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Helium and molecular-hydrogen scattering from copper is calculated to examine general features

of scattering for these systems, especially the quantum mechanics of the scattering process, both for
the motion of the particle and the excitations of the lattice. These calculations use an interaction

potential chosen to simphfy the numerical calculation while retaining the essential physics of the in-

teraction. He-scattering calculations show that these approximations quantitatively reproduce ex-

perimental results. Based on this success„we show how the scattering probabilities depend on de-

tails of the system like the well depth and the steepness of the potential as well as the assumptions

made to simplify the interaction potential. Hz and 02 inelastic scattering probabilities show strong
enhancement by selective adsorption resonances and overall changes in scattering intensities due to
other aspects of the rotational degrees of freedom. Temperature-dependent HD-scattering probabil-
ities show the effect of inelastic scattering on rotationally inelastic scattering and selective adsorp-
tion resonances.

I. INTRODUCTION

A recent review of the gas-surface scattering field'
summarizes the wide variety of systems studied using
thermal energy atomic and molecular beams. In this pa-
per we will concentrate on low-mass scattering particles,
in particular helium and various isotopes of molecular
hydrogen, and on inelastic scattering and the efFect of in-
elastic scattering on elastic scattering in these systems.
The specific calculations we report are for He, Hz, D2,
and HD scattering from fiat copper surfaces [such as
(111)and (100}]. We view these systems as prototypical,
allowing generalization of our results to other systems.

Most calculations of inelastic scattering probabilities
for these systems are related to the distorted-wave Born
approximation. There are four basic approaches: (1}
distorted-wave Born approximations based on including
only the z-dependent potential in the zeroth-order Hamil-
tonian, ' (2) distorted-wave Born approximations based
on potentials that include the corrugation or
translational-rotational coupling in the zeroth-order
Hamiltonian, " ' (3} extended coupled-channels calcula-
tions that are exact calculations on a simphfied Hamii-
tonian, for which the possible final states are restricted in
some way,

' and (4) methods related to the last, but
leaving out intermediate steps, i.e., calculating the
elastic-scattering probability using a self-energy. '

In this paper we calculate scattering probabilities for
helium and molecular hydrogen using the formal
methods developed in its companion paper (hereafter
referred to as I) which fall into the third category men-
tioned in the previous paragraph. Together with the ap-
proximations we make for the interaction potential we
use these methods to calculate many aspects of the
scattering problem which we in turn use to make general
statements for atom-surface scattering in the low-mass

limit. For readers especially interested in selective ad-
sorption resonances we direct their attention to Sec. III 8
on molecular-hydrogen scattering.

G. DETAILS OF THE CALCULATIONS

Given the formalism developed in I it is necessary to
make some additional choices to perform calculations.
Specifically we need a potential and a phonon spectrum.
In this section we will discuss the choices made; we have
striven to consider simple models with no adjustable pa-
rameters so that our assumptions can be tested directly
against experiment.

A. The potential

V,(z)= Voe

and an attractive part given by

(2.1)

V, (z)= —f(z —z,„)
(z —z, )

f(x)=1—[2(k,x) +2k,x+1]e
(2.2)

The potential is usually described as due to two contri-
butions, an attractive and a repulsive, which are calculat-
ed independently of each other. Far away from the sur-
face the atom is attracted to the surface by a van der
Waals attraction that falls ofF with the inverse cube of the
distance from the surface. The other contribution is a
repulsive potential due to the atomic electrons overlap-
ping the surface electrons.

Figure 1 shows the potentials for He, Hz, and HD all
interacting with a copper surface. In Tible I we give
the parameters for each of the potentials. The helium po-
tential consists of a repulsive part given by
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The function f (x) is a cutoS' function that removes the
divergence of the usual van der Waals dependence as
z ~z,„and in the process softens the attractive potential
inside the we11 minimum. The constant k, is chosen to
give the best comparison with the observed bound states
when used in conjunction with a repulsive potential. For
helium on copper this potential with a well depth of 5.66
meV supports Sve bound states.

The hydrogen molecule is more polarizable than heli-
um; in addition both its charge density and its polariza-
bility are asymmetric with respect to its orientation.
The anisotropic contributions can be described by ex-
panding the potential in I.egendre polynomials

VHD(z, 8)= VH (z+5cos8, 8), (2.4)

where 8 is the angle of orientation of the molecular axis
with respect to the surface normal. Since H2 has
re5ection symmetry only even terms enter the expansion
in terms of Legendre polynomials, and since the orienta-
tional dependence is weak, only the second term contrib-
utes. The orientational dependence of the potential is
shown in the second panel of Fig. l.

