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Pairing in the two-dimensional Hubbard model: An exact diagonalixation study
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%'e have studied the pair susceptibilities for all possible pair wave functions that St on a two-
dimensional (20) eight-site Hubbard cluster by exact diagonalization of the Hamiltonian. Band
fillings corresponding to four and six electrons were studied {two or four holes in the half-filled

band) for a wide range of Hubbard interaction strengths and temperatures. Our results show that
all pairing susceptibilities are suppressed by the Hubbard repulsion. %'e have also carried out
perturbation-theory calculations which show that the leading-order U contributions to the d-wave

pair susceptibility suppresses d-wave pairing over a signi6cant temperature range. These results are
consistent with recent Monte Carlo results and provide further evidence suggesting that the 20
Hubbard model does not exhibit superconductivity.

I. INTRODUCTION

The question of whether the two-dimensional repulsive
Hubbard model exhibits superconductivity is of great
current interest, in view of the fact that it is one of the
possible models to describe the recently discovered high-
T, oxide superconductors. ' Although a variety of ap-
proximate calculations predict superconductivity in this
model, ' " the need for calculations that do not rely on
uncontrolled approximations clearly exists. In this paper
we discuss results obtained from an exact calculation on
eight-site clusters for a variety of interaction strengths
and temperatures and two values of the band filling:
p=0. 5 and 0.75, corresponding to four and six electrons
(i.e., a half-Slled band with two and four holes, respec-
tively). In another paper, results of Monte Carlo simula-
tions of the two-dimensional Hubbard model are dis-
cussed. ' The simulation approach does not reach as low
a temperature or as large an interaction strength as the
present study but applies to considerably larger clusters.
Thus these calculations are complementary.

Most theoretical approaches have suggested extended
s-wave or d-wave singlet pairing for the repulsive Hub-
bard model, involving pairs formed by nearest-neighbor
electrons of opposite spins. In the present calculation we
have considered all pgssible pairing of electrons that fit
onto an eight-site lattice. We thus obtain an 8)& 8 pairing
matrix, and the eigenvector associated with the largest ei-
genvalue of this matrix describes the most favorable pair-
ing state. %e 5nd that usuaHy the most favorable pairing
involves a mixture of states with d- and s-wave symme-
try' and that contributions from further than nearest-
neighbor pairs can be slgn16cant. Most importantly,
however, we Snd that the susceptibility associated with
this and all other pairing is suppressed by the Hubbard in-
teraction.

To shed further light on this question, we compute in
perturbation theory the leading ( U ) contribution to the

d-wave pair susceptibility, which was found to be the
most favorable state near the half-filled band case in pre-
vious calculations. '" We find the leading U contribu-
tion to suppress d-wave pairing over a significant temper-
ature range, consistent with our numerical results on
small clusters. The results discussed here, together with
Monte Carlo simulation results of Ref. 12, suggest that
the two-dimensional repulsive Hubbard model does not
exhibit superconductivity.

In Sec. II we describe the cluster formalism. We
present our numerical results in Sec. III, perturbation
theory results in Sec. IV, and conclude with a short dis-
cussion in Sec. V.

II. CLUSTER FORMALISM

C„&C„&C„&C„~
ls 2s 3

(2)

si, —— 2t„cosk„ 2—t cosk +4t—2 cosk„cosk„—p . (3)

In Eq. (1), C, (C; ) is the creation (annihilation) opera-
tor for spin a = 1 $ at site i, and Ci, (Cz ) is its Fourier
component. p is the chemical potential, and t,j. is the
hopping term. Here t; =t„for (i,j) nearest neighbors in
the x direction, t; =t„for (i,j-) nearest neighbors in the y
direction, and t; = t2 for (i,j ) next-nearest neighbors.

