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%e erst study noncoherent Sloch oscillations in ultrasmall-capacitance normal tunnel junctions
using the semiclassical approach. %'e then study coherent Sloch oscillations in other systems show-

ing an energy spectrum similar to the "nearly-free&lectron" model in the extended-Brillouin-zone
picture, and compare the two pictures. In the latter we calculate the response to a constant driving
force, including both Zener tunneling and inelastic transitions between the energy bands. For both
cases we also calculate the response of the system to an alternating driving force. In particular we

calculate the size of the interference steps and show that a mesoscopic junction (either normal or
Josephson) can be used as a phase-voltage converting element. Results are presented in a form suit-
able for comparison with experiment. %e suggest specific experiments to verify our predictions.

I. INTRODUCTION

Recent advances in the fabrication of submicron sys-
tems' have made it possible to study experimentally phe-
nomena on mesoscopic length scales. From the theoreti-
cal point of view this is of interest since we are deahng
'with systems which have many degrees of freedom but
are not sufficiently large to be in the thermodynamic lim-
it. Yet despite these degrees of freedom, the systems are
small enough to demonstrate quantum-mechanical dy-
namics and coherence such as those found in microscopic
systems. In addition, since we are speci6cally interested
in systems that are coupled to an external driving force,
the question of how to describe such open systems within
a quantum-mechanical framework naturally arises. From
the experimental and technological point of view it is
hoped that the study Of mesoscopic electronic systems
will lead to new applications in logical elements and sen-
sitive measurement devices.

Here we initially focus on the recently predicted volt-
age oscillations in mesoscopic normal tunnel junctions
with an ultrasmall capacitance C, when they are driven
by an ideal current source, Iz, . Various models predict
that the application of a current source to such junctions
will produce voltage oscillations with an amplitude of
e/2C, and a frequency Ie, /e, similar to the predicted
Bloch oscillations of frequency Ia, /2e in ui«asmali ca-
pacitance Josephson junctions. There are several re-
quirements for the observability of this "inverse Joseph-
son effect" in normal (i.e., not superconducting) junc-

tions, many of which will be detailed here. One require-
ment is a large single electron-charging energy. With
current technology junctions with a capacitance =10
F can be produced, which implies a charging energy of
e~/2C =100 K.

In Sec. II we review the semiclassical description of
noncoherent Bloch oscillations in normal tunnel junc-
tions. In this approach the time evolution of the volt-
age across the junction is analyzed as a semiclassical sto-
chastic process. The transition rates of electrons tunnel-
ing across the junction are calculated assuming that the
electrons tunnel independently and elastically. The effect
of the small capacitance is accounted for by shifting the
relative Fermi energy of the two sides of the junction by
e /2C once an electron transfer takes place. The net re-
sult of this shift is to suppress tunneling if the biasing
voltage is smaller than Vc ——e/2C. When the external
voltage exceeds Vc the current source continues to
charge the junction, until an electron tunnels and lowers
the voltage by e/C. This repeated cycle of continuous
uniform charging and stochastic discharging gives rise to
a sawtooth voltage. Long time correlations in these
sawtooth oscillations result in a power spectrum with 5-
function peaks. In Sec. II we also present numerical re-
sults for the I-V characteristics and power spectra, along
with analytic approximations. Many of the results shown
here have been previously obtained by Averin and Li-
kharev; ' we present them mainly for comparison with
the results of later sections. In addition we discuss some
of the implicit assumptions, at present without micro-
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scopic justiffcation, that are made in the semiclassical ap-
proach. These assumptions were not explicitly stated in
earlier derivations. ' Our nein new result in this section
is the description of the effect of increasing the tempera-
ture. We show that in the semiclassical approach in-
creasing the temperature results in a decrease of the aver-
age voltage towards the value M~, ; in the coherent mod-
el the effect of temperature is quite different.

In Sec. III we discuss a coherent model for a system
whose instantaneous energy as a function of the total
charge pushed into the system by an externa1 source is
similar to the "nearly free electron" model in the
"extended-Brillouin-zone" picture. " Such a structure of
energy bands is obtained from a quantum-mechanical
treatment of the Hamiltonian assumed for the system.
An instantaneous state of the system may be described as
a coherent superposition of eigenstates of the charge
operator, hence the term "coherent picture. " When such
systems are driven by a weak external source they tend to
follow the energy levels adiabatically so that the energy
of the system and other variables, such as the voltage, are
periodic functions of time. However, in such a model the
coupling to external degrees of freedom, i.e., the "heat
bath" is extremely important. We discuss the relevance
of the model to other mesoscopic systems.

In Sec. IV we include the effects of both Zener tunnel-
ing and inelastic transitions between the energy bands in
the discussion of the coherent model. In our coherent
toy model the single degree-of-freedom wave function
describing the system "leaks" to higher bands with time.
Neglecting interference effects between consecutive Zener
transitions, ' ' which can be done when the phase smear-
ing time is sufficiently short, one can show that the sys-
tem displays an unphysical drift to arbitrarily high ener-
gy bands, while displaying a new "spiky" type of
noise. ' However, this picture has to be qualitatively
modiffed when interference effects in the energy-band pic-
ture are important. ' In a more reahstic picture in which
the system is coupled to a heat bath, we allow for inelas-
tic transitions among the bands. The average drift is now
zero, and one can calculate the steady-state dynamics of
the junction. For a specific mechanism of inelastic relax-
ation we Snd that the resulting dynamics is very similar
to that predicted by the semiclassical model.

The effect of an oscillating driving force on both the
coherent and noncoherent Bloch oscillations is discussed
in Sec. V. It is mentioned in Refs. 3-6 and 10 that when
such a system is driven by both alternating and direct
currents simultaneously the response shows "inverse
Shapiro"-type steps. The steps should be observed at
values of 2nId, /e = (n /m )co„,where co,„is the frequency
of the external driving force and Id, is the external
current. In Sec. V we present a numerical and analytical
study of these steps, according to the two pictures, as a
function of the parameters. Unlike the case of ordinary
"Shapiro steps, "' in our case the steps are scanned by
changing the phase of the oscillating driving force. This
efFect suggests that the mesoscopic Josephson and normal
junctions can be used as phase-voltage converters. %e
also discuss the response of junctions to an alternating
external bias charge.

A brief discussion of our results is presented in Sec. VI,
along with possible experiments to test them. In the Ap-
pendix we present a discussion of the difFerences between
current and voltage sources in mesoscopic tunnel junc-
tions.