Since the electronic structure of the HD and H2 mole-
cules are the same, the HD potential can be written in
terms of the H2 potential by
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+ V, (z)[1+A,,P2(cos8)], (2.3)

V~(z) =D(e z 2e ') .— (2.&)

The well depth D and the range parameter a are the two
input parameters which for this calculation are chosen to
match the well depth and range parameter of the ex-
ponential van der Waals potential. The Morse potential
reproduces most of the features of the exponential van
der %aals potential except the highest-lying bound states;
the discrepancy is caused by the incorrect asymptotic be-
havior.

where 5 is the off'set of the center of mass with respect to
the centroid of the electron cloud. This potential can be
reexpanded in terms of Legendre polynomials and is plot-
ted in the bottom panel of Fig. 1.

For comparison we also calculate scattering probabili-
ties using a variety of Morse potentials. Morse potentials
are potentials with a simple form requiring the minimum
number of input parameters that reproduce the general
shape of the surface potential
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FIG. 1. The potentials used for calculating the inelastic-
scattering probabilities. The top panel shows the helium-copper
potential; the second panel, the H2-copper potential, and the
bottom panel, the HD-copper potential. The horizontal lines
superimposed on each potential show the energy of each of the
bound states of that potential (these are the bound states of the
full orientationally-dependent potential); the lines starting and
stopping at the classical turning points for those energies, give
some ides of the spatial extent of the bound-state wave func-
tions. The two hydrogen potentials have been expanded in
Legendre polynomials of the orientation of the molecular axis
with respect to the surface normal; the solid curves are the
1=0, angle averaged terms in the expansion, the dashed lines
are the 1=1 terms, and the dotted hnes are the 1=2 terms.
Since the 82 molecule has an axis of inversion symmetry, the
1 =1 term in the potential vanishes identically. The orientation-
al dependence of the HD molecule is much stronger because its
center of mass is ofFset from the centroid of the electron cloud.

While in general the interaction potential depends on
the properties of each phonon in a complicated manner,
in the local height approximation we assume that pho-
nons shift the potential rigidly in the z direction by an
amount h(R, In; j ), where In, j is the occupation of nor-
mal modes that differs from point to point in the surface
plane. Then we expand the potential

V(z, R, I n; j ) = V(z —h(R, [n; j )), (2.6)

in a Taylor series in the local height which, being typical-
ly much smaller than the characteristic length scales, al-
lows us to truncate the expansion after the second term

V(z, R, In; j )= V(z) —V'(z}h(R, In, j } . (2.7)

The Srst term is the static surface potential and the
second is a term linear in the phonon coordinates that
will cause phonon transitions 1n the scatte11ng process.

Many calculations in inelastic scattering assume that
only the repulsive part of the potential couples to the
phonons, i.e., replacing V' by V„' in the second term of
Eq. (2.7). We think a better approximation would be to
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TABLE I. The parameters used in these calculations. For these calculations it is necessary to specify
both the potential energy of helium (Ref, 26) or molecular hydrogen (Ref. 25) near a copper surface and
the phonons of the copper surface in the elastic continuum model (Refs. 28 and 29).

The potentials
He

Range parameter
Repulsive potential constant
van der %aals constant
Mirror plane
van der %aals cutofF
%'ell depth
Bound states

Vp

CVI
~VS'

k,
D
&as

1.26ap '

12.0 eV
1.52 eV/ao
0.462ap
1.0ao '

5.66 meV
5

1.21ao
5.21 eV
4.83 eV/ao
0.563ap
0.4ap '

22.3 meV
7

Longitudinal sound
velocity
Transverse sound
velocity
Rayleigh sound
velocity
Debye frequency
cutofF
Debye wave vector
Interaction potential
wave vector cutofF

The phonons

4.3&(103 m/s

2.2& 10 m/s

2. 1& 10 m/s

30 meV

0.907ao '

0.39ao '

use the full potential. Typically the attractive part of the
potential, far from the surface, is due to a large number
of surface atoms so that when one atom moves it does not
affect the potential, whereas the repulsive potential is lo-
cal and dominated by the surface atoms closest to the
scattering particle. In the region near the surface where
the inelastic scattering takes place, however, breaking the
potential into an attractive part and a repulsive part is
somewhat artiScial as the attractive part of the potential
is also dominated by the closest surface atoms.