%e study this model on two diferent two-dimensional
lattices of X =8 sites, as shown in Fig. 1, with periodic

The Hubbard model on a two-dimensional lattice is
de6ned by the Hamiltonian

H = g t;J C;t Cl + U g n; &n, &
—p g n;

&&j~~ ls 0'

=g ei,Cg Ci,
k, a
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FJG. l. Two two-dimensional eight-site lattices studied in this paper: (a) L„XL=4X2, and (b) a tilted square. r„and t are the

nearest-neighbor hoppings in x and y direction, and tq is the next-nearest-neighbor hopping.

boundary conditions. %'hat we are investigating is the
possibility of the appearance of superconductivity due to
the Coulomb repulsion energy U, as suggested by several
authors. ' " We deftne a complete set of pairing opera-
tors

(4)

where a is a displacement vector on the lattice. Using a
linear combination of b,, s, pair operators of various sym-

metries can be constructed. For example, operators with
extended s-, d-, and p-wave symmetry involving only
nearest-neighbor electrons have the form

ensemble. The pairing operator connects the (N, —2)-
particle space, as well as the (N, +2)-particle space, to
the N, -particle space so the chemical potential )M which
enters Eq. (l) was set by

)u=-,I[Eo(N, +2) Eo(N, ——2)] .

Here Eo(N) is the ground-state energy of N electrons.
When Pb, &p l, where

b, =Eo(N, +2)—Eo(N, ) —2IM

=Eo(N, —2)—Eo(X, )+2p,
our calculation is essentially equivalent to the usual
grand canonical one. For the noninteracting case
(U=0), the difFerence between the canonical ensemble
and grand canonical ensemble is less than 2% when P)8.

(7a)

(7b) (b) U= 40

respectively. %'e diagonalize an N)&X pairing suscepti-
bility matrix, de5ned by,

p ~ ~ f 0 (&)

and study the behavior of its eigenvalues and eigenvec-
tors as functions of the temperature and the Coulomb
repulsion U. If superconductivity does exist in this mod-
el, the largest eigenvalue of P,b, corresponding to the sus-

ceptibility of the pairs described by its associated eigen-
vector, will diverge as the temperature goes to zero.

%e calculate P,b by diagonalizing the HamBtonian and
obtaining all the cigenvalues of H. For the eight-site
Hubbard model the total Hilbert space is 48=65536.
Fortunately, we can use symmetries to reduce the dimen-
s10nality of matrices to be dlagonallzcd. Thrcc sy1Il-

metries are used —the total particle number N„the total
splIl 1n the z direction S&, aIld tIanslatlonal 1nvariancc.
The biggest matrix in our calculation after using these

symmetries is 628&628. Since wc are interested in the
low-temperature properties of P~ wc used a canonical

IIO
'1»&tl&»&li&ii
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FIG. 2. All eigenvalues vs logarithm of the temperatures on a
type-I {4&2) lattice with N, =4, t„=1.0, t„=0.25, and t2 ——0
for (a) U =0, (b) U=4, {c)U=8, and {d) U =16.



PAIRING IN THE TWO-DIMENSIONAL HUBBARD MODEL: . . .

-0.345 -0. f05 -0,345 -0.7BO
0 0 0 0

0.004 —0 873 -0.706
0 O 0

~.f)ns -O.age
0 D

Q.PGO
0

O.RM -0.345 -0. l f)6 -0,345
0 0 O

-o.eeo o.
0 0

0.880
O

-0 856
0

-6.8ti5 0.
D

0. -0.880
D

FIG. 3. Pairing structures of (a) the largest eigenvalue, (b) the second-largest eigenvalue, (c) the third-largest eigenvalue, and (d)
the sixth-largest eigenvalue on a type-I (4X2) lattice with N, =4, t, =1.0, t~ =0.25, and tl =0 for U = 16,p= 32.

BE. NUMERICAL RESULTS

In this section we present numerical results for the ei-
genvalues of the pairing susceptibility matrix P~ as func-
tions of temperature T for various values of U. The pair-
ing susceptibility matrix is positive deSnite, and its eigen-
values and eigenvectors depend on band Sling and hop-
pings as well. %e have concentrated on four cases, in the
first three cases we use the type-I lattice (2X4), and in
the last case we use the type-II lattice (tilted eight-site).
Then all the eigenvalues A, are plotted versus ln(P) for
given values of U (Figs. 2, 4, 6, and 8). The solid lines in
the figures connect eigenvalues corresponding to the
same eigenvector structure. Figures 3, 5, 7, and 9 show
the structure of various eigenvectors. In the following eve

discuss each of the four cases.
Case (i)

X, =4, t„=l0, t, =0 25, t, =0.