II. NONCOHERENT BLOCH OSCILLATIONS

In this section we discuss the Id, /e oscillations in
raesoscopic normal tunnel junctions using the semiclassi-
cal approach. To clarify the presentation we first cal-
culate the resistance of a junction driven by an ideal volt-
age source V. In this case the average current is given
by16

(I }=er(Q)= J D(E)r '(E)f(E)

x [1 f(E+e—V )]dE . (2.1)

r(Q) is the rate of electron tunneling in the direction of
the applied voltage as a function of Q, the charge across
the junction; D (E}is the density of the single electron en-
ergy states; r '(E) is the elastic tunneling rate for an
electron of energy E through the barrier; f is the
equilibrium-Fermi-distribution function

f (E)=
exp(E /ks T ) + 1

(2.2)

I=e w '(EF )D(EF )V,
so the resistance is given by

(2.3)

The charge Q is related to the voltage by Q =CV. To ob-
tain Eq. (2.1) we made the following assumptions:

(1}The voltage is sufficiently large, that is eV&)k Ta,

so that we may neglect the backward transition rate 1(Q)
relative to r (Q)

(2) The equilibration time in both electrodes is much
shorter than the tunneling time ~(E) so that the occupa-
tion probabilities of the states are given by the equilibri-
urn Fermi distribution.

(3) The quantum probabilities for the elastic tunneling
of electrons of different states are independent.

(4} After a charge has tunneled across the junction the
voltage source, a device with zero internal resistance (see
the Appendix), removes it instantaneously so that a fixed
voltage is maintained across the junction at all times.

Although we assume that the electrons tunnel elastical-
ly there is still dissipation in the junction. For example,
the electrons that tunnel from the left-hand side to the
right-hand side electrode are not, generally, in thermal
equilibrium with those on the right-hand side. As they
thermalize they release energy to the heat bath coupled
to the system, and generate dissipation at a rate IV.

In the case of a tunnel junction between two metallic
clcctrodcs it will bc assllnlcd that both D (E) and 1 (E)
depend only weakly on energy and can be replaced by
their value at the Fermi energy, D (EF ), and ~ '(E~ ).
Since the integral of the occupation factor f(1 f ) is ap-—
proximately e V, we then have
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1

e r '(EF }D(EF}
(2.4) l(Q)= f" D(E)r-((E)f(E)

In a small junction D(E) and r '(E) may have a strong
energy dependence, but this is not expected to modify the
above discussion qualitatively so long as this dependence
is smooth. Note that for the case of quasiparticle tunnel-

ing between two superconductors, D (E) diverges on ei-
ther side of the energy gap. Consequently there is a large
increase in the current when the applied voltage exceeds
26(T)/e. '

%'e now turn to the case that the junction is driven by
an external current source Iz, . An ideal current source,
by definition, has an infinite internal resistance (see the
Appendix). Therefore, an electron that tunnels across the
junction changes the voltage by an amount e/C. Consid-
er a junction with an initial voltage drop V. The electron
that tunnels elastically across the junction from an energy
E relative to the Fermi energy on the left-hand side ar-
rives on the right-hand side not at an energy E+eV (rela-
tive to E~ on the right-hand side), but rather at energy
E+eV —e /2C. Including this shift the transition rates
are given by

r(Q) = f D(E)r '(E)f(E-)

X [I f(E+eV—e /2C —)]dE, (2.5)

I

X [1 f—(E+e V e—/2C )]dE,

r(Q) = P, ((Q), I(Q) = &( „(Q),1 1
(2.6)

(2.7)

and the energy is measured in units of e /C.
In the semiclassical approach the state of the system is

described by the classical variable Q, the charge across
the junction. The time evolution of Q is described by the
stochastic process

where again Q=CV. Using the definition of the resis-
tance R in Eq. (2.4), it is convenient to express the transi-
tion rates as

Q(t)+I~, hr+e with probability 1(Q)b,(,
Q(r +4( )= Q (r)+Ig~ 5r —e with probabihty P(Q)kr

Q(r)+I~, br with probability 1 —[r(Q)+1(Q)]br .

(2.8)

In writing the stochastic process this way we have explic-
itly assumed that the current source I&, pushes in a con-
tinuous charge at a uniform rate while the tunneling of
charge occurs discretely, and that ht is suN[ciently small
so that at most one charge tunnels during any given time
interval. From the stochastic process of Eq. (2.8) we can
derive the master equation' '

Bp(, r) Bp(, r)
+r(Q+e )p(Q+e, t)

+I(Q —e )p(Q —e, r)

—[r(Q)+ &(Q) ]p(Q, & ) .

This master equation has already been derived in Refs.
5-7. In Refs. 5 and 6 this master equation was derived
by considering the dynamics of a quantum density ma-
trix. %e emphasize that the assumptions we state here
explicitly were implicit in Refs. 5 and 6.

%e further discuss the assuro. ptions made in the deriva-
tion of Eq. (2.9). In defining the stochastic process in Eq.
(2.8) we have assumed that the state of the junction can
be described by a single classical degree of freedom Q.
The eftect of the internal degrees of freedom is expressed

k~T
if 5Q =0,

e R
r(5Q)= '

if e 5Q /2C ))k(( T .
eRC

(2.10)

This means that the transition rate increases linearly with
5Q for large enough 5Q. Energy is conserved in this tun-
neling process. The charging energy of the system is re-
duced following the charge transfer, but the electron
which tunnels from right to left makes a transition to an

by the transition rates r(Q) and l(Q). To clarify this
point we work out explicitly the tunneling rates. Let the
system be at a state associated with the macroscopic de-
gree of freedom Q = e/2 (the charge across the junction is

Q =e/2. ) As we further increase Q by an increment, 5Q,
the charging energy increases to (e/2+5Q) /2C, which
exceeds the energy the system would have if one electron
had tunneled by -2e 5Q/2C. We stress again that con-
tributions of the tunneling Hamiltonian and the coupling
to the heat bath have been neglected in calculating the
energy of the system according to this semiclassical pic-
ture. From Eqs. (2.6) and (2.7) we calculate
r(e /2+ 5Q ) =—( (5Q ), given by
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energy level of the left-hand side electrode which is
higher than Ez on the left, as mentioned above. Thus the
electron gains the change in the charging energy. It is as-
sumed that following its tunneling this "hot" electron re-
laxes by transferring its excess energy to the heat bath so
that the equilibrium Fermi distribution is achieved on ei-
ther side of the junction. From this discussion one can
see that the semiclassical picture includes quite a few
phenomenological assumptions and that a genuinely mi-
croscopic picture is still lacking.

