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New type of Cooper pairing in systems with strong electron-phonon interaction
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%e have investigated the ground-state properties of a model system with a strong electron-
phonon interaction. It is found that as long as the renormalized intersite electron correlation is at-
tractive, a new type of Cooper pairing vrill occur whether the renormalized on-site electron correla-
tion is repulsive or attractive. Furthermore, we have shown that a new phonon coherent state,
named a two-phonon coherent state, must be introduced to serve as the ground state of the phonon
subsystem, so that the ground-state energy of the interacting system can be made a stable minimum

and an appropriate condensation energy of the superconducting ground state may be obtained. %e
have performed numerical calculations for the n = 1 case.

I. INTRODUCTION

As is well known, in the famous BCS theory of super-
conductivity Cooper pairing forms between the electrons
near the Fermi surface. This is a k-space pairing but in
real space the distance between the electrons in pairing is
uncertain. In recent years many authors have dealt with
systems of strong electron-phonon interaction. " They
have found that if the interaction is strong enough for the
on-site electron-electron correlation to be renormalized
attractive the small polarons form spatially overlapping
Cooper pairs with supercqnducting properties similar to
ordinary BCS superconductivity except for a few
differences in the gap equations as well as in the expres-
sions for the critical temperature T, . Furthermore, if
the electron-phonon interaction is strong enough for the
on-site or of-site polaron-polaron interaction to be at-
tractive and strong, ' ' ~ a new type of superconduc-
tivity, so-called bipolaronic superconductivity, will occur;
its properties are dil'erent from those of BCS supercon-
ductivity but are something like those of the super6uidity
of'He. ' "

Because the on-site Coulomb replusion between the
electrons should be much stronger than the o¹site one
the phonon-induced attraction between electrons is more
likely to be of the oft-site type than of the on-site one.

Robaszkiewicz et al poi. nted out that an attractive
correlation between intersite electrons ~ould stabilize
another type of superconductiving phase. As we know,
the possibility and the detail of such a superconducting
phase, especially when the renormalized on-site correla-
tion between electrons is still repulsive, have not been in-

vestigated by any author(s).
In this paper, starting from a strong electron-phonon

interaction, we shall show that so long as there exists a
renormalized real-space attraction between intersite elec-
trons a new type of Cooper pairing will occur whether
the renormalized on-site correlation between electrons is
repulsive or attractive. In order to arrive at our results
we shall point out that a new phonon coherent state,
named a two-phonon coherent state„must be introduced
for the total energy of the interacting system to be a
stable minimum and for an appropriate condensation en-
ergy of a superconducting state to be obtained.

II. THEORETICAL ANALYSIS

The Hamiltonian of our interacting system is given by

H=H, +H ~+H, ~,
~here H„H» and H, » are the electron, phonon, and
electron-phonon interacting terms. The electron term is

H, =g eon, gg T—od; 1;+s +g Uon;tn;i+ ,' g g Vo(n;t+n;i—)(n;+s t+n;+s ))
i 5

1
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where 5 is a nearest-neighboring vector, co is the unperturbed site level, To is the usual hopping integral, Uo and Vo are
the on-site and nearest-neighboring intersite Coulomb repulsions, respectively, d,~ and d,. are the usual creation and
annihilation operators for electrons on site i, n; =d, d; . The last term in (2) is the exchange interaction between elec-
trons and in this paper only the J~0 case will be discussed, which corresponds to an antiferromagnetic coupling be-
tween electrons.

The phonon term represents the harmonic energies of the lattice vibrations,



H „=gAcoob;tb;,

where b; and h,. are usual creation and annihilation operators for local phonons and aro is the frequency of phonons,
which has been assumed to be dispersionless for simplicity. The electron-phonon interaction term is written as

H, „=gg, n; (b; +b; )+g g g2n; (b~+s+b;+s),

where the first term is the on-site electron-phonon interaction and the second term is the nearest-neighboring intersite
one as we consider that the electrons should interact with their nearest-neighboring local phonons.