This choice of the interaction potential is shown in Fig.
2 for a simple model of the gas-surface potential. The po-
tential is assumed to be a sum of a Morse potential from
each layer in the solid. For this model the interaction po-
tential is better approximated by the derivative of the full
static surface potential rather than the derivative of the
repulsive part of the same potential. This conclusion will
depend on the details of the potential, but should be true
for potentials close to this one; it is true for a sum of
Lennard-Jones potentials. In Sec. III we will show that
the choice of the interaction potential has a very strong
effect on both the strength of the inelastic scattering and
on the dependence of the inelastic scattering on the well
depth of the potential.

&e nidel the local height
lattice site of the displaceme
ian of the difference of the
surface between the particle

The denominator in Eq. (2.8) normalizes the shift so that
if the whole top surface layer makes a uniform shift, the
origin of the potential will shift by the same amount. The
cutoF Q, =0.39ao is primarily determined by the decay
length of the surface density near the classical turning
point and by the distance from the center of the displaced
surface atom to the classical turning point and can be
well a proximated by considering just a single surface
atom. When we make the Sat surface approximation,
the sums over lattice sites become integrals and give

h(R, I n, J ) = I d~R '
u, (R')

X exp[ —Q,'(R—R')'/2]
(2m)

(2.9)

We use the values of Q, that have been calculated for
helium scattering from copper.

C. The phonon spectra

h(R, In I)= g u„.—

The model we use is a semi-inSnite isotropic elastic
continuum model, ' for which the appropriate density
of states can be written down analytically. The primary

Posjt~on 'n the plan~ of the defects of this model are that both the frequency and
and each lattice site wave vector are unbounded and that the sound velocities

Q2(R R p~2~ are constants, independent of the wave vector. Besides
its analytic solution the main advantage of this model is

expf —QPR —RJ ) ~2~ that it naturally includes the Rayleigh phonons which are
localized to the surface and are the lowest frequency pho-

(2.8) non modes at each wave vector. The Rayleigh phonon
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modes are responsible for roughly one-half of the mean-
squaI'c displacement of tllc surface. Thc cholccs fof tllc
phonon parameters are given in Table I.

Figure 3 shove both the mean-square displacement of
the surface as a function of temperature and the effect of
the high wave vector ento@; discussed in Eq. (2.8), on the
mean-square effective height of the surface. The value of
the cutoff used in this paper drastically reduces the
mean-square effective height of the surface compared to
the mean-square displacement of the surface. This reduc-
tion decreases the inelastic scattering from what it would
be if the unphysical coupling to high wave vector phonon
were retained.

Figure 4 shows the weighted density of phonon states
as a function of the energy change in the motion normal
to the surface due to each phonon
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FIG. 3. The mean-square displacement of the surface. This
figure sho~s as a function of surface temperature the mean-
square displacement of the surface (top curve), and the mean-
square displacement of the efFective height of the surface for
two choices of the cutoff wave vector. This cutofF is contained
in the interaction potential as a factor that reduces the contribu-
tion to inelastic scattering of high-parallel wave vector phonons.
At temperatures high compared to the Debye temperature all
three curves are roughly proportional to the surface tempera-
ture and go to a finite value at zero temperature due to the
zero-point motion of the surface. The lowest curve is for the
cutol'used in these calculations, and the middle curve is for the
cutoS' equal to the surface reciprocal lattice vector appropriate
to these calculations.

D18t811Ce (eo) E;
+

2m
(2.10)

FIG. 2. A Morse potential model for the interaction poten-
tial. To study possible forms of the interaction potential a
Morse potential form of the gas-surface potential can be con-
structed from a Morse potential contribution from each layer in
the solid. The top panel shows the resulting static surface po-
tential (sohd line) and the contribution to this potential from the
top layer of the surface (dashed line). The difference between
these two potentials shows that a large part of the attractive
well is due to the subsurface layers even for a potential as short
ranged as a Morse potential. The bottom panel shows the
derivative of the static surface potential (sohd line), the deriva-
tive of the contribution from the top layer (dashed line), and the
derivative of the repulsive part of the static surface potential
(dotted line). The interaction potential for phonon modes in
which the top surface layer rigidly shifts normal to the surface
is given (in the low-amplitude limit) by the derivative of the po-
tential duc to the top layer of the solid. This figure shows that
this interaction potential is much better approximated by the
derivative of the full static surface potential than by the deriva-
tive of thc rcpulslvc part of the static surface potential even
though the subsurface layers make a large contribution to the
attractive region of ihe potential. The static surface potential is
a better approximation because the attractive part of the poten-
tial is more strongly dominated by the top layer contribution
the closer the particle is to the surface.