We now discuss the response of a junction to a direct-
current source as described by the stochastic process of
Eq. (2.8) assuming that the semiclassical picture is
correct. First we consider the limit kz T «e /2C so that
r( Q) can be approximated by (Fig. 1.)

0, Q &e/2,
r(Q)= (2.11)

Q &e/2 .

dc 10
'/Re

08—

0.6—

0 P

0.2—

0 0
0 0.5 1.5

C&V&

FIG. 2. The I-V characteristic for the semiclassical picture.
The parameters are C = 1 fF and T=0.05 K.

In Fig. 2 we show the I-V characteristics obtained by nu-
merical simulation of the stochastic process described by
Eq. (2.8). At low currents (Id, «e/RC) the voltage
traces out a sawtooth wave as a function of time, with Q
being the average value of Q at which a transition takes
place. From Fig. 4 one can see that the average voltage
across the junction is related to Q by

&V&=—' g--' (2.12)
C 2

where Q, the average voltage at which an electron tun-
nels, is given by

Q= f O'I'(Q')dg'

and P(g) is the probability density that the transition

occurs when the charge across the junction is Q, namely,

P(g) = exp —J dg'
Id, en Ia,

(2.14)

& V&'
+ R.e

(2.15)

in agreement with the numerical simulations shown in
Fig. 2. It can be seen that the I-V characteristic changes

This transition probability density is the product of the
probability that the junction has not made a transition up
to the charge Q, times the probability of a transition
occurring at Q (Fig. 3).

Using Eq. (2.14) together with Eq. (2.11) we obtain, for
Id, «e/RC,

r(Q)e 125

~dc

100 P(Q)
I I

}
I I I

}
I I I

0.5

0 I

0

FIG. 1. The transition rate r (Q) vs Q for various values of T.
I (Q) is the reflection of r (Q) about the Q =0 axis. The parame-
ters are R =2560 Q and C=1 fF, so that e/AC=64 nA and
Id, ——1 nA.

FIG. 3. The dependence of the probability P (Q) on the ratio
a=(e/RC)/Id, . The width of the distribution varies inversely
eath 0..
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(approaches linearity) at high currents (Is, ~ e /RC )
when the average voltage is greater than e/C. In deriv-
ing Eq. (2.15) we have assumed that {V) & e/C, so that
after a transition the voltage across the junction becomes
negative. For tlris reason the lower limit of integration in
Eq. (2.14) was taken to be e/2. At high currents we can
correct Eq. (2.14) and calculate the average voltage using
C & V) —e/2 as the lower limit in the integral. However,
we can use a simpler approximate method by setting
(Q ) =C( V), and by noting that at each transition Q de-
creases by exactly e. Therefore, when the junction
reaches a steady state, the integral of the transition rate
over time must equal the amount of charge pushed in by
the current source. In the time interval it takes to bring
in one charge we have

(2.16)
{Q}—e/2 I„,

which yields

&V)= =RI„+ '
(2.17)

Equation (2.16) is valid when the width of P(Q) is much
larger than e. Equation (2.17) is in agreement with the
results of the numerical simulations shown in Fig. 2, as
well as those of Refs. 5 and 6. As can be seen in Fig. 2,
the I-V characteristic scales with I&,RC. To understand
this behavior and the shape of the I-V characteristics we
have plotted the transition probability density P(Q) {Fig.
3). We note that the width of the distribution is propor-
tional to I&,RC. We also mention that, since the Iz, /e
oscillations are due to the discrete transfer of single elec-
trons, to observe these oscillations the width of the distri-
bution must be smaller than e. This corresponds to
Is, « e /RC, the limit we mentioned above.

In Fig. 4 we show the time dependence of the stochas-

tic process for difFerent values of the current and the cor-
responding power spectra. At low currents we can ob-
serve the oscillations at a frequency I~, /e. In this limit
the background noise in the power spectrum is in accor-
dance with Refs. 20 and 21. Here we are interested in

Sz, the spectral density of the voltage 6uctuations. To
employ the results of Refs. 20 and 21 we have to view the
tunnel junction as an RC circuit. Then S~=

~
Z

~
SI,

where Sl is the power spectrum of the current noise and

~

Z
~

2=R 2/(1+c0~C~R 2). The Iz, /e oscillations appear
in the power spectrum as peaks of zero width at angular
frequencies co =2wlIs, /e, where I is an integer.

As the current increases the background shot noise
also increases, so that when I~, ~&e/RC the width of
P(Q) is much larger than e and the oscillations are
washed out by the noise. In this limit the power spec-
trum of the current noise approaches that of "classical"
shot noise, SI =eI&, . Therefore the power spectrum of
S„has high contributions at low frequencies as shown in
Fig. 4.

The sharpness of the peaks can be explained as follows.
Let P(Qi, ri, Qgt2') be the condttlonal probablllty denstty
that the charge on the junction at time r2 is Q2 given that
at time t, the charge on the junction was Q, . This we
will write as P(Q2, r2) for short. The master equation
(2.9), with the initial condition

lim p{Q,t)=5(Q —Q&), (2.18)

P(Q), t)', Q, t)=P D( Qi, t&', Qt)+Pa(Q, r), (2.19)

where p~(Q„t, ;Q, t)~0 as taboo. Using the Markov
property of the stochastic process Q(t), we can write

has a periodic solution pp(Q, t), ' to which the solution
P(Q&, r &', Q, r) of Eqs. (2.9) and (2.18) converges as t ~ oo.
Thus

probIQ( r) Q) Q(r +'r) Q~ ~
Q(0) Qo j probI Q(r +'r) Q~ ~

Q(r) Q) I )(probIQ(r) Q( ~
Q(0) Qo)

=P(Q& r'Qz r+ )P{QO 0 Ql

where p =pD+pz, as in Eq. (2.19). Turning to the autocorrelation function A (t „t2 ) we have that

a(r, r+r)= f fQ, Q, ProbIQ(r)=Q„Q(r+r)=Q,
~
Q(0)=QO)&Q, &Q2 .

