1.230+0.005

0.81+o.04 2.02+p 02

Overall
Mean cluster size
Mean perimeter
Divided series
Dinerent p,

Scaling relation Q=b, ~/P5

0.3025 0' oo I

0,303+0.001
0.302+0.001

0.303
0.3025
0.302

1.230
1.205
1.200

0.820
0.825
0.800

2.01+0.06
2.05
2.04
2.00

0.43
0.45
0.46

0.55
0.55
0.55

0.33
0.4
0.4
0.3+0.1

This stork DP series
1,21+0.05 0.82+0.03 2.03+0.06 0.45+0.02 0.55+0. 15 0.3+0. 1

P(p„A, )-(1—I,)'~s[1+b (1—A, )"+ ) g„=4g, i, r 3+(2)g.t +(3)4 +At4 (2) 4 (3) ~ (4) (4)

In a recent calculation we showed that in d=2 and d =3
the "field" correction, 0, obeyed the scaling relation'

although as discussed in Ref. 9 this relation has not yet
been shown numericaHy to be satisfied in any other sys-
tem.

In the present paper a more sophisticated analysis of
the moments and the Srst analysis of P(p„A, ) is present-
ed. This analysis is described in detail in Sec. III and ad-
dresses the question of correction exponents as well as
giving more precise threshold and dominant exponent
values, and a check on Eq. (3). Some universal amplitude
ratios are calculated in Sec. IV.

The results are found to be in excellent agreement with
the RFI' values when these are available, and a discussion
of their implications and of some potential applications is
given in Sec. V. Our results are summarized in Table I.

II. SERIES DEVELOPMENT

Four-dimensional directed percolation is no longer use-
fuHy approached by a transfer-matrix technique' as hap-
pens in two and three dimensions. In this fully-directed
site-percolation model the recursion decomposition de-
scribed in detail by Duarte was specifically implemented
in four dimensions, snd not as a special case of an ex-
haustive enumeration of d-dimensional strong embed-
ding.

For an equivalent number of configurations, our recur-
sion relations take longer in four than in five snd six di-
mensions. The Srst neighborhood decomposition of an
cxphcit size (s) and perimeter (r) counting, can bc written
by inspection

where g„ is the number of clusters with size s, and perim-
eter t, g,', ' is the number of clusters with a planar kernel
consisting of the root site and a compact source of size 2,
h,'f is the number of clusters with a four-dimensional
kernel (root site plus three of its neighbors) and j,', ' is the
number of clusters with the first four-dimensional com-
pact source as a kernel.

The g,',
z' can still be further decomposed, using an

adaptation of Eq. (C2) in Ref. 5. These economies mean
that only 16% of the total number of con6gurations must
be counted at each size.

Prom the complete perimeter polynomials, low-density
expansions of the moments m '+J(p) follow

m '+J(p) = (s't~) =g s't Jg„p'(1 —p)' .
s, t

AH possible orders and combinations of i and j are of
course possible. In Table II eve publish the 6rst set of
moments up to i +j g4. Notice that instead of s or t the
bond content could also be used for such generalized mo-
ments.

III. ANALYSES OF THE SERIES

We consider the moments, m '+~(p), for several choices
of i and j and P(p„A, ), as A, ~1, series for the hypercubic
site Dp problem. %e have analyzed the series both with
the Roskies transform, as presented in Ref. 10 on p. 409
for isotropic percolation (see also Ref. 11), and with a
graphical version of the method of Adler et a/. ' Both
methods give plots of difFerent Pade approximants to the
dominant exponent as a function of the correction ex-
ponent for difFerent choices of p, in the moment series,
and in the series for P(p„A, ), as A, ~l. At the correct
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values of dominant and correction exponent these ap-
proximants are expected to converge.

In addition to these analyses of individual series, we
have used a method (see, for example, Ref. 13) recently
revived by Metr. ' This method involves term-by-term
division of two series with the same critical threshold and
then study of the divided series. This divided series
should have critical behavior of a threshold at 1 and a
dominant critical exponent equal to the difFerence be-
tween the exponents of the two original series plus l.
The division is expected to introduce an analytic correc-
tion to scaling (i.e., d, =1). If this correction has a large
enough amplitude it could provide a nice convergence re-
gion for the evaluation of the dominant exponent. It is to
be hoped that the amplitude of the introduced analytic

TABLE II. Low-density moment, m'+'=g, a(i,j,s)p', ex-

pansions for the four-dimensional hypercubic site problem.

correction is sufficient to swamp the nonanalytic correc-
tion of the individual series which is still present. This
method avoids the problems associated with uncertainties
in p, and is ideal for the moment series.

