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We have extended the work of Sahni and Bohnen to more emphatically demonstrate that as an
electron is removed from within a metal to infinity outside, its average exchange charge density is
not localized to the surface region but rather spreads throughout the entire semi-infinite crystal.
Thus, asymptotically, the Fermi hole does not constitute part of the image charge at the surface.
In addition to the planar-averaged density, we have also studied the structure of the charge in
planes parallel to the surface as well as in the plane perpendicular to the surface encompassing the
axis of electron removal. Comparison of the quantum-mechanical and classical charge distribu-
tions in the planes parallel to the surface show the two to differ significantly. We also prove
analytically that independent of the electron position in the vacuum (positive half-space) region,
there is always charge at minus infinity in the metal.

I. INTRODUCTION AND DEFINITIONS

It had long been believed that the image charge of an
electron at a metal surface is the exchange and correla-
tion hole that it leaves behind at the surface.!™ (The
exchange hole, also known as the Fermi hole, is a conse-
quence of the Pauli exclusion principle which prohibits
two electrons of parallel spin being in the same state.
The correlation hole arises due to the classical Coulomb
repulsion between the electrons.) However, in their
analysis of the average exchange charge density, Sahni
and Bohnen®’ discovered that as an electron is pulled
out of a metal, its Fermi hole instead of being localized
to the surface region starts spreading into the interior of
the crystal. The width of the hole depends upon the po-
sition of the electron and keeps increasing as the elec-
tron is pulled further and further out. Thus, in the
asymptotic limit, when the electron is very far from the
surface, Sahni and Bohnen concluded that its Fermi hole
would extend throughout the crystal. Exchange effects,
which are a consequence of the statistics of the particles
involved, thus do not contribute to the structure of the
image charge at a metal surface. In this asymptotic re-
gion the image charge is due strictly to Coulomb corre-
lation.

In arriving at their conclusions, Sahni and Bohnen
studied only the behavior of the charge density averaged
over the planes parallel to the surface. Their analysis
therefore did not include the details of the structure of
the average exchange charge distribution in these planes.
Furthermore, their study extended up to electron posi-
tions of a maximum of approximately two Fermi wave-
lengths from the surface for typical metallic density
profiles. In our paper we more emphatically demon-
strate the spreading of the Fermi hole through the
volume of the crystal by considering electron positions
up to approximately ten Fermi wavelengths from the
surface. In addition, we study the structure of the aver-
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age exchange charge in the plane perpendicular to the
surface encompassing the axis of electron removal.
Since we know that the classical image charge gives rise
to an image potential, we also make comparisons be-
tween the classical and quantum-mechanical charge dis-
tribution in the planes parallel to the surface. Finally,
by deriving an analytical expression for the exchange
charge density deep in the bulk, we show that irrespec-
tive of the electron position the exchange charge extends
all the way up to minus infinity (with the vacuum exist-
ing in the positive half-space). Thus while reaffirming
the conclusions of Sahni and Bohnen, we provide in this
work significant new insights into the structure of the
Fermi hole at a metal surface.

The average exchange charge density p, (r,r’) at r' due
to an electron of momentum k at r is defined® in terms
of the electronic wave functions W,(r) as’
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The wave functions W,(r), in the jellium model approxi-
mation of a metal surface, have the general form
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where ¢,(x) is the part of the wave function in the
direction perpendicular to the surface with k and x be-
ing the components of the momentum and position vec-
tors in that direction, and klE and X, are the correspond-
ing components in the plane of the surface. Due to the
depletion of charge about each electron, the average ex-
change charge density satisfies the charge conservation
sum rule:
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In terms of the dimensionless variable y =kpx,
y'=kpx', y=kpx, ¥ ,=kpxj, gq=k/kp, and
q'=k’/kp, where k; is the Fermi momentum, the aver-
age exchange charge density at (y’, y;) due to an elec-
tron at y is given by the expression (see Appendix A)
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where J,(x) is the first-order Bessel function, and p,(y)
is the electronic density normalized with respect to the
bulk value =k} /37
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It is from Eq. (4) that one can study the behavior of the

charge distribution in planes parallel to the surface
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The planar-averaged density may also be written as’
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and where
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It is evident that for computational purposes Eq. (9) is
more useful as both the integrals are momentum space
integrals ranging from zero to one, whereas in Eq. (8)
one of the integrals is a spatial integral ranging from
zero to infinity. However, the two different expressions
for the planar-averaged density serve as a check on the
numerical results obtained. The analytical equivalence
of these expressions is shown in Appendix A.