Using Eqs. (2.19) and {2.20) in Eq. {2.21) and letting r ~ ao along a sequence of periods we obtain

~ (r~r +&) f fQ1Q2PP(Q&r )lPD(Q1&0&Q2&r)+PP(Q2&r)l~Q1~Q2

(2.20)

(2.21)

(2.22)

Thus the autocorrelation function

A(r)= lim A(r, r+r) (2.23)

of period e /I~, . As we will show below, the coherent ap-
proach yields similar peaks.

is a sum of a periodic function and a decaying function of
This accounts for the sharp peaks and for the back-

ground in the power spectrum. In simple terms this
means that the current source serves as an external clock.
Tunneling events are highly correlated; they have a sta-
tionary distribution about a Axed-time periodic sequence

In this section we consider a model system whose ener-
gy spectrum as a function of an external driving force E is
analogous to that obtained in the extended-zone scheme.
Vhth both mesoscopic Josephson junctions and one-
dimensional metal rings in mind we assume the system is
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described by the Hamiltonian

H=Ek(F —R') +Hr . (3.1)

The first term in Eq. (3.1) is the "kinetic energy, "whereas
the second term plays the role of a "potential energy. " In
the case of current dri-uen mesoscopic Josephson junc
tianss 'o the driving term is F=Id, t/2e (only Cooper-
pair current is considered at this point), and Ek ——2e /C,
where C is the capacitance of the junction. The number
operator which counts the number of Cooper pairs that
have been transferred across the junction is 8'= —i 8/B8,
where 8 is the difference in the phase of the macroscopic
wave functions on both sides of the junction. Here we
shall first consider a case (case I) where Hr is a tunneling
Hamiltonian which describes the transfer of a single
Cooper pair:

( n
~ Hr

~

n '
& =—'Er (26„„—5„„+i

—5„„ i ) . (3.2)

In terms of 8,

2(~0&+ ~1&} (3.5)

To 6rst order in perturbation theory the corresponding
energies are

E, =(y, ~H
~ q, &=E„/4+E,/2,

E =(f ~H
~ Q &=Ek/4 3ET/—2 .

(3 6)

This means that if we prepare the system in the n =0 or
n =1 state it will oscillate coherently between these two
states with a frequency co=Ez /A in a fashion similar to

elusion of Hr removes the degeneracies at the points of
intersection of the parabolas, producing the energy-band
picture shown in Fig. 5(b). For example, consider the
speci5c case of E=—,

' at the intersection of the parabolas
corresponding to the states n =0 and n =1. In the ab-
sence of Hz the states

~

0& and
~

1 & (eigenstates of n)
have the same energy, Ek /4. It is possible to "build" the
symmetric and antisymmetric superpositions

Hz =Ez,(1 cos8) (case I), (3.3a)

where Ez Ez —Al—z—/2e,—and I~ is the critical Josephson
current. %e also consider an opposite limit in which the
matrix elements of HT are independent of n n' ( &—1)
(case II), so that

~'

Hr=ET 1 —g cos(m8)
n=0

(case II) . (3.3b)

%'e are interested in calculating the response of the sys-
tem, de6ned as

1 B(E&
(3.4)

2e BF

In the case of a Josephson junction, V is the instantane-
ous voltage.

Note that this toy model ignores important ingredients
(quasiparticle current, dissipation) needed for a satisfac-
tory comparison with experiment. This present model is
discussed here in order to study some conceptually im-
portant aspects of the coherent picture.

The Hamiltonian Eq. (3.1) is formally identical to the
one employed for mesoscapic one dimensio-nal normal-
metal nngs driuen by a time dependent fl-ux. ' We con-
sider an electron in a ring of radius R o, and make the fol-
lowing identifications: 6 = —i8/88, where 8 is the polar
coordinate, Ek ——A /2mRO, with m being the effective
electron mass, F=glgo, with $0——lile being the Aux
quantum, and P is the externally applied magnetic Aux.
A linearly increasing Aux is the analog of a direct-current
source in the Josephson-junction case above. HT is the
potential V(8) which connects momentum states that
di6'er by Ak=l/Ro where / is an integer. In this case
one is interested in the current response of the system to
the constant induced electromotive force.

In the absence of HT the adiabatic energy spectrum
consists of a set of parabolas centered at integer values of
F as shown in Fig. 5(a} (for Ez «Ek ). Each parabola de-
scribes the energy of the system as a function of E for a
diferent eigenvalue of 8'. In the coherent picture the in-

4

FIG. 5. The energy spectrum of the Hamiltonian (3.1): (a) in
the absence of HT, (b) the band structure when HT is included
as a perturbation. The energy is measured relative to FT.
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the quantum oscillations of a particle in a symmetric dou-
ble well. The assumption of the existence of these
quantum coherent states is the rationale for the name
"coherent picture, " in contrast to the incoherent transi-
tions in the semiclassical approach.

Including a coupling to a heat bath in our description
may renormalize the energy gaps. This is pertinent to
the question of whether by biasing the system to a
Q =e/2 state one will be able to see coherent oscillations
between the n states (

~

0) and
~

I ), for example), similar
to the discussions of

macroscopic
quantum coherence

(MQC) in a two-level system~2 s and experiments that
have been suggested to measure MQC in sugerconducting
quantum interference devices (SQUID's). We shall not
dwell upon this point but will proceed with the analysis
of other aspects of our simple coherent-oscillation model.

For our energy-band picture the response of the system
is given by Eq. (3.4); V is periodic in F with period 1. If
the system is in the lowest energy band, the amplitude of
V, denoted by Vo, is given by

Vo= 1—,~, (Er/Ek)' '+0((Er/Ek )'~') . (3.7)
2e

In Fig. 6 we show V(F} for various different values of
ET/EI, . When Er «Ek the response of the junction has
a sawtooth waveform. As ET increases the voltage be-
comes more rounded, with amplitude Vo. Im, m+ ] =~m + ],m = exp

~ Es,z(m)
4 A'Q(m )