C Kiiriiiviiri~iwirrii

3
' ' ' '

I(.') '„'
I

' '6',' I

' ' ' '-

~:
~ C
~ Lt'I I I I I I fl I rl

Jd) U i 16.0

I 1 I %$ ]pl'

0 a a k~ I sPCI a

in(P)

In case (i) the largest eigenvalue first increases and then
saturates as the temperature decreases to zero. The larg-
est eigenvalue is a decreasing fmiction of increasing
Coulomb repulsion U at low temperature, and so are the
other eigenvalues, as shown in Fig. 2. Four eigenvectors
are plotted in Fig. 3 for U =16,P=32. The eigenvectors

FIG. 4. All eigenvalues vs logarithm of the temperatures on a
type-I (4X2) lattice with N, =4, t„=1.0, t~=0.50, and t2 ——0
for (a) U=2, (b) U=4, {c)U=8, and (d) U=16. There are two
identical eigenvalues in this case.



H. Q. LIN, J. E. HIRSCH, AND D. J. SCALAPINO 37

-0.3 $9 -0.610 -0.319 O.
0 0 0 0

-0.384
0

0.109 -0.384 -0.705
0 Q 0

O. P.55
0

O. 109 -O, ace

-0.610 —0.319
O 0

-o.gee
O

0.109 -O.M4
0 O

-0.705 0.
0 0

0.706
0

0.
0

0.052 0. -0.052
0

0.

-0.058 0.
O

O.nsa 0.705 -0.705

-0.705 0.
O 0

-0.058

Fgo. 5. P
' '

t ture of (a) the largest eigenvalue, (b} the second-largest eigenvalue, (c) the third-largest eigenvalue, and (d) the
sixth-largest eigenvalue on a type-I (4y2) lattice with N, =4, t, =1.0, ~~ =0.50, and t, =0 for U = 16, p =32.

of the first- and second, -largest eigenvalues shown in Figs.
2(a) and 2(b) have mixed s- and d-wave symmetry. The
eigenvectors of the third- and sixth-largest eigenvalue
shown in Figs. 2(c) and 2(d) are p-wave-like. Note that
the amplitude at the origin is always very small, due to
the large on-site repulsion and that one also gets appre-
ciable amplitudes beyond nearest neighbors. For the
noninteracting case, the amplitudes at all sites are found
to be identical for the eigenvector with the largest eigen-
value.

Case (ii)

0,5

0 1 8 3 4
o.o ~ =

0

(d.} U ~ 16.J

X, =4, t =1.0, I; =0.50, t2 ——0.
This case differs from case (i) since the largest eigenval-

ue does not saturate as the temperature goes to zero.
This is due to the degeneracy at the Fermi energy when
U =0. Such unphysical degeneracy comes from the
finiteness of the small cluster and can be avoided if one
turns on the next-nearest-neighbor hopping t2. For
t2&0, we find that the largest eigenvalue saturates as
T~O (we do not show the results here). Here again all
eigenvalues are suppressed by U, as one can see from Fig.
4. The pairing structure corresponding to the largest ei-
genvalue Fig. 5(a) again has mixed s-d symmetry while
the structure of the second-largest eigenvalue is an ex-

1 8 3 4
j.n(f6')

00 Iti«Pi

0 1

FIG. 6. A11 eigenvalues vs logarithm of the temperatures on a
type-I (4X2) lattice with N, =6, t„=1.0, t„=0.25, and t2 ——0
for (a) U=2, (b) V=4, (c) U=8, and (d) U=16. Note the
di8'erent scales used for (a), (b), and (c), (d).
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FIG. 7. Pairing structures of (a) the largest eigenvalue, (b) the second-largest eigenvalue, (c) the third-largest eigenvalue, and (d)

the seventh-largest eigenvalue on a type-I (4X 2) lattice with N, =6, t, = 1.0, t~ =0.25, and i, =0 for U = 16, P=32.

tended s wave [Fig. 5(b)]. The structure of the eigenvec-
tors of the third- and sixth-largest eigenvalues are also
shown.

CaSe (ill)

X, =6, ~, =1.0, t, =0 25, t, =0.
Here the band Slling is p=0. 75, and the results for the ei-
genvalues and eigenvectors are shown in Figs. 6 and 7.
For small U, some of the eigenvalues show a peak and do
not vary with temperature monotonically. The eigenvec-
tor of the largest eigenvalue looks like an extended s wave
and that of the second-largest eigenvalue has p„-wave
symmetry. d-wave pairing is now the third-largest eigen-
value. Note that the eigenvalues are decreasing functions
of Uas before.