II. RESULTS

We perform our initial set of calculations for the
step-potential model'®~!2 of a surface. We do so for the
following reasons. First, the model describes quite well
the qualitative aspects of the metal-vacuum interface.
As opposed to the infinite barrier model,'*~!? where the
electronic density is forced to vanish at the barrier, the
step model permits the electronic density to decay ex-
ponentially into the vacuum region as it must. Secondly,
because one is dealing with exponential functions in the
classically forbidden region, it is possible to consider

Y (1—g2)V2 (V1—q2

spreading radially from the axis along which the electron
is being removed. On substituting y;=0 in Eq. (4) we
obtain the expression for the exchange charge density in
the plane perpendicular to the surface and encompassing
the axis of electron removal:
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The final quantity we need in our study is the planar-
averaged exchange charge density p,(y,y’) which is the
total charge in a plane at y’ parallel to the surface. This
is defined as

Py, y’ —-—fdx fdxqpxrr , (7)

where A is the surface area. From Eq. (4) we see that
the planar-averaged charge at y' for an electron at y is

2
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electron positions far from the metal surface. We note,
however, that the model is not a very accurate represen-
tation of the effective potential seen by electrons at the
surface.!"'> For high-density metals it too strongly
reflects the electrons back into the metal, whereas for
low-density metals, it is too weakly confining. As a
consequence, the magnitude (and sign) of various proper-
ties can differ significantly from those of fully self-
consistent'® or more accurate representations'*!> of the
effective potential at the surface. However, for the qual-
itative feature of the Fermi hole that we wish to de-
scribe, it is more than adequate.

For the step model, for which the effective potential at
the surface is V z=WOI(x), the electronic wave func-
tions in the direction of the inhomogeneity are!®!!

¢y (x)=sin[kx +8(k)]O(—

J;—exp[—(pz 2)12410(x) (12)
where the phase shifts are given by 8(k)=sin"!(k /p)
and where p?=2W. In this model all the surface prop-
erties including the average exchange charge density can
be written in terms of universal functions of the barrier
height parameter B=k/p. The parameter [ is related
to the barrier height W by B~ 2=W /(k}/2). For our
calculations we have chosen a low barrier height
W =1.5(k}#/2) or B=0.8165. This choice of parameter
corresponds to a typical metallic density profile at the
surface.""!? For this choice of barrier height, the jellium
edge position'' determined by charge neutrality is at

Y, =—0.2895.

We begin our analysis by considering the cross section
through the exchange hole given by Eq. (6). In the
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infinite barrier model (as discussed in both Refs. 1 and
7), there is a distinct flattening of the curves as the elec-
tron is moved through the surface. This, of course, is a
consequence of the unphysical nature of the barrier
which forces the electronic density to vanish at a specific
point thus causing the exchange charge to pile up at and
about the jellium edge (see Fig. 1 of Ref. 7). In Fig. 1 we
plot these slices in the step model for various positions
of the electron outside the surface at y =8, 20, and 50.
[The shape of the slice when the electron is inside the
metal is the same as in the infinite barrier model and is
given in Fig. 1(a) of Ref. 7.] A study of Fig. 1 shows
that there is an order of magnitude decrease in the am-
plitude of the first peak as the electron is taken from
y =8 to y =50. For the electron at y =8 and 20 [Figs.
1(a) and 1(b)], however, there is an evident decrease in
amplitude of the succeeding peaks. But when the elec-
tron is at y =50 [Fig. 1(c)], the diminution of the ampli-
tude of the successive peaks is negligible, and these
essentially equivalent (through decreasing) amplitude os-
cillations continue for substantial distances into the met-
al. Furthermore, in comparison with the magnitude of
the cross-section value (which is unity) at the position of
the electron when it is inside the metal, there is a 2-
order of magnitude diminution in the amplitude of the
oscillations when the electron is at y =50. It is evident
that the exchange charge which is symmetrical and lo-
calized about the electron when it is inside the metal [see
Fig. 1(a) of Ref. 7] has now spread out in the crystal
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FIG. 1. Variation of the cross section
px(r,1)/(p/2)| =i —0 of the average exchange charge density
==