The various moments and the percolation probability
have been studied with p, choices in the range
0.300-0.305. The moments with j&0 do not have an ini-

tial constant term and therefore their derivatives were
studied. The analysis for the (s ) series at p, =0.303 is

given in Fig. 1(a) and that for the (r ) series at p, =0.302
is given in Fig. 1(b). We chose to illustrate in these
figures those threshold choices that gave the best conver-
gence. The region of best convergence for the mean size,

j=0, series fell at slightly higher p, and y estimates than
that for the perimeter series. From these and the analy-
ses of the other higher moments we conclude that

p, =0.3025+0.001, and d& ——0.55+0. 15 and give the first

of our gap exponent estimates 5=2.04 o'o4. Estunates+o.oz

1

1

1

1

1

1

1

1

1

1

1

1

1

2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q

0
Q

0
0
0
0
0
0
Q

0
0
0

0

0
0
0

0
1

2
3

5

6
7
8

9
10
11
12
13
0
1

2
3

5

6
7
8
9

10
11
12
13
0
1

2
3

5
6

8

11
12
13

a(i,j,s)

1

4
16
58

208
724

2524
8618

29 682
100264
342 958

1 150 145
3 919488

13060059
1

12
92

550
2916

14156
65 170

286290
1 222 106
5 063 308

20613 702
82 164 267

323 821 242
1 255 419717
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26032

169948
1 009 072
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29 037450
144 723 196
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3 243 361 817
14738800 032
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a(i —1,j+1,s)

0
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6094

21064
70 582
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807 187

2 769 343
9 140 571

0
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37 690
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0
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FIG. 1. Graphs of diferent Pade approximants to y as func-

tions of d, from (a) the mean cluster size series, (s), at

p, =0.303 and (b) the Srst derivative of the mean perimeter

series, (t ), at p, =0.302, using the Roskies transform method

of Ref. 10.



7532 JOAN ADLER, J. BERGER, J. A. M. S. DUARTE, AND Y. MEIR

of the exponents favored for the different extremes of the
are given at the bottom of Table I. The P esti-

mates are deduced from the dilerence between e g p
exponent an yd both for each p choice and for the
overall values.

~ % ~

The anal sis of two difFerent combinations of the divid-

1
' f th eries obtained from the ratio of

and (s g scAcs. c See( )
' s. We see that the former is best converged

over a fairly wide range of 5, choices, but that this range
1 d t a higher value than either of those

= .0. Thus, the111 Fig. 1, but ilot ilecessarlly quite at 6,= 1.0. T us, e

anay1c c1 t correction may not completely swamp the non-
. Neverthe-analytic correction of the individual moments.

less, we read o8'the 6 values at 5&——1.0, noting that since
the graphs are relatively Hat, this choice cs not crucia .
%e find 6=2.01+0.06 from these and other divided
series pots w I.c e1 h' h 1 ads us to an overall h, estimate o
2.03+0.06. It should be noted that the direct gap ex-

onent estimate is somewt mewhat lower than the individualp
Th could lead us to the conclusion thatmoment one. is cou e

0.30225. Thewe should favor a central p, choice of, say, 0.302 . e
overall choice o . if 0 3025 is based on tightness of conver-
gence rig t up to

'
h 0 303 for the moment series but wou d

be only marginally preferable on this basis.
A graph of Pade approximants to I/5 from t e

analysis o e pf th ercolation probability series at
=0.30225 and A, = 1 is given in Fig. 3. We see here op-

i f 0-0.4 and note that 0 decreasestimal convergence or
as p, increases. eThe 5 and 0 estimates for difFerent p,
choices are given in Table I.

%e now discuss the validation or otherwise the scaling
relation given inin ~. {3). From the overall exponent esti-

t e calculate that b, , /PS=0. 3+0.1. This is in ex-
cellent agreement with the direct evaluation o

f the hi her centraldocs seem to to support the choice o e ig

p, estimate since the higher p, values give lower 0
values.

IV. A]@PI.ITUDE RATIOS

I

0.4

A 1't d tios though less studied than exponents,mp1u e ra
'

also serve as universal quantities which may e use o
characterize the universahty class. nIn our case the
quantities

R„„„=&s'&&s'&/(s

are universal and are also equal to

&sk 'r &&s' 'r)/&s 't)(s"

5
+

+
C4

o.e-I

0.7-

0.3
I

OA 0.5 0.8 0.9

FIG. 2. Graphs of different Pade approx'roximants to 6 =y+P

ratios, (b) the term-by-term divided (s }/(s & ratios, usin
Roskies transform (Ref. 10) on the divided series.

FIG 3. Graphs of different Pade app
'

a roximants to 1/6 as a0 ~

'
n of 0 from the percolation probability P p„hA. ) withfunction o rom

=0 30225 at X=I using the Roskies trans ormPe=
method.
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In order to estimate the amplitude ratios we used a newly
developed method. ' This method, which involves multi-

plying and dividing the coefficients of the corresponding
series, leads to-estimates of the universal quantities

Here y;=y+(i —l)(y+P) and I' is the usual I func-
tion. The Sktlmn are unbiased by the value of the critical
threshold or by the values of the critical exponents. AIp-
plication of this method to the ratio (s2&(s"&/(s'&(s '&

leads to the estimate See&33 ——0.48020.005. The ratio
(st)(s t)/(s t)(s t) leads to the same estimate, where
the mean field value in five dimensions is $/4 f33 —,'. Al-

though S is a universal quantity, one may use the esti-
mates obtained in this paper for the exponents in order to
express the ratios in terms of R, which leads to
R 24/33 2.47 (compared to a mean field value of 3)~ The
error in 8 is very sensitive to the error estimates for the
exponents, due to the y function involved, and we do not
quote it here.