Applying an unitary transformation of the displaced-operator type to H,

H =exp(R)H exp( —8 ),

8 =g (g, /%coo)n; ( b; b; )—+g g (gi /iricoo)n; (b;+s b;+ s—),

we can obtain

H=QAcoob; b;+geon; +g Uon;tn;i
i i, CT

—g g Tod; d;~s exp (g, /%coo)[(b; b; ) —(b;+s——b;+s)]+(gi/%coo) g [(b;+s b;+s —) (b;+s—+s b;+s+s—)]
i,a 5

+ , yV, -(n, , + „)(n,+, , +n, +, ,),y gu, .e, +, d...Z, +,.1 1

i,S

(g, /ficoo)n, +(gi!ficoo) g n;+s
i 0' 5

At this point one could suppose that when the temper-
ature is low enough (in this paper only the zero-
temperature case will be discussed) the phonon occupa-
tion numbers do not change as electrons move, so that
the electron and the phonon subsystems can be decoupled
by making an average of H over the vacuum state of the
phonons subsystem and a Holstein reduction fac-
tor, ' ' which is of the form exp[ —g /(Re@0) ], may
be obtained. However, if the electron-phonon interaction
is strong, as we consider in this paper, the ratio /gAco 0
would be larger than 1 and the reduction efFect would be
fairly strong. This kind of reduction e8ect must make
the total energy of the interacting system under con-
sideration increase as the mass center of the electronic
energy band is not in6uenced by the electron-phonon in-
teraction (without considering the polaron binding ener-

gy of the form g /iricoo). If the average number of the
electrons per unit cell, N, /X, is a negligibly small quanti-

ty, the increase of the total energy is also negligible. Hut
it is the completely different case when the ratio N, /N is
a finite quantity. In this paper, via the discussion of a
possible solution of the model Hamiltonian we want to
develop a variational treatment to make the total energy
to be a stable minimum and illustrate that in practice the
reduction effect should be much weaker than what the
factor exp[ g /(ficoo) ] in—dicates.

Our variational state vector for the ground state of the
phonons subsystem is

~

4 i, ) =exp( —S)
~
vac),

S=ga(b;b; b;tb;"), —

exp(S)(b; +b; )exp( S)=(b; kb; )e—xp(+2a) (10)

exp(S)b; b;exp( —S)
= [b; cosh(2cc)+b;sinh(2a)](b; sinh(2cc)

+b;cosh(2a),

we get an em'ective Hamiltonian H,z for the electron sub-
systems

in which cx is a variational parameter and, if et =0,
~ +~i, )

returns to the vacuum state
~

vac). As long as cc&Q

~
'0„&) is a new and special state of the phonons subsys-

tem other than any eigenstaies of phonon number opera-
tors. Because the unitary operator exp( —S) is similar to
that of the two-photon coherent state in quantum optics
proposed firstly by Yuen, ' we call

~

4 „) the two-
phonon coherent state' in which the average values of
phonon number operators are nonzero but the average
values of phonon creation and annihilation operators are
zero. In Sec. III we shall show that a minimum of the to-
tal energy of the interacting system could be obtained
indeed when the adjustable parameter a is equal to some
nonzero value.

Making an average of H over the state
~ %~i, ) and us-

ing the relations
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H,s
——(vac

~
exp($)H exp( —5)

~
vac }=Nficoo[sinh(2a)] +g e, n; —g g T,d; d;+s +g U, n; &n;i

+ l X X V. (n t+'i)(n+s, t+n+s. i) —l X X Jd,'.d'+s,.d;. d;+s,.
i, 5 o,e'

where e, =eo g—il(ficoo) zg—i/(f'icoo),

T, =Top =Toexp I
—[(g, —g, )'/(mo)'+(z —1)g ', /(mo)']exp( —4cc)I,

U, = Uo —2gzi/faoo —2zg2z/mo V, = Vo 4g—igz/fi o

(12)

(13)

in which z is the coordination number. We have neglected in H, cc the phonon-induced next-nearest and third-nearest
neighboring electronic correlations because they are of less importance and do not influence our solution qualitatively.
s„T„U„and V, are parameters renormalized by the electron-phonon interaction and it is obvious that V, could be
negative whether U, is positive or negative. In what follows we would consider the case that V, &0 but U, p0. It
should be noted that the reduced hopping integral T, is connected with the adjustable parameter a of the two-phonon
coherent state.

Within the generalized Hartree-Fock approximation the effective Hamiltonian H,s can be changed into the following
form:

H, s-Nficoo[sinh(2cz) ] —NU, n /4+¹n (2
I V, ( +J)/4 ——,

' gz( ( V,
~
+2J)ni, (di, di, }

——,
' gb, „(di,td i, i+d „tdi, t }++E(k)d„di, +gbg(dgtd gi+d i, id„t),

If. k, o k

E(k)=E, Ii, —zT, y—(k)+ ,'z(
~

V,
~

+—2J)n&,

(14)

(15)

in which the Bloch representation has been introduced and p is the chemical potential. In (14) and (15) we have used
the following definitions:

E, =e, + ,'U, —-n —,'z(2
~

V,
~
+J)n, y(k)= —+exp(ik 5),l

n= g&dk dk }, nk= gy(k —k)(d„d„
i. k'

(16)

bi, —— g[U, —z(
~

V, ~+J)y(k —k')](di, td zi —d&id zi },
gl

and assumed that the singlet Cooper pairing is energetically more favorable than the triplet one as the exchange interac-
tion is supposed to be antiferromagnetic. The triplet Cooper pairing will be discussed in a forthcoming paper.