(4.1)

leaks into the neighboring bands. The result is that the
wave function eventually spreads toward higher bands at
a rate that depends on I', leading to an increase in the
average energy. Physically this means that the external
driving force pumps energy into the system. In the ab-
sence of inelastic e8'ects this process is reversible and as
was pointed out by Landauer, ' the energy that was
pumped into the system is, in principle, retrievable. In-
terference of difFerent paths in the energy-time space
leads to interesting effects, including possibly localization
in the energy direction. ' Any coupling to a heat bath in-
troduces phase randomization and destroys the reversibil-
ity of the process on a certain time scale, ~i, He.re we
shall consider a case where the phase is completely ran-
domized over a time shorter than half the period of the
oscillations, but r& is still sufficiently large so that the
standard expressions for Zener tunneling through the
narrow energy gaps apply. For our model system this
implies ran&Id, /e One . may then neglect interference
effects between consecutive Zener events and describe the
dynamics of the system in terms of a master equation, ac-
counting for Zener tunneling probabilities (rather than
the probability amplitudes). The probability for such a
Zener transition from the mth to the (m+1)-th band is
given by12, 32 —34

IV. THE EFFECT OF ZENKR
AND INELASTIC TRANSITIONS

BET%'EKN ENERGY BANDS

28V ).o I ( I

j
E I 1 I

I
I

When F is varied linearly in time, in principle one has
to solve the time-dependent Schrodinger equation. To go
beyond the adiabatic approximation we have to take into
account the possibility of Zener tunneling among the en-
ergy bands. When the system sweeps through a narrow
gap region in the energy-time space, the wave function

where Es,~(m) is the energy gap between bands m and
m+1. The frequency Q(m) is inversely proportional to
the time it takes the external driving force to transfer an
energy E, (m } to the system, that is,

I'mEk
Q(m) =

s&p

(4.2)

The Zener probability, Eq. (4.1), is a good approximation
for both the adiabatic limit [AQ(m) «Es,~(m)] and the
sudden approximation limit [A'Q(m) »Eg,~(m)]. We
define the "Zener time" ~z as the time it takes for the
system to develop half of p +, as it travels through the
narrow gap region. This time is proportional to Q '(m)
in the adiabatic limit, 33 so that our analysis is valid for

mEkF &ri, '&F
Eg,~ I (4.3)

0 0.2 0.4 0.6 0.8

FIG. 6. V(F) according to the coherent picture. The param-
eters are (a) ET/Ek ——0.01, (b) Ez/EI, ——0.05, (c) Ez jEI, ——0.10,
and kI) F.T /Ek ——0.20.

%hen ~& ~ ~z we have to take into account the correc-
tions of the Zener probability due to the e6ect of the heat
bath. "

It is easier to understand ihe efkct of the Zener transi-
tions if we 6rst study the dynamics of the system while
neglecting the inelastic transitions between the bands.
When Eq. (4.3) is valid the time evolution of the system
can be treated as a stochastic process involving two vari-
ables: the band number m and a "spin" s which is de6ned
as the sign of M ldF, so that s may assume the values
kI. The stochastic process can be treated as a discrete
random walk in which the time step is 1/2F If at time.
step i the system is in band m (i) with spin s(i), then the
stoch@stlc process is deSned as
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m(i+1)=m(i) and s(i+1)= —s(i) with probability 1 P— +,i;i, (4.4a)

m(i+1)=m(i)+s(i) and s(i+1)=s(i) with probability P +,i;), (4.4b)

and where all transitions not explicitly listed are forbidden. Since the probability of Zener tunneling increases with

band number, at high band numbers, once the system tunnels upward it has a higher probability of continuing upwards
rather than staying in a given band. Similarly, at high band numbers, once the system undergoes a transition downward

it has a high probabIlity of continuing to move down in band number. Hence we expect to observe long trajectories up
and down in band number as shown in Fig. 7(a). These "spiky" trajectories re6ect the fact that occasionally the junc-
tion charges up to a high voltage and then rapidly discharges. The longer we wait the higher are the spikes we observe.
These spikes contribute to the low frequency part of the "power spectrum" as shown in Fig. 7(b). We emphasize that,
strictly speaking, we cannot define the power spectrum of the stochastic process described by Eq. (4.4) because the pro-
cess itself is not stationary; it has an unbounded drift to higher band numbers. This drift is related to the fact that for a
given band m, we have that P +,~P, . This drift re6ects the fact that the external driving force pumps energy
into the system via incoherent Zener transitions.

To study the drift we can write the following master equations that correspond to the stochastic process:

p(m, s =+1, t =n ) p(m —1, s =+1, t =n —1)P
& +p(m, s = —1, t =n —1)(1—P, ),

p(m, s= —1, t= n)~p( m+I, s= —1, t=n —1)P +, +p(m, s=+1, t=n —1)(1 P+—i) .
(4.5)

I I
f

W I f ~ 1

20—
W
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10—

0 c s

0 200
I I I I 4 I l
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l04 -I

I I I I

)
'I I I 1

t
F I I

I

For case II and fiQ(m) &E,„(m) the drift rapidly be-

comes linear in time, as shown in Fig. 8. For case I the
approach is even more rapid.

Clearly this unbounded drift is not physical. As we
continue to pump energy into the system its efFective tem-
perature increases. The system can dissipate energy by
means of inelastic transitions among the bands, thus
balancing the drift. Such downward transitions can
occur even when the temperature of the coupled heat
bath is zero. At nonzero temperatures there is also the
Suite probability for the system to absorb a phonon from
the bath, thus undergoing a transition upward. However,
as long as kaT~Es, ~(m), such transitions may be
neglected.

In order to facilitate comparison with the semiclassical
picture of a normal tunnel junction we next consider a
special case of inelastic transitions. %'e aIlow only for
transitions corresponding to a change of AI =+1. This
corresponds to the inelastic transfer of a single Cooper
pair, in the case of a Josephson junction, or a momentum
transfer of A'/Rc in the case of the ring. We further as-
sume that the inelastic transition rate r;„' is proportional
to the energy difference between the initial and final state,
AE:

'0/l!iut

ilill
ilI ill i

g

t;
aE

(4.6)

where g is the dimensionless constant measuring the cou-
phng to the heat bath. From Fig. 9 it can be seen
that AE is given by

EE(F)=2Ek(F ,') . —— (4.7)

CU

F
FIG. 7. Rcsglts of ngmer1caI 81mulatlons Qf thc stochastic

process of Eq. (4.4), for case 11, when eE„~i4AA=S (a) The.
band number m as a function of I'. (b) The corresponding
power spectrum.