MI is defined in Eq. (5.13) of I and is a measure of the
amplitude of the phonon projected onto the surface layer,
A, indexes the normal modes of the semi-iniinite lattice,
and 0 =k indexes creation and destruction events. The
integral of this density times the matrix element of the
particle-scattering states gives the inelastic-scattering
probability. Since the high parallel wave vector cutoff
has a larger efFect on high-energy phonons than it does on
low-energy phonons, the inclusion of the cutoif reduces
the probability for high-energy transfer inelastic-
scattering events. It also reduces the asymmetry between
the energy loss and energy gain inelastic-scattering prob-
abilities.

III. RESULTS

This section details our calculations of elastic- and
inelastic-scattering probabilities. In Sec. III A are results
for helium scattering from copper with the emphasis on
both the effect of inelastic scattering on elastic scattering
and the effect of the shape of the surface potential on the
various scattering probabilities. Section IIIB, which
gives the results for molecular-hydrogen scattering,
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presents the interplay of inelastic scattering and rotation-
ally inelastic scattering.

A. Helium scattering

%e investigate 6ve models for the elastic-scattering
probability, three related to the distorted-wave Born ap-
proximation, and two related to the descriptions of
diffraction intensities in x-ray and neutron scattering. Of
the first three methods, two are based on a one-phonon
approximation and are described in I, and the last is an
attempt to extend these approximations into the multi-
phonon regime (this is discussed later in this section).
Evidence that helium scattering can be described in terms
of one-phonon creation and destruction events comes
from the observation of such events by time-of-fiight heli-
um scattering experiments. ' The first of the last two

methods (both discussed in this section) applies the
Debye-Wailer expression for the temperature dependence
of neutron-scattering intensities to surface-scattering
problems, and the second attempts approximately to in-
clude the elect of the attractive potential. These
methods are compared in Fig. S, which shows the scatter-
ing probability as a function of surface temperature.

%e start with the distorted-wave Born approximation.
The first term in the Born series yields the scattering
probability from the static surface which is unity for an
uncorrugated system with no translational-rotational
coupling. The correction due to the inelastic scattering
to this first term is equal to the negative of the total first-
order inelastic-scattering probability, i.e., the lowest-
order expression for the effect of inelastic scattering on
elastic scattering is just one minus the total first-order
inelastic-scattering probability calculated in the
distorted-wave Born approximation (DWBA)

P0%HA
1 PD%BA (3.1)

z p
I

Normal Energy Change (meV)

FIG. 4. The dependence of the phonon density of states on
the change in energy in the inelastic-scattering process for
several surface temperatures. These three panels show for sur-

face temperatures ranging from 0 to 420 K in steps of 60 K, the
density of phonons (weighted by their amplitude projected on
the surface layer) as a function of the change in the normal en-

ergy of the scattering particle. Each of the three panels corre-
sponds to one of the weightings of the density by the high-

parallel wave vector cutofF that are discussed in Fig. 3, i.e., the
top panel shows the energy density of all phonons, and the two
lower panels show the energy density of the phonons reduced by
the large-wave vector cutofF in the interaction potential for the
same two values of the cutofF wave vector (as in Fig. 3). The
effect of the large-wave vector cutoff is to reduce the weight of
phonons contributing to large normal energy changes without
strongly afFecting the low-energy transfers, because low-

frequency phonons necessarily have low-parallel wave vectors.
The steps in these curves, which are Inost pronounced in the top
panel are due to the Debye parallel wave vector cutofF of the
Rayleigh phonons.

This result is valid only when the inelastic-scattering
probability is small compared to unity —a limit which is
seldom attained in experiments. %hen the distorted-
wave Born approximation for the inelastic-scattering
probability becomes greater than one (which is allowable
in this approximation) Eq. (3.1) produces a negative
elastic-scattering probability.

The second method considered is also a one-phonon
approximation, the self-consistent one-phonon approxi-
mation developed in I. Essentially it makes the one-
phonon approximation in the self-energy of the scattering
particle rather than in the scattering probability. Even
though this approximation constrains the elastic scatter-
ing to lie between zero and one, it is nonetheless a one-
phonon approximation and does not have a significantly
larger range of vahdity than the Born series. It is espe-
cially useful for calculating the temperature dependence
of difFraction and rotational difFraction intensities near
selective adsorption resonances.