The Snal case we v@11 consider corresponds to a type-II
lattice (tilted eight-site):

Case (iu)

X, =4, t„=t„=1.0, t, =0.125 .

I

4

I l I 1 1 l f I I I I l I I

'tc) U = 8.0

1 2 3 4
1 (~)

0 1 8 3 4 0 1 P, 3 4

Id) U —16.J4—

3
1n(P)

As previously discussed, we have set tz+0 in order to re-
move the degeneracy at the Fermi surface when U=O.
The structures of the pairing clgcnvcctors Sho%'Q in Fig. 9
for U =16 and P=32 are simpler than in the other three
cases. The eigenvalucs show peaks at intermediate tem-
peratures, and the laxgest eigenvalue drops as the temper-

FIG. 8. All eigenvalues vs logarithm of the temperatures for
the type-II (tilted square) lattice with X,=4, t, =t„=1.0, and

t2 ——0.125 for (a) V=2, (b) U=4, (c) V=8, and (d) U=16.
There are two identical eigenvalues in this case.
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FIG. 9. Pairing structures of (a) the largest eigenvalue, (b) the second- and third-largest eigenvalues, (c) the fourth-largest eigenval-

ue, and (d) the fifth largest eigenvalue fox the type-II (tilted square) lattice with N, =4, t„=t» = 1.0, and tz ——0.125 for U= 16,P=32.

ature approaches zero (Fig. 8). As seen from Fig. 9, the
eigenvector of the largest eigenvalue is a d wave, and the
eigenvectors of the second- and third-largest eigenvalues
are p waves involving only nearest-neighbor sites. The
eigenvector of the fourth-largest eigenvalue is d wave in-

volving next-nearest-neighbor sites only, and the rest are
extended s waves. Just as in the previous three cases, the
largest eigenvalue decreases as U increases. These results
clearly show that the Coulomb repulsion U suppresses
the pairing susceptibilities of the most stable pairing
structure regardless of what kind of symmetry it has.

As a further check on our procedure, we have per-
formed the calculation for negative values of U and al-
ways found strong enhancement of the susceptibility cor-
responding to the largest eigenvalue compared with the
noninteracting case, as expected. An example is shown in
Fig. 10, for case (i), and the structure of the pairing eigen-
vectors is shown in Fig. 11.

IV. PERTURSATIGN THEORY

%e have also 1nvestlgated ihe various palr1ng suscept1-
bilities using perturbation theory. As discussed in Ref.
14, perturbation theory can provide useful insight at
higher temperatures and moderate U values.

In particular, here we are interested in determining
whether the leading contributions of the interaction to

g (p) =cosy„—cosy» .

For a noninteracting system

piui
+

p, n ~n+&g

tanh(Pe» /2 )
(cos'p„+cos'p„).

p Jp

If t2 ——p=0 one 6nds

(12)

(13)

T

ln' —+Z ln(O) I 2 2t 16@' 2t
ln —+c (14)

4m r

with c =2.13. Here, the ln (2t/T) term arises from the
overlap of the Van Hove singularity in the density of

the pair susceptibility enhance or reduce it. Consider, for
example, the d-wave pair susceptibility

P~ ——I dr( b ~(r)b i~(0) ) (10)

with b,& given by Eq. (6) of $ec. II. Fourier transforming
the site-operator expression gives

hg ——gg(p)C» tC»g

with the form factor
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states with the usual BCS ln(2t/T) term. More general-
ly,

'" if tz+0 the perfcet nesting of the Fermi surface is
destroyed, but if p, = 4t2 the leading behavior of Pd(0)

remains in~(2t/T) with the coelllcient in Eq. (13) multi-
plied by

1 2 —1/2
2f2

As p moves away from 4t2, the leading behavior of Pdo'

changes to the usual N(p) ln(2t/T) form, where N(p) is
the density of states at the Fermi surface.

The leading contributions from the interaction are
shown in Fig. 12. The vertex corresponds to the form
factor g (P). To hnear order in U, Fig. 12(a) gives

2

P(t) U
T y y gP) gP} (15)

p, e p', n' ~n+sp ~n +&@'
For g (p) =cosy„—cosy„,the sum vanishes

so that for the d wave, the pair Seld is not reduced by the
linear U term. The second-order terms, Figs. 12(b) and

12(c), correspond to the leading contributions from the
interaction and self-energy, respectively. The latter self-
energy part is twice the contribution of the diagram
shown in Fig. 12(c), since either propagator can be
dressed. From Eq. (16) it follows that the second-order
ladder contribution vanishes.