In analogy with the analysis of the semiclassical model
we define an inelastic resistance

fi 1
(4.8)

To include the inelastic transitions the discrete-time
stochastic process of Eq. (4.4) (the Zener transitions) is
superimposed on a continuous-time stochastic process to
obtain
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m (t)
with probability 1 I—' +, (,) if t &n/2&t+b, t,

m(t)+s(t)
s(t) with probability 8 +, (,) if t &n/2&t+b, t, (4.9b)

m(t+bt) m(t) —2

s(t+ht } s(t) with probability r;„b,t if bt &
I
t —n/21 and if rn(t)&2, (4.9c}

1
with probability r,„ht if S,t &

~

t n—/2
~

and if m (t)=2, (4.9d)

m(t}
s(t) with probability 1 —r;„'ht if bt &

~

t n/2 —
~

and if m(t) &2, (4.9e)

(tr)}
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where again all transitions not listed are forbidden. The
master equation given in Eq. 4.5 is replaced by an ap-
propriate master equation' that corresponds to Eq. (4.9).

In Fig. 10 we show typical results of the time evolution
of p(m) calculated from a discrete time approximation to
the master equation that corresponds to Eq. (4.9). We see
that after a transient time the probability density p(m)
settles around some average m and the upward drift
ceases. In Fig. 11 we show the dc response of the system
in the limit E, ~0 (the Zener tunneling probability goes
to unity). In Fig. 12 the power spectrum of the stochastic
process for various values of the driving force is shown.
The dependence of r;„'(I")on F has the same functional
form as that of r(Q) discussed in Sec. II in the limit of
zero temperature. Therefore we can directly apply the
results of Sec. II and obtain that the voltage of the system

0 I I I I l I I I I I k 1 I I l I I 1 I I t I I I l I I

0 20 40 60 80 &00

(b) F

FIG. 8. The time evolution of the probability density p(m ) as
calculated from the master equation given in Eq. (4.5) for case
II, showing the constant drift upwards in band number. Time is
measured in units of I" ', and +=HEI,~/4fiQ=1. (a) p(m) at
successive times, 10-50 in steps of 10. At t =0 the distribution
is a 5 function at m = l. (h) m:—Jmp(m)dm as a function of
time for different values of v.

0
0

FIG. 9. Description of the inelastic transitions between the
energy bands. The arrows are examples of the type of possible
transitions used in the stochastic process.
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1
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FIG. 10. The time evolution of the probability density p(m)
as calculated by the master equation for case II when the inelas-
tic transitions are included, and where at t =0 the distribution
is a 5 function at m =1. The inelastic transitions compete with
the drift observed in Fig. 7, and the two processes balance each
other. The parameters are EI, ——1.3 X 10 eV, E.;„=10 0, and

mE, p
——2, 8AO (case II). Time is measured in units of F

showing p(m) from t = 10 to t =40 in steps of 5.

%'e now examine the case of finite Zener probability
(Es, &0). First we consider the limit fiF «riE„/2. In
this limit the system stays only on the first and second en-
ergy bands; when it undergoes a Zener transition to the
second band it relaxes inelastically to the lowest band be-
fore undergoing the next Zener transition. The voltage of
the system with both inelastic and Zener transitions can
be approximated considering these two processes in-
dependently; it is equal to the result of the Ez, ——0 case
multiplied by the Zener probability. This leads to ex-
ponentially small V at low F. At high currents the sys-
tem stays at the higher energy bands and the voltage
asymptotically approaches that of Eq. (4.10) (case I). In
case II the voltage at large F is lower than that of case I
by an amount proportional to Ez/2eEk. In Fig. 13 we
show a typical calculated response, the stochastic process
and its power spectrum are shown in Fig. 14.

In Sec. III we have examined the relation of the model
system to a simpli5ed picture of a mesoscopic Josephson
junction. In a real Josephson junction the inelastic tran-
sitions are due to quasiparticle tunneling that corre-
sponds to a change of n by —,', as discussed else-

where. ' ' In such a description one should account for
the energy dependence of the quasiparticle density of
states. Important ingredients of the above discussions
should also be included in the study of mesoscopic nor-
mal tunnel junctions i4'1v'36

V. THE EFFECT
OF AN ALTERNATING DRIVING FORCE

e 2q

for AF «rIEk/2.

tF
p F 0.8

1 /2

(4.11)

We now study the dynamics in the presence of an alter-
nating driving force. In this section we examine the
response of mesoscopic systems within both the coherent
picture (Sec. III and IV) and the semiclassical picture.

One important eFect is the hysteresis in the voltage of
the model discussed in Sec. III when the driving force F
is cycled up and down at a Snite rate. In Sec. IV we have
argued that for small F the system follows nondissipative-
ly the lowest energy band. Zener transitions will occur
over a time scale

F' 4 RQ(1)
(5.1)

0.6

0,4

0.0
0 0.25 0.5 0.75 1.25

&V&

28 F(t)=fd, t — co(sr,o„t+P) + cosg
~ex ex

(5.2)

When ri is small (the inelastic rate is small), then once the
system Zener tunnels to the second band it will tend to
continue to climb to higher and higher energy bands.
Therefore, to observe large hysteresis, we want ~(F,„)to
be of the order of the inverse frequency of the driving
force, where F,„ is the maximum value of F in one cy-
cle. Such hysteretic behavior (for case I) is shown in Fig.
15.

%e next study the behavior in the presence of both a
direct and alternating driving force; that is,

FIG. 11. I-V characteristics calculated numerically by simu-
lating the stochastic process of Eq. (4.10). The parameters are
R;„=500Q, Ea,p /AQ =0. f=F(t)=fd, +f„sin(co,„t+P), (5.3)
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& V& = I sin[2mF(t)]dt,
Vo

T 0
(5.9)

W

0 4

0.3—

P

0.2—

O.l

which can be expressed in terms of Bessel functions. The
cohcrcllt. model (wltll Er «Ek ) aild tllc scIIllclassical

picture (with large transition rates) give qualitatively
similar results although in the latter the voltage as a func-
tion of F is no longer the sinusoidal one of Eq. (5.7) but
rather a sawtooth wave. In Fig. 20 we show the elect of
temperature on the average voltage of the Srst harmonic

step as a function of I„/Id, . In the coherent picture,
Zener transitions lead to a decrease in step size.