px(r,r') vs y'=kpx' in the step-potential model for different
positions y of the electron in the vacuum. [See Eq. (6) of text.]
The wave functions employed correspond to a barrier height
parameter value of 8=0.8165.

when the electron is far from the surface.

The cross sections discussed above are not adequate if
we are to draw any conclusions regarding the amount of
charge in a given region of space, or to determine the
Slater potential® due to the three-dimensional charge dis-
tribution. We therefore plot in Fig. 2 the planar-
averaged exchange charge density given by Eq. (9) for
the same positions of the electron as considered above.
The planar-averaged charge, as discussed above, is the
total charge in the plane at y' parallel to the surface, and
consequently charge conservation requires that integra-
tion under these curves yield unity. We observe that the
general trends for the planar averaged charge are the
same as those for the cross section of the charge dis-
cussed previously (compare Fig. 1 and Fig. 2). Again
note, that as the electron is pulled further out from the
surface, the charge at the surface begins to diminish and
the excess charge is pushed deeper into the metal: the
amplitude of the first few oscillations diminish whereas
those of the succeeding oscillations increase at their ex-
pense since charge conservation must be satisfied. Fig-
ure 2(c) shows that when the electron is at y =50, the
amplitude of the oscillations though decreasing are
essentially the same for large distances into the metal.
As the electron is pulled out still further, the amplitude
of these oscillations will decrease because the integral
from minus to plus infinity must be unity. In the asymp-
totic limit, this charge will spread over the entire length
of the semi-infinite crystal.

In order to study how the charge spreads asymptoti-
cally deep in the bulk, we derive in Appendix B the y’
dependence of the planar-averaged exchange charge den-
sity. We show there that for arbitrary position y of the
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FIG. 2. Variation of the planar-averaged exchange charge
density p,(y,y’) vs y'=krx' in the step-potential model for
different positions y of the electron in the vacuum. [See Egs.
(8) and (9) of the text.] The barrier height parameter value as-
sumed is S=0.8165.
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electron, p,(y,p')~yp’ =2 for y' <<0. This derivation is
independent of the model used to represent the potential
at the surface. [However, the asymptotic dependence of
the exchange charge density is most obviously evident
from the infinite barrier model expression for p,(y,y’)
given in the Appendix of Ref. 7.] The implication here
is that this will be the asymptotic dependence even in
the case in which the surface potential is derived in a
fully self-consistent manner.

That there is a charge at y'= — o« can be seen by con-
sidering the center of mass of the Fermi hole. It is evi-
dent that the integral

)= f_mwy’px(y,y’)dy'~lﬂ!)"l

is weakly divergent in the limit y'— — . If there were
no charge at minus infinity, or equivalently if the extent
of the exchange charge distribution was finite, the in-
tegral (y') would converge. [Remember that the in-
tegral f ® . Px(»,y")dy’ does converge, and its value is
unity. Also note that for the homogeneous electron gas,
(y') equals y.] Thus we see that there is a tail of the ex-
change charge density extending all the way up to minus
infinity.