The interaction Fig. 12(b) gives a positive contribution
and enhances the pairing susceptibility. It is just the
leading term in the RPA spin-fluctuation-mediated Berk-
Schrieffer' interaction. However, the self-energy terms
give a negative contribution and suppress the pair suscep-
tibility. %e have numerically evaluated the diagrams in
Figs. 12(b) and 12(c) for a range of P. Figure 13 shows
(P&+2P, )/U versus P for various values of the chemical
potential p. Here Pb is the contribution from the dia-
gram in Fig. 12(b), and 2P, is twice the contribution of
the diagram in Fig. 12(c) divided. Now to the leading or-
der in the interaction we have

P~ Pd '+(Pb+2P, ),——
and from Fig. 13 we see that the efFect of U is to reduce
the d-wave pairing susceptibility for a range of tempera-
tures. As p decreases and the system moves away from
the region of large spin-density wave fluctuations, the
temperature at which (Pb+2P, ) becomes positive in-
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FIG. 11. Pairing structures of (a) the largest eigenvalue, (b) the second-largest eigenvalue, (c) the third-largest eigenvalues, and (d)

the fourth-largest eigenvalue for the case of Fig. 10(b) ( U = —1) for P= 32.

creases. However, as this happens the size of the spin-
flllctuatloil coiltriblltiotl decreases and thc palrilig lll-
teraction becomes weak. ' Naturally, for a given value of
U, as the temperature decreases„higher-order terms be-
come important, and perturbation theory fails. Neverthe-
less, the fact that the leading-order term suppresses the
pairing over a wide region of temperature is quite
diFerent from the case of the electron-phonon interaction
or the behavior ofJ for a Heisenberg ferromagnet as / is
increased.

V. DISCUSSION

%'e have presented numerical results for pairing sus-
ceptibihties on eight-site Hubbard clusters. The results

xlQ
2-

I I

p. = -0.25
-0.50

c4 0

-2-
OJ
+
CL

for such small systems are naturally very sensitive to the
geometry, boundary conditions, and relative size of the
hopping parameters. Nevertheless, in studying several
different cases we have consistently found suppression of
all pairing susceptibihties by the Hubbard repulsion. Our
calculation took into account all possible pair wave func-

FIG. 12. Perturbation theory graphs for the cg-wave pairing
susceptibility (a) lowest order, (b) second-order interaction, (c)
second-order self-energy. The vertices on each end of a graph
correspond to the form factor g (p).

FIG. 13. The leading correction to the pairing susceptibility
obtained from the graphs shown in Figs. 10(b) and 10(c),
(P&+28, )/U~ vs ln(t/T) for various values of the chemical po-
tential p,. Here p is measured in units where t = 1.
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tions that 6t onto the clusters considered.
Our results are in contradiction with expectations that

in the presence of U the resulting superexchange interac-
tion would induce superconductivity. In the presence of
U, the electron pairs associated with the largest pairing
susceptibility tend to rearrange themselves so that the
weight of the pair wave function at the origin is small.
This rearrangement of the wave function to avoid double
occupancy evidently causes suppression of the pairing
susceptibility in these small systems, and we expect this
to carry over to large systems. Emery has suggested that
this should occur in a one-band model but not in a two-
band model. '7

Our perturbation theory results also give some insight
into why RPA-like calculations fail. The lowestmrder
self-energy diagram is larger and of opposite sign than
the corresponding one for the efFective interaction, yield-
ing a net suppression of pairing. In third order we have
found vertex corrections vrhich also suppress pairing.

Our results here, together with recent Monte Carlo re-
sults, ' suggests t'hat the 2D Hubbard model does not ex-
hibit superconductivity. This does not, however, neces-
sarily rule out spin fluctuations as playing a role in high-
T, superconductivity, for example, in a two-band mod-
el' ' or with phonons also playing an essential role. '

%e can also not rule our superconductivity in the 20
Hubbard model at very low temperatures involving very
extended pair states, although this would probably not be
relevant for high T, .
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