We also study the effec of a bias of the form

F(t)=F0+f„ is n(co et+/) . (5.10)

0.6
C&V&

28

FIG. 13. I-V characteristics for Snite Zener tunneling proba-
bility calculated numerically by solving the stochastic process of
Eq. (4.9). The parameters are R;,=500 0, C=l fP, and
mE~,~/4AEk ——25 & 10'0 Hz (upper curve) and mE~~,~/4AEk
=0.625 g 10'o Hz {lower curve).

semiclassical picture in the limit of zero temperature and
the band picture in the limit E, ~0 lead to the same
stochastic process, when the inelastic transitions in the
latter are of the form described in Sec. IV. %e also note
that both approaches in the limit of very short relaxation
times yield the same results as the band picture in the
limit Po, ~0. To ease the presentation and comparison
of the semiclassical and band pictures, we present the fol-
lowing mapping between the parameters of the latter (on
the left) and those of the former:

fdc~ldc~ fac~lac~
(5.6)

e 1p'~ p', g =——~g
2C in

To demonstrate the possible application of the junction
as a phase-voltage converter we present in Fig. 18 the
average voltage of the first harmonic step as a function of

The amplitude of the voltage, that is, the size of the
first harmonic step, b, V„depends upon Id, /I„as shown
in Fig. 19. This dependence is again very similar to that
in the case of "Shapiro steps. "

%e turn now to the analytical approximations of the
average voltage. First we consider the coherent model in
the limit Po &~0 and ET SEk. Under these conditions
the system follows the lowest energy band with

V(t) = Vo sin[2nF(t)],

where the energy band is approximated by its first har-
monic. Here

1—,qq (ET/Ek ) +O((Er/E„) ), (5.8)
2 I /3

and F(t) is given by Eq. (5.2). The average voltage & V&

is then calculated by

This corresponds to a charge bias with an oscillating

component. %ithin our model of the Josephson junc-
tion we define an effective capacitance

V(to,„)
C,~'(a),„)=

2eJ ac
(5.11)

g sin(co, „t+P )dt . (5.12)

This integral can also be expressed in terms of Bessel
functions. In Fig. 21 we show C,N as a function of f„
In Fig. 21 we also show the strong effect of Fo on

C,e(to,„). The sensitivity of C,s to the bias charge sug-

gests possible applications for detmtion devices.
An alternative de5nition of the effective capacitance,

offered by Buttiker, is the differential capacitance,

a& v& a'&E & (5.13)" =
ag ag'

This de6nition draws a strong analogy between the ca-
pacitance and an "efFective mass" that determines the
response of the junction. The definition given in Eq.
(5.11) stresses the idea of the capacitor as a dynamic ele-
ment.

VI. DISCUSSION

In this section we suggest some experiments that may
demonstrate the above predictions. The 6rst and simplest
experiment is to use the con5guration of Fig. 22 in order
to induce a static bias charge q (in units of e). Such a
con6guration has been recently suggested by Suttiker.
In the limit ka T «e /2C a zero average current is pre-
dicted as 1ong as q & —,'. ' ' ' One may also study the
I-V characteristics of the junction driven by an external
dc source Id, . The e/2C shift in the I-V characteristic
(Fig. 2.) can be observed using existing junctions, even

where V(co,„) is the sine transform of V(t) as defined
below. Here we are mainly interested in the limit of low
frequencies. Neglecting Zener tunneling, V(t0,„) can be
calculated from V(t) given by Eq. (5.7), and F(t) from
Eq. (5.10):

Qj P 2$"/cgp

V(co,„)= J sin[2mF(t)]
2g 0
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FIG. 15. Hysteretic response for case I. The average
response was calculated by averaging I" (f) over a period
Lit=6.25 ns. The parameters are dI'/dt=0. 5X107 s ', C=1
fF, and mE~,p/HEI, ——3.125)(10' Hz.
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FIG. 17. (a) The average voltage as a function of the external
frequency co,„ for the semiclassical picture of Eq. (5.8) in the
presence of a current described by Eq. (5.S). The parameters are
R;„=5000, C= 1 fP, T=0.05 K, I,=0.1 nA, and
I„/Id, ——0.4. (b) The width of the subharmonic steps for the
same parameters as in (a). The widths were calculated by vary-
ing P in the range 0-2w.
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FIG. 16. (a) Schematic I-V characteristic of an ultrasmall
junction in the presence of direct and alternating current as dis-
cussed in the text. (b) The I-V characteristic of a Josephson
junction in the presence of microwave radiation. Iz is the
Josephson critical current and ~,„ is the frequency of the mi-
crowave rad1atlon.

FIG. 18. The average voltage on the Srst harmonic step
(co„=2nI~, /e), as a function of P according to the coherent
picture. The parameters are 8;„=2500 Q, C=1 fF, and

mE~~/4'& ——0.625 & 10' Hz. The solid line shows the analyt-
ical approximations.
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when kttT&ez/2C. As the temperature is increased

P( Q) broadens and its maximum is shifted towards small-
er Q, as shown in Fig. 23. This shift results from the in-

crease in r(Q) shown in Fig. 24. Thus in the limit

kJt T »e /2C where the e /2C shift in the Fermi distri-
bution is negligible, (V)=RId, . However, when the
average voltage is increased such that kttT «eV the
e/2C shift in r(Q) becomes large, as also shown in Fig
24. In this limit r(Q) approaches the line (Q —e/2)/RC
and thus has an e/2C shift as in the low-temperature case
as is shown in Fig. 25. This means that even at high tem-
peratures we can observe the capacitance el'ect using ex-
isting junctions. The effect of temperature on the I-V
characteristic is shown in Fig. 24. The shift in the I-V
characteristic relative to the absolute voltage is e/2CV.
Since eV is of the order of k+T the ratio e/2CV is ap-
proximately given by the ratio of the charging energy to
the mean thermal energy, e /2Cktt T. For example, using
a junction with a capacitance of 10 '" F we can observe a
10% shift in the voltage (due to charging the energy) at a
temperature of 1 K. Since observations can be carried
out at such temperatures one can use junctions made of
materials that become superconducting at lower tempera-
tures, e.g., Al-Alz03-Al junctions. Observation of a shift
in the I-V characteristic will provide strong support to
the existence of the predicted voltage oscillations. Posi-
tive results will give the motivation to fabricate junctions
with C =10 ' —10 ' F, which will make it possible to
perform measurements in the limit ka T «e 2C, so that
the low-current part (Iz, &e /2C) of the I-Vcharacteris-
tic can be studied. In this limit voltage oscillaiions may'

be observable. Measurement of the I-V characteristics
can also verify the prediction that for V&e/2C the
current is proportional to V~.