The derivation of the analytical behavior of the
planar-averaged Fermi hole deep in the bulk also enables
us to determine how rapidly the exchange charge
spreads into the crystal. Let us consider an electron
asymptotically far outside the surface at y >>0, so that
—py <<0. Let us also assume that the dependence
px(»,y')~y’ ~? is valid in the region — oo <y'< —y.
Consequently, the amount of charge in this region
S px(y,y")dy’~py ", and thus the amount of charge
between —yp (inside the crystal) and + o« (outside in the
vacuum region) must go as (y —1)/y. (Note that
[(y —=1)/y]—1 as y-—>w as it should Dbecause
lim, , ffypx(y,y’)dy'zl.)

In Fig. 3 we plot the amount of charge in the region
—yp <y'< o« versus the electron position y outside the
crystal. At y =0, there is very little charge outside as
most of it is concentrated at and inside the surface. As
the electron is removed further out, there is an initial in-
crease in the value of the integral. This occurs because
there is a pile-up of the exchange charge at the
barrier—the charge is forced to remain within the met-
al. After reaching a maximum, the integral value de-
creases slowly as now the exchange charge is being
pushed into the interior of the crystal beyond —y. The
horizontal dashed line at unity represents the total ex-
change charge. Thus the value between the dashed line
and the curve represents the amount of charge in the re-
gion — 0 <y’'< —y. For example, for an electron at
y =4 outside, 48% of the exchange charge lies in this re-
gion, whereas for y =22 there is 55% of the charge in
the bulk. Even at y =50, there is 58% of the charge in
the deep interior of the crystal. (Note that in the dimen-
sionless variables used, y =27 corresponds to a Fermi
wavelength Ap. The position y =50 could correspond to
a distance of as much as 80 A from the surface for a
low-density metal such as Cs for which Ap~10 A)
Thus from this model calculation we see that even for
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FIG. 3. Variation of the total charge between —y and « as
given by the integral f : px(»,y')dy’ vs the electron position
y =kgx in the step-potential model. The barrier height param-
eter value assumed is 3=0.8165.

asymptotic positions of the electron outside the metal,
there is a substantial fraction of the exchange charge
that lies in the deep interior of the metal.

In Fig. 4 we plot the planar charge distribution of Eq.
(4) for the same electron positions outside the metal as
those of Figs. 1 and 2. In Fig. 4(a) the curves are drawn
for the positions y’ corresponding to the first two peaks
of Fig. 1(a), those of Fig. 4(b) correspond to the first and
third peaks of Fig. 1(b), and those of Fig. 4(c) to the first
and sixteenth peaks of Fig. 1(c). Note [see Fig. 4(a)] that
when the electron is near the surface the charge distribu-
tion taken radially from the axis of electron removal falls
off rapidly. As the electron is removed further outside
the metal [Figs. 4(b) and 4(c)] the planar charge spreads
out more radially and its fall off rate diminishes. Thus
in the asymptotic limit the charge also spreads out radi-
ally over the entire crystal.

The results of Figs. 1, 2, and 4 thus prove that as an
electron is removed from a metal, its exchange charge
distribution takes the shape of equally spaced disks.
These disks have substantial charge at and near the sur-
face when the electron is close to it. In the asymptotic
limit as the electron is removed to infinity outside, these
disks of charge distribute themselves not only over the
entire length of the crystal but also radially over its en-
tire width. Thus in this limit the exchange charge is not
localized near the surface of the metal but rather spread
over its entire volume.

The obvious next question of interest is what is the
corresponding behavior of the Slater potential to which
this unit charge gives rise? The answer to this question
and other related work on the potential (see our conclud-
ing remarks) is in progress and as such is relegated to a
future publication.!® However, we do know that for a
point charge outside a metal surface, the classical image
charge leads to an image potential. In order to get some
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FIG. 4. Variation of the radial distribution of the exchange
charge density in planes at y’ parallel to the surface vs the dis-
tance from the axis along which the electron is being removed.
The graphs are drawn for the step-potential model for different
positions y of the electron outside the surface. The value of
the barrier height parameter is 8=0.8165. The solid lines cor-
respond to the quantum-mechanical charge distribution,
whereas the dashed lines represent the classical distribution of
charge. [See Egs. (4) and (14) of text.]