By using the method of the Green's function we have

& d'„.d„.}=-,' ——,E(k)/QE'(k)+ ~'„, & d „'.d' „.}= —
—, a„/QE'(k)+ ~'„.

Thus, n, n&, and 5& may be written out as

n =—g [1—E(k)/QE (k)+bi, ],1

N

n„= yy(k——k')[1 —E(k')//E'(k')+~i', ], (19)

g [U, —z(
~

V,
~
+J)y(k —k')]5~/QE (k')+6k .

gl

In Appendix A we have proved that Eq. (19) can be rewritten as

ni, ——2('y(k),

(20)

g y(k')E(k )/QE'(k')+a„'. .
2X gc

Hence, from Eq. (15) we have

(21)
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E(k)=E, p— [zT, —z(
I V, I

+2Jg]y(k) .

We have also obtained in Appendix A the following integral equations for 6&.

hi, ——b,o —b,y(k),

~0= g U, [&iy(k') —&0]/QE'(k')+ [bo—h, ,y(k')]',
2X „,

gz( I V, I+J)y(k')[&iy(k') —&0]/QEz(k')+b, „' .
2N ~,

Equations (18), (21), and (23) are starting points for calculating the chemical potential p and parameters g, Q, and
6i. In general, these equations must be solved by numerical methods.

III. NUMERICAL RESULTS

In what follows only the n = 1 case will be considered because in this case the above equations could be solved analyt-
ically. When n = 1 it can be easily verified that p =E, and 50——0 but

g y(k')E(k')/QE (k')+hiy (k')
2X ~,

(24)

where

gz( I V, I
+J)y'(k')&, /QE'(k')+&', y'(k'),1

Qt

E(k)= —zy(k)[T, —(
I

V,
I
+2J)g] .

It is obvious that b, , =0 is a trivial solution of Eq. (25).
Introducing a de6nition that

(26)

y = g —
I y«) I, (27)

Eqs. (24}and (25) can be changed into the following form

g= —,'yz[T, —g( f
V, I

+2J)]/Q[zT, —zg(
I V,

f
+2J )] +b,

1=—,'yz(
f V, I

+J)/'lt/[zT, —zg'(V, +2J)]z+b, zi .

(24')

(25')

The solutions of these two equations are

g=T, /(2
I V, I

+3J)

k)=[—,'yz(
I

V,
I
+J)]'—[(1 g}pzTO]'—

(28)

EgN/=A'co [0isn (h a2)] ——,'U, +—„'z(2
I V,

I
+J)

.'y"(
I

V-, I-+J)

—(1 r))z T, /z(
I

V—, I
+J);

but &f 6& ——0,

(31)

or

b, , =0, if [—,'yz(
I V, I

+J)] —[(1 r))pzTO] (0, —
E /N=Acoo[sinh(2a)] ——,'U, +—,'z(2

I
V, I

+J)

+ —,'yzz(
I

V, I
+2J) zT, y . —(32)

r}=(
I V. I+2J)/(2

I V, I+3J) .

The actual value of y [Eq. (27)] could be obtained by nu-
merical integration and the result is

After p, g, &0, and 6, have been obtained the ground
state energy Eg, which is an average of the effective Ham-
iltonian H,& over the ground state of the electrons sub-
system, can be derived from Eqs. (14) and (17). If b, & 0,

or

y =0.258 for body-centered cubic (bcc) lattice

y=0. 331 for simple cubic (sc} lattice .

(33}
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In numerical calculations all quantities being of the en-

ergy dimension are expressed in the unit of half band-
width zTO of bare electrons: fuoo= Goo/zTO,

Uo ——UolzTO, Vo ——Vo/zTO, U, = U, IzTO, V, = V, /zTO,
J=J/zTO, gi gi——/zTO, g~=g~/zTO, Eg E——/zTO, etc.
The employed values of the parameters in the calcula-
tions are given in the following figures.