Although the field theory for this model has been ex-
tensively studied, there is no e expansion for the ampli-
tude ratios. In a future work we hope to report on an e
expansion for the amplitude ratios in DP in the context
of field theory as well as extension of our amplitude ratio
series analysis to other dimensions.

V. MSCUSS&ON

A glance at Table I confirms that our dominant ex-
ponent values are very close to those of Re 1'. However,
the measured DP correction exponent 6, is rather higher
than the Rl" I' one. The quoted R& j. value is calculated
via the relation b, , =A,v from the A, and v estimates. The
e-expansion RFi' A, and v values are somewhat smaller
than the direct loop REl' calculations in the lower di-
mensions, and might likewise be too low in 3+1 dimen-
sions. However, we cannot exclude the possibility that
the correction we are observing is due to a diFerent ir-

relevant operator to that seen in the RFT. This is espe-
cially likely in view of the fact that this is a consistent
trend. In 2+ 1 dimensions the observed 5& of 0.75+0. 10
is somewhat higher than one of the RFT estimates of
0.62+0.02, although it is consistent vrith the other,
0.74+0.02. If the irrelevant operator from the RFT cal-
culation is distinct from the one that we are observing in
3+ 1- and 2+ 1-dimensional DP, then it may have a small
amplitude in higher dimensional DP. We do not have an
available resummed 0 value calculated within the RFT,
but if we calculate 0 via Eq. (3) from the RFT' values
with our 1/5, then we find a value of less than 0.2 which
is inconsistent with our direct evaluations. Thus, we may
conclude that we do not observe the same first irrelevant
operator for 3+1-dimensional DP as that calculated for
the threeMimensional RF l'.

We conclude with a brief description of how our re-
sults relate to a potential application of our model. DP in
two space and one time dimension has proven to be very
useful for modeling galaxies that are almost fiat. ' There
are also some galaxies of interest that have a three-
dimensional nature and the development in time of such
systems could be modeled by a 3+1-dimensional DP
model. One possible approach to the study of such a sys-
tem would be a 3+ 1-dimensional Monte Carlo simula-
tion for a family of site DP models that could include the
one described above as a special case. Thus, our deter-
mination of p, would provide an important baseline
check for the programs written for such a project.

WCKNOml. moaMzmS

We thank S. Fishman for support throughout this cal-
culation and for arranging the visit of J.A.M.S.D. to the
Technion where this project was completed. Discussions
with O. Regev on the astrophysical potential of the
theory are gratefully acknowledged. This work was sup-
ported in part by grants from the Israel Academy of Sci-
ences and Humanities, by the U.S.-Israel Binational Sci-
ence Foundation and by the Israel AEC Soreq Research
Centre.

~J. Blease, J. Phys. C 10, 917 (1977);10, 3461 (1977).
2J. L. Cardy, Phys. Lett. 578, 97 (1977); R. C. Browser, M. A.

Furman, and M. Moshe, Phys. Lett. 75$, 213 (1978); J. L.
Cardy and R. L. Sugar, J. Phys. A 13, L423 (1980};J. B.Bron-
zan and J. %'. Dash, Phys. Rev. D 10, 4208 (1974); 12, 1850
(1975).

30.J. Elder5eld (private communication}.
~J. A. M. S. Duarte, Phys. Rev. 8 (to be published).
5J. A. M. S. Duarte, Prot. Phys. 15, 1407 (1984).
6J. A. M. S. Duarte, J.Phys. (Paris) 47, 383 (1986).
7M. C. T. P. Carvalho and J.A. M. S. Duarte (unpublished).
SM. C. T. P. Carvalho and J. A. M. S. Duarte, Z. Phys. 8 62,

239 (1986).
9J. Adler and J.A. M. S. Duarte, Phys. Rev. B 35, 7046 (1987).
'oJ. Adler, M. Moshe, and V. Privman, in Annals of the Israel

Physical Society, edited by G. Deutscher, R. Zallen, and J.
Adler (Hilger, London, 1983), Vol. 5.

~ J. Adler, Phys. Rev. B 31,4693 (198S).
'~J. Adler, M. Moshe, and V. Privman, J. Phys. A 14, L363

(1981};see also J. Adler and I. G. Enting, ibid. 17, 2233
(1984).

~3D. L. Hunter and G. A. Baker, Jr., Phys. Rev. 8 7, 3346
(1973).

I~Y. Meir, J. Phys. A 20, L349 (1987}.
~5For a revie~ of universal amplitude ratios see, e.g., A. Aharo-

ny and P. C. Hohenberg, Phys. Rev. 8 13, 3081 (1976), and

references therein.
i6L. Schulman and P. Seiden, jn Annals of the Israel Physical So-

ciety, Ref. 10.