insights into the behavior of the Slater potential,® let us
examine how different the quantum-mechanical and clas-
sical distributions of charge are. The classical image
charge, which is spread over the entire surface, has zero
width in the direction perpendicular to it. For an elec-
tron at y outside the surface, the classical image charge
density at |y, | in the plane of the surface is given by
the expression

3

(lyy] )-———-——-——————a (13)
glly = B 3

I (yl ‘ y| ’ 2)3/72
where o is the surface charge density at |y, | =0, the

axis of electron removal. The quantum-mechanical dis-
tribution of charge, on the other hand, is three dimen-
sional, and extends into the metal. Consequently, for
purposes of comparison we assume the classical charge
distribution to have the quantum-mechanical depen-
dence in the direction perpendicular to the surface. In
the planes parallel to the surface we assume the same
analytical form as derived from classical electrostatics.
Thus, in Fig. 4 we also plot the quantity

Py’ Ly | =0y —yp')?

[y —y 2+ |y 2P

It is clear from the figure that the classical charge distri-

classical

Px (y,)", tyh l )=

(14)

bution bears little resemblance to the quantum-
mechanical distribution: it is always an overestimate.
Thus in order to ensure the satisfaction of the charge
conservation sum rule of Eq. (3), the classical distribu-
tion would have to be cut off at some point in the plane.
As a consequence of the differences between the shapes
of the two charge distributions (and the fact that the
classical distribution has a cutoff), one would expect that
the corresponding potentials would also be different.

As indicated earlier, the step-potential model is ade-
quate only for a qualitative description of a metal sur-
face: the magnitudes of the properties of interest can be
significantly different from those of any more accurate
representation of the effective potential at a surface.
Consequently, in order to obtain a more realistic repre-
sentation of the average exchange charge density as well
as to study how a softer potential affects the threg-
dimensional distribution of the hole throughout the crys-
tal, we repeat our calculations for the physically more
accurate linear-potential model'*!” of a surface. (This
was the model considered by Sahni and Bohnen.®7)

The effective potential in this case is V.z=FxO(x),
and the wave functions ¢, (x) in the direction perpendic-
ular to the surface are

,(x)= sin[kx +8(k)]O(—x)

+sind(k) A=E) o1y (15)
Al( —g())

with 8(k)=cot ™ '[Ai'(—£y)/(£y)' ?Ai(—E)], and where
Ai(§) and Ai'({) are the Airy functions and their
derivatives, respectively; E=x(k}/xp) =y
Eo=(kpxp)**k?/k}, and F =(k2/2)/xp.

As in the case of the step model, all the surface prop-
erties for this model potential can also be written'* in
terms of functions of the slope or field strength parame-
ter yp=Kkpxp. By varying yp, one can change continu-
ously the electronic density profile at the surface from
very rapidly varying to very slowly varying. For our
calculations we have chosen yp=3, a typical'® metallic
density profile.

In Figs. 5 and 6 we graph, respectively, the cross sec-
tion of the Fermi hole and its planar average as obtained
for the wave functions of Eq. (15). A comparison of
these graphs with those of Figs. 1 and 2 of the step mod-
el clearly indicates similar trends in the behavior of the
various charge distributions. The magnitudes of the
densities are more or less the same for electron positions
close to the surface [compare panels (a) of the appropri-
ate graphs]. However, as the electron is pulled further
out the decrease of charge near the surface is not quite
as dramatic as in step-model case. For an electron at
y =20, the amplitude of the first peak of the cross sec-
tion in the linear-potential case is four times as large
[compare Figs. 1(b) and 4(b)], whereas that for the
planar-averaged density is twice as large [compare Figs.
2(b) and 5(b)]. Thus for the same electron position, there
is clearly more charge near the surface in the softer
more realistic linear-potential model than there is in the
step model. [Panels (c) of Figs. 5 and 6 have been plot-
ted for currently maximum allowed electron positions of