In Fig. 1 the E /N and 5, versus the two-phonon
coherent state parameter ~=exp( —2a ) relations in the
bcc lattice are illustrated. In the figure curve (1) corre-
sponds to the Es/N versus r relation when b, , &0 [Eq.
(31)], curve (2) that when b, , =O [Eq. (32)] and curve (3)
represents b, , versus ~ relation. We can see from the
figure that when ~=~0(1)=0.56 curve {1)passes through
its stable minimum Es/N=Eso(1)/N=0. 4314 and so
does curve (2) at r=ro(2) =0.52, at which Es/N =Eso(2)/
%=0.4335,

In Fig. 2, the same relations as in Fig. 1 are illustrated
for the sc lattice but the employed parameters are some-
what difFerent from those of Fig. 1. We can see that
when r= so(1)=0.47 curve (1) (b, , & 0) passes through its
stable minimum Es/N=Eso(1)/N=0. 3677 and so does
curve (2) at w=wo(2)=0. 435, at which Es/N=Ego(2)/
X=0.3710.

Because in the ground state the total energy of the in-
teracting system must be as low as possible, we infer that
in the cases of Figs. 1 and 2 the ground states of the in-
teracting systems are the superconducting states with
6,=0.158 (Fig. 1) and Z& ——0.183 (Fig. 2). The condensa-
tion energy of the superconducting state, which should
be

5Ego/N =Ego( 1 ) /N Ego(2 ) /N—, (34)

is —0.0021 (Fig. 1) or —0.0033 (Fig. 2). However, if
a=0 and ~= 1, that is, if the two-phonon coherent state
were not introduced, the condensation energy of the su-
perconducting state would be —0.0558 (Fig. 1) or
—0.0942 (Fig. 2). These two values are too large in mag-

o.y6
0.2

FI6 2 Eg /X and 6 ] vs f' relations in the sc lattice. The em-

ployed values of the parameters are Goo ——0.08, Uo ——2,
U, = 1.265, Vo ——0.1, V, = —0.2, J=0.1, g) ——0.121, gp ——0.050.
The two arrows indicate the stable minimums of curves t, 1) and

(2},respectively. See the text for details.

nitude. For comparison, in the weak coupling approxi-
mation of the BCS theory the condensation energy is of
the order of 10 —10 eV, '

Furthermore, since in the superconducting ground
state the phonons subsystem should be in the two-phonon
coherent state with a&0, the reduction effect of phonons
must be more weaker than the one when the phonons
subsystem is in the vacuum state. For the parameters of
Fig. 1, the reduction factor p, which is given out in Eq.
(13), is equal to 0.4883 when r=ro(1) =0.56 but to 0.1017
when ~=1 {a=O). For the parameters of Fig. 2, p is
equal to 0.5486 when r=ro(1) =0.47 but to 0.0660 when
~= 1 (a =0).

At the end of this section we should point out the fact
that 50=0 in n =1 case indicates that in this case the
on-site Cooper pairing does not exist because we can
derive the on-site abnormal average value by

{d yd;i —d;id;t) = g {dyed gi —dyed gi )

=—g h, y(k)/QE'(k)+ b, ', y'(k) =0.1

(35)

Hence, in n =1 case only the oE-'site Cooper pairing ex-
ists.

%e emphasize that the results obtained in this section
are not influenced, qualitatively, by the renormalized on-
site electron correlation U„which may be positive or
negative.

IV. DISCUSSIQNS

FIG. 1. Eg/X and 6, vs v relations in the bcc lattice. The
employed values of the parameters are fiapo ——0.1, Uo ——2,
U = 1.293 Vo =0.1 V = —0.15 J=0.1 g& =0.133& g2 =0.047.
The two arrows indicate the stable minimums of curves (1) and
(2), respectively. See the text for details.

(1.) We have investigated the ground-state properties
of a model system with strong electron-phonon interac-
tion. It is found that so long as the renorrnalized intersite
electron correlation is attractive, a new type Cooper pair-
ing would occur, ~hose occurrence is indicated by the
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nonzero function 5& as 6& is connected with the abnor-
mal average values (d„tdt „I—d„ld „& )'s, whether the
renormahzed on-site electron correlation is repulsive or
attractive.

(2.) From the method of the Green's function and its
result Eq. (17) it can be inferred that the excited energy of
the quasiparticle in superconducting ground state is

W(k)=QE (k)+61, . (36)

Thus, 6& may be regarded as a gap function. ' However,
as b, l, is a function of k, in the Brillouin zone it is not a
constant but changing from point to point. For instance,
in n =1 case 5& can be equal to zero at the point at
which y(k) =0.