To extend these distorted-wave Born approximation
methods into the multiphonon regime we invoke the ex-
ponentiated inelastic-scattering model. As its name sug-
gests it involves exponentiating the first-order inelastic-
scattering probability to predict the elastic scattering

Pgi = exp( —P DwBA
)

In the weak-scattering limit the expanded exponential is
identical to the distorted-wave Born approximation re-
sult, and the probability is bounded between zero and
one. Even though this method is the best available exten-
sion of the one-phonon results to the multiphonon re-
gime, it must be regarded as ad IItoe. Two possible de-
fenses of this approximation might be (1) that it is the re-
sult of a cumulant expansion and (2) that the probability
for a n-phonon-change scattering event might be a Pois-
son distribution. Unfortunately, (1) the other terms in
the cumulant expansion have not been checked to see
how important they are, and (2) multiphonon terms,
which have only been calculated for approximate poten-
tials that have a form that simplifies the calcula-
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tion, 333 3 give results that are incompatible in detail
with a Poisson distribution.

Figure 5, a Debye-%'aBcr plot, shows the temperature
dependence of the elastic-scattering probability. It is
called a Debyc-%aller plot because similar plots of
neutron-scattering intensities give straight lines for tem-

peratures larger than the Debye temperature of the sur-
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FIG. 5. A comparison of diferent calculations of elastic-
scattering probabilities as a function of temperature. The re-
sults of three calculations based on the distorted-eave Born ap-
proximation (solid curves) and two based on a Debye-%aller ap-
proach (dotted curves) are corapared for calculations of the
elastic-scattering probability for helium scattering from copper
at normal incidence. The three distorted-wave based methods
are (1) the secondwrder distorted-wave Born approximation
(solid triangles), (2) the self-consistent oae-phonon approxima-
tion (solid squares), and (3) the exponentiated inelastic-
scattering model (solid circles). The axis on the left-hsnd side of
the figure gives the elastic-scattering probability on s logarith-
mic scale, and the axis on the right-hand side gives the natural
logarithm of the elastic-scattering probability. For the ex-

ponentiated inelastic-scattering model the (negative} natural
logarithm of the elastic-scattering probability is just the
distorted-wave Born approximation result for the total first-

order inelastic™scattering probability. The total inelastic
scattering can be used to gauge the temperatures for which the
one-phonon approximation is valid because the first-order in-

elastic scattering probabihty shouM be small compared to one;
this condition is not sstis5ed for most of the temperatures on
this plot. The second-order distorted-wave Born approximation
becomes zero when the first-order Born approximation becomes
one; this behavior leads to a divergence in this scattering proba-
bility seen in this figure at 220 K. The self-consistent one-

phonoa result is bounded between zero and one so that there
are no divergences but the curvature as s function of tempera-
ture is affected by the breakdown of the one-phonon spproxirna-
tion. Ia the high-temperature limit the distorted-wave Born re-
sult for the inelastic scattering is proportional to the tempera-
ture; in this limit the expoaeatiated inelastic-scattering model

gives results that are haear on this plot. The other two results,
both of which are proportioaal to the temperature in the high-
temperature limit are the Debye-%'aller factor (open squares)
and the Beeby-corrected Debye-%aller factor (open circle).
Both of these quantities are calculated using the mesn-square
elective height of the surface rather than the mean-square dis-
placement because the former quantity is used in the distorted-
wave methods, this choice increases the log of the scattering
probability by a factor of roughly 2.5.

= exp[ —Smz, &u, (R) &,„], (3.3)

where E, is the energy in the motion normal to the sur-
face. For diSraction there are also contributions from
the motion of the particle and the phonons in the plane of
the surface, but these are less important, both in general
and especially for the Hat surfaces we are considering.
There ls Qo reason to cxpcct that this cxprcsslon, which is
derived for neutron scattering, should describe surface
scattering. In addition to the complications due to the
strength of the scattering, i.e., weak for neutrons and
strong for helium, the potential for an atom scattering
from a surface is much diferent than it is for neutron
scattering from a solid. In particular the potential is soft
as opposed to delta-function-like, there is an attractive
part to the potential, and the potential cannot be de-
scribed by a sum of pair potentials.

This result, Eq. (3.3), can be modified in several ways to
approximately include some of the physics that is

face. The right-hand scale displays the negative of the
natural logarithm of the elastic-scattering probability; for
the exponentiated inelastic-scattering Inodcl this is equal
to the distorted-wave Born approximation result for the
inelastic-scattering problem and hence can be used to
gauge when the scattering is in the one-phonon regiIne
and %'hcn 1t is 1n thc multlphonon I'cglIIlc.