750 MANOIJ K. HARBOLA AND VIRAHT SAHNI 37

JELLIUM EDGE—#1  (Q)
0.300}
0.250} \
0200 ELECTRON ATy=8 |
R I [
5 ousof |
Q o.100} ;" \
NS i AN \
.= 0.050 \
e r \/ \
S 0000 - j
<
< (b)
7= 0J00f ELECTRON AT y=20 /f\
< 0.050} //\\ [ \
0.000 : VAR, t
0050 ELECTRON AT y=35 / (c)
! ‘ ‘ !
0,000}z 55 5 o
y' (a.u.)

FIG. 5. The figure caption is the same as that of Fig. 1 ex-
cept that these curves have been drawn for the linear potential
model wave functions corresponding to a value of y,=3 for
the slope parameter.

y =35 and 30, respectively, since it was not possible to
go beyond these points due to numerical underflow.] As
a consequence, the spreading of charge into the interior
of the crystal is not as rapid. This is evident in a com-
parison of Figs. 3 and 7 for the integral
[ 2, Px(y,y")dy’, the latter figure corresponding to the
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FIG. 6. The figure caption is the same as that of Fig. 2 ex-
cept that these curves have been drawn for the linear potential
model wave function for a value of yr =3 for the slope parame-
ter.
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FIG. 7. The figure caption is the same as that of Fig. 3 ex-
cept that this curve has been drawn for the linear potential
model wave functions corresponding to a value of yz=3 for
the slope parameter.

linear-potential model. For a specific electron position,
the magnitude of the graph in Fig. 7 is always greater
than that of Fig. 3. This means that the charge in the
region — oo <y’'< —y is less and that its decrease at the
surface as the electron is pulled further out is not as rap-
id as in the step model. (For electron positions at y =4
and 22, the charge in the region — o <y'<—y is 32%
and 31%, respectively. The corresponding values for the
step model are 48% and 55%, respectively.) Figure 8
shows the charge distribution in the planes parallel to
the surface. Observe that here the charge diminishes in
the direction perpendicular to the axis of electron remo-
val more rapidly than in the step case (Fig. 4). This
again is a consequence of the fact that the linear poten-
tial is softer than the step potential, thus allowing more
electrons within the surface region to interact with the
electron outside. Finally, since the fall off of the more
realistic quantum-mechanical charge in the planes paral-
lel to the surface is more rapid than in the step model,
the differences in this case between the true and classical
distributions of charge is even greater (compare Figs. 4
and 8). As a consequence one would expect the resulting
differences in the potentials due to the charge distribu-
tion to also be more significant.

III. CONCLUDING REMARKS

In conclusion, we have extended the work of Sahni
and Bohnen to more emphatically demonstrate that as
an electron is removed from within a metal to infinity
outside, its average exchange charge density is not local-
ized to the surface region but rather spreads out
throughout the entire crystal. That there is always
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charge at minus infinity, irrespective of the electron posi-
tion at or outside the metal, has been shown analytically.
Thus when the electron is asymptotically far from the
surface, its Fermi hole does not constitute part of the
image charge at the surface. The physics of why this
occurs is clear. When the electron is far outside, only
those electrons with high energy in the metal can in-
teract with it. By this we mean that it is only those elec-
trons within a small range of energies below the Fermi
level whose wave functions can reach and overlap the
electron. In the asymptotic limit it is only the Fermi
level electrons with momentum perpendicular to the sur-
face whose wave functions overlap the asymptotic elec-
tron. Thus it is evident from Eq. (1) that for an asymp-
totic electron, its Fermi hole goes as' | ¥, (r)|? which

is a density spread throughout the crystal.