In Sec. IV we have related the average voltage in the
coherent picture to that obtained from the semiclassical
approach. Moreover, for a certain range of parameters
(as discussed in Sec. IV), the coherent picture predicts an
hysteretic I-V characteristic with a zero-voltage step, as
shown in Fig. 15.

The frequency of the Bloch oscillations (for small
values of F! is high, which makes experimental observa-
tion diScult. For a junction with C=10 " F and
R = 1000 Q, the oscillations are observable when

Id, &e/AC=1. 6&(10 A, which corresponds to a fre-

quency of 10' Hz. Even if we go down to Id, ——10 A
currents the frequency is 10' Hz. To avoid this difKiculty
of direct measurement of the oscillations we propose to
study the interference phenomena discussed in Sec. V
when the junction is driven by both a direct and alternat-
ing current sources. A possible way to induce both types
of current is to use an inducior and a capacitor in series
and to apply an alternating Aux through the inductor
(e.g., by using Josephson-junction technology). These ex-
periments may not only provide a direct veri6cation of
the existence of the Bloch osclllatlons but may also pro-
vide a demonstration that the junction can indeed be used
as a phase-voltage converter. Finally, one has to keep in
mind the intriguing possibility of quantum coherent oscil-
lations in a Josephson junction biased with a charge e.
To measure this we have to increase the bias charge to e.

CAVl
' '

I
' ' ' '

l

Ze 03-
1 f f l

l
I i 5 I

l
I 0 I I

l
I I T i

l
I I

The charge then has to be measured at various time inter-
vals [see suggested experiments on MQC in SQUID's
(Ref. 30)].

Note added. After completion of this work we became
aware of experimental results on small tunnel junctions
which have since been published by T. A. Fulton and G.
J. Dolan, Phys. Rev. Lett. 59, 109 (1987).
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APPENDIX' DESCRIPTION
OF DRIVING FORCES FOR A JUNCTION

%e are interested in junctions driven by an external
force. In this appendix we examine various types of driv-
ing fqrces, their realizations, and their approximate
quantum-mechanical description.

l I l I l I I l

0 2 4 6 8 i0
lac

dc

FIG. 19. The maximum width (twice the amplitude) of the
first harmonic step as a function off„/fd, . The solid line is the
analytical approximation in the case of no Zener transitions,
and the )& are the results of numerical simulations for
fg, =0.625X10' Hz, ~Eg,p/4AEk ——5X10'0 Hz, and Jt;„=2000
Q.
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FIG. 24. Comparison of r(Q) for T=3.0 K, C=1 fF, and

R =2500 0 with (line 1) and without (line 2) the e /2C shift dis-
cussed in the text.
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FIG. 25. The elect of temperature on the I-V characteristic
in the semichssical picture. Here R =2500 0 and C = 1 fF.

high impedance, so that the charging energy is relevant.
In other words, we expect a different response if the junc-
tion is connected to a voltage source (a device with zero
internal impedance) or a current source (a device with
infinite internal impedance}. An important clue to how
these two limits diler from each other is given by the
study of the current and voltage fluctuations of normal
junctions as discussed in Refs. 20 and 21. The power
spectrum of the current noise measured in a circuit
closed by an ammeter (zero internal resistance} is given
by the familiar Johnson-Nyquist result

Sl(a)) = iila) coth=1 Rro

8
(Al)

where R is the resistance of the junction, deSned in this
paper. In contrast, if we measure the power spectrum of
the voltage Suctuations using a voltmeter (inSnite inter-
nal resistance) we obtain

Si (co}=—Re coth
1 1

R (ni)+i /r0C 2k~ T

where R (co) is the resistance calculated in Ref. 21. Using
the 6uctuation-dissipation relation me expect the
response of the junction to a voltage source to be related
to the current 8uctuations measured by a resistancdess
ammeter since in both eases the junction is shorted by the
external circuit. Indeed, the average current in the pres-
ence of an external voltage source is given by V/R, where
R appears in the expression for the current Auctuations in
Eq. (Al). Similarly we expect that the response to a
current source to be related to the voltage Auctuations.

For a junction vnth a static external bias charge q mea-
sured in units of e, as discussed by Buttiker in Ref. 35,
the Hamiltonian (neglecting the internal degrees of free-
dom) is

CC,„
Id, —— V .+ ex

(A6}

This realization is useful for the study of both constant
and time-dependent bias charge q. %e emphasize,

H =e /2C(q R)i+—Hr,
where S' is the number operator measuring the number of
elementary charges that have been transferred across the
junction and Hr is the tunneling Hamiltonian. In Ref. 21
it is shown that the response to the bias charge is indeed
related by the Suctuation-dissipation relations to the volt-
age fluctuations. A direct-current source Id, corresponds
to an external bias charge that increases linearly in time,

j=Id, /e .

This result suggests that an ideal current source can be
described by Eq. (A3) where q is given by Eq. (A4). We
stress that in this picture the current source enters as a
classical Seld coupled to the number operator. This is in
contrast to Refs. 9 and 10 where the current source (in
the case of a Josephson junction) is described as a classi-
cal field coupled to the phase operator 8, the operator
conjugate to S. Additional discussion of the relations be-
tween the two pictures of a current source in the presence
of internal degrees of freedom is given in Ref. 38.

In Fig. 22(a) we show a simple realization of a charge
source suggested 5rst in an experiment by Lambe and
Jaklevic, ' and recently put forward by Buttiker. The
junction vrith capacitance C is connected to a voltage
source V through a capacitance C,„. The bias charge is
given by

Ceca V

C+C,„e
If V increases linearly in time this con6guration provides
a realization of a current source
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however, that it can represent a current source only if its
impedance (AC,„) ' is much larger than that of the junc-
tion. At high frequencies (6) & 10 Hz for Cc„=l fF) we

can use the configuration shown in Fig. 22(b) where the
junction is driven by an external inductor I,„. In this
latter case ~L,„has to be larger than the impedance of
the junction.

A voltage source is described within the framework of

quantum mechanics as a constraint that imposes a
diN'erence of eV in the electrochemical potential across
the junction, where eV can assume an arbitrary value.
Similarly we consider a charge source that can induce an
arbitrary (i.e., continuous) value of the bias charge q,
where q is a c number. Throughout this paper we neglect
Auctuations in q, a point that requires more detailed con-
sideration.
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