(3.) We have also shown that as a result of the
electron-phonon interaction the ground state of the pho-
nons subsystem must be a new phonon coherent state,
named as a two-phonon coherent state, for the ground-
state energy of the interacting system to be a stable
minimum and for an appropriate condensation energy of
the superconducting ground state to be obtained. Be-
sides, in such a coherent state the reduction effect of pho-
nons would be more weaker than what the Holstein fac-
tor indicates.

(4.) We have made numerical calculations in the n =1
case and shown concretely that in this case the ground
state of the interacting system may be superconducting
with the gap function ill, ———Sly(k). Moreover we have
pointed out that in this case the Cooper pairing would be
of all off-Site type.

The discussions of the 5nite temperature case, especial-
ly the critical temperature T„will be given in a forth-
coming paper.
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APPENDIX

It can be easily verifmed that

—g y(k —k') =0,1

because

y(k —k') =—g exp[i(k —k') 5]
Z

and the k' summation is over the first Brillouin zone.
Thus, from Eq. (19)

ng ——g——y(k —k')E(k')/QE (k')+&I, . (A2)k

Then, as E(k') and b,z. must be invariable when symme-

try operations of the point group of the crystal are ap-
phed to the wave vector k', we may let the k' summation
in Eq. (A2) be rewritten as

g g y(k —PIk')E(PIk')/QEI(PIk')+~p~ „.
I =1 k'

2

g g —g exp[i(k —. PIk').5]E(k')/QE (k')+51, ,
/=]. k'

where P& s are some symmetry operations of the point group and they satisfy the condition that P&5, PI5, . . . , P, 5 are
all nearest-neighboring vectors, that is,

2

y(k)= —g exp(ik P&5) .
l=l

(A4)

Because the scalar product of vectors is invariable under the symmetry operations of the point group, from (A3) we can
erlve

n I, = ——y(k) g y(k')E(k')/QE (k')+ K~I. .

If we denote

g y(k')E(k')/QE'(k )+~„', ,2% ~,
(A6)

Furthermore, we can verify that

~I =~O ~ly«»
where 6o and 51 aI'c llldcpcndcllt of k. Substltutlng (AS) lllto Eq. (A20),

(AS)
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&o—b gy(k) = — g [U, —z(
( V, f +J)y(k —k')][bc—b,y(k')]/QE2(k')+Eh, „'. .

k'

Via the same method as above me can obtain

&c—b )y(k) = — g U, [bc—bty(k')]/QE (k')+ b 2

2% ~,

+ y(k) g&( ( V,
~
+J)y(k')[&c—bty(k')]/QE'(k')+&g,

2W

that is

bo ——— g U, [bc—sty(k')]/QE2(k')+ b, ~q, ,
gt

gx(
~

V, ~
+J)y(k')[bc —sty(k')]/QE (k')+bq~, .

2N ~,

(A9)

(A10)

(A 1 1)

'Permanent address.
~J. Bardeen, L N. Cooper, and J. R. Schrieeer, Phys. Rev. I.OS,

1175 (1957).
2P. %V. Anderson„Phys. Rev. Lett. 34, 953 (1975).
38. K. Chakraverty, J.Phys. (Paris) Lett. 40, L-99 (1979).
4A. Alexandrov, Zh. Piz. Khimi. 57, 273 (1983) [Russ. J. Phys.

Chem. 57, 167 (1983)].
S. Robaszk1ewicz, M. MIcnas, and K.A. Cllao, Phys. Rev. 8

24, 4018 (1981);ibid. 26, 3915 (1982).
6P. Nozieres and S. Schmitt-kink, J. Low Temp. Phys. 59, 195

(1985).
~T. M. Rice and L. Sneddon, Phys. Rev. Lett. 4'7, 689 (1981).
sA. Alexandrov and J. Ranninger, Phys. Rev. 8 23, 1796 (1981);

ibid. 2A, 1164 (1981).
9S. Robaszloewicz, M. Micnas, and K. A. Chao, Phys. Rev. 8

23, 1447 (1981);ibid. 24, 1579 (1981).
~oA. Alexandrov, J. Ranninger, and S. Robaszkiewicz, Phys.

Rev. Lett. 56, 949 (1986);Phys. Rev. 8 33, 4526 (1986).
Y. M. Li and L. Y. Zhang, Solid State Commun. 57, 553
(1986).

'2T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).
~38. P. Yuen, Phys. Rev. A 13, 2226 (1976).
' The idea of the two-phonon coherent state has already been

used by the author of this paper to deal with the electron-
phonon interaction in the periodic Anderson model [Phys.
Rev. 8 36, 8736 (1987)].