In this paper we have studied the behavior of the aver-
age exchange charge density at surfaces. Work towards
the determination of the potential to which this unit
charge gives rise, the Slater potential, is in progress and
will be reported elsewhere.!® This is an orbital indepen-
J
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dent potential and is the same for each electron. An
analytical expression for this potential for wave func-
tions generated by the infinite barrier model has been de-
rived."?® Thus what is of particular interest is its
asymptotic behavior because this is a result that cannot
be obtained within the infinite barrier model approxima-
tion. Furthermore, the result would be fascinating in its
own right since in the asymptotic region the potential is
due to a rather interesting distribution of charge viz. an
infinite number of parallel sheets of total charge unity
extending throughout the crystal. This distribution is
also significantly different from the classical distribution
which is a single sheet of zero thickness charge at the
surface.

Now, although the average exchange charge density is
the property required for the determination of the ex-
change energy, it is not this hole which appears in the
Hartree-Fock equations. The Fermi hole of Hartree-
Fock theory is orbital dependent and is defined as

W (r )W ()W, (1)
K ‘Pk(r)

Due to the orthonormality of the wave functions, it too
satisfies the charge conservation sum rule. We are also
presently investigating!® the behavior of the orbital-
dependent Fermi hole as well as the corresponding
orbital-dependent exchange potentials at surfaces. It is,
however, explicitly evident that on applying the same
reasoning as in the first paragraph of these remarks to
Eq. (16), the orbital-dependent Fermi hole too must have
the same asymptotic behavior as observed in the present
work. Thus we expect the asymptotic behavior of the
higher energy orbital-dependent potentials to be the
same as those of the Slater potential.

Note added in proof. We have recently?? determined
the asymptotic structure of the Slater potential to be
image-potential-line with a coefficient of 3/2m, approxi-
mately twice as large as the image-potential coefficient of

g

(16)

Prilnr)=
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APPENDIX A: EXCHANGE CHARGE DENSITY
AND ITS PLANAR AVERAGE

In this appendix we derive Eq. (4) for the average ex-
change charge density and prove the equivalence of Egs.
(8) and (9) for the planar-averaged density. On substitut-
ing Eq. (2) into Eq. (1) of the text, the expression for the
average exchange charge density is

1 1 2 i(ky—ky )+ (x) —x;)
) = — |+ Ok —k2—k)O(kE—k'2—k)e 11T R (x)gk(x by (X io(x)  (AD)
Py (1,1) o172 42 | L ](,Ek"kzkﬂ (kg )0k — Gk (x)bi(x" ) (x )y (x
. (kfz"kz)]/z ik x | cosO
2#p(r f dk f dk'$3( )¢k,(x’)¢k(x‘)¢kr(x)‘{f0 kydic, [ dge™ I
(klg‘_klz)l/z 2 ik | x | cos@’
X [ i) kidk [Tdge” 1" ] : (A2)
0 3
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Now?! the integral
(kE—k172 (kE—k2)172

ik x 1 cos® ’
I, kydk, [ dge 11 — o J, kydk Jo(kx))

(k2__k2)1/2
=2r—— [k} =k ], (A3)
X

so that Eq. (A2) becomes
2_ g2)12 2

(
f dk$t(x)d; (x ~F—x—~——J [(kZ—k?)"%x)]
I

Px (1 )= (A4)

A (r)

Here Jy(x) and J,(x) are the zeroth- and first-order Bessel functions, respectively. Changing to the dimensionless
variables ¢ =k /kg, ¢'=k’'/kp and y =kpx, y| =kpx|, one gets

f dq $2(p)é,(y’ ——|i”[—m1— )2yl

which is Eq. (4) of the text. This is the average exchange charge density at (y’,y|) for an electron at y. The planar-
averaged exchange charge is therefore

px(y,y')=f dxip,(r,1')

1 ’ ’ ’
= fdylpx(y,y Y - (A6)
ki

2

yy'yy)
Px\¥:Y3y) 36 , (A5)

®/2)  Pay)

Substituting the expression for p,(y,y’;y,) from Eq. (AS) into Eq. (A6) one can write

5 o dly
prlpy) = TP J ‘ly,“!’ fo‘dq foldq'¢;(y)¢.,(y’)¢qr(,v)¢}(y’) g H1—q' )2
I

Pn(y)
XJ [(1—g" )2 |y, | W [(1—¢D)'? |y | . (A7)
Now?! the integral
—g' )12
L__q__z_]_/_z_p 1,0;2; _(___g_)_ forq <q',
. 2(1—¢?) (1—g?)

J ——J [(1—g»)" 2RV, [(1—¢"»)'/*R] = ) (A8)

(=g 1) o, 1= | ¢ :

21—gq' )12 ’ ’(1——q’2) orqg>q ,

where F(a,f3;7;z) is the hypergeometric function, and F(a,B;y,z)=1 for either a=0 or 8=0. Therefore we may
write Eq. (A7) as

’ _J__M_ 1 q e ’ * (., 2
Py =3 [fo dg [7dg'8}(9)0,(" 10y 965y (1 —q?)

1 1
+[ dg S da'8;08,0" 18,0185y (1= | . (A9)

Since both the integrals are over the triangle (0,0), (1,0), and (1,1) in the (¢’,q) plane, we can write the second in-
tegral of Eq. (A9) as

f dq’ f"dq@, )b,y )b, (PIbE(y )1 —g" ) . (A10)
Interchanging g and ¢’ in Eq. (A10) one gets the integral
fo‘dq S da’' 6506, v18,0)85 (' N1 —g?) , (A11)
which is the complex conjugate of the first integral. The planar-averaged charge therefore is
12k q
plyy)= =S Re | [ da(1—gD65 008,00 [ dg'd315 18,31 | (A12)

which is the same as Eq. (9) of the text.
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APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE PLANAR-AVERAGED EXCHANGE CHARGE DENSITY

In this appendix we derive the y’ dependence of the planar-averaged exchange charge density deep in the bulk (i.e.,
for y’' <<0) independent of the position y of the electron. For real ¢’s [see Eq. (2)] the expression for the planar-
averaged exchange charge density given by Eq. (9) may be rewritten as

f dg(1—
For y' <<0, ¢,(y’) can be approximated as sin(g'y
fo"dq’¢qr(y’)¢q,(y)= f qdq'sin(q’y')q‘)q.(y)

cos;gy s, y)+

(
px(»:y") = (y

sm(qy )—'—¢q

918, (018,) [ g6,y gy ) . (B1)

') by ignoring the phase shift 6(¢’) so that

d*¢,(y)

,2 fqdqsmq ") D

(B2)

Now for wave functions which are either exponential (as they are in the classically forbidden region) or oscillatory

(as in the metal),

d’¢,(y)

quZ ~y2¢q'(y)

(B3)

[In the case of the linear-potential model d2¢,,l( y)/dq’ 2~ yé,(y)]. Substituting Eq. (B3) into Eq. (B2) we obtain

cos( g l_’
¢

foqdq’¢q'(y’)¢qr(y) )+ yLsm(qy

d
quq(y)

2
foq dq’'sin(q'y" ), (y) . (B4)

The last integral in Eq. (B4) is the same as the integral we started with, so that the last term is of O (y’ ~3) and there-

fore may be ignored. Thus one may write

36kp oy ( (
'—00)~ — __cos gy sin(gy’)
Px(¥,y'— o) ) f dq(1—g*)sin(gy' )¢, (y ¢, )+ NE dq¢"
1 9%p o1 d 1 18kp
=5 d 1— 2 —_— 2 _— _ 2
—y,z — f dg(1—q*)cos(2gy’ )—¢q (BS)

The integrals of the second and third terms are rapidly oscillating functions for y’— — oo, so that retaining the lead-

ing term of Eq. (B5) we have

1 9kF d
P — — 00 )~ — dq(1—gq 2
Py ®) 57 |7 f ( q¢q(y)
1 181(1:
=57 ot f dg qé;(y)

Thus the leading term in p,(y,y’) as y’'— — o goes as (y

(B6)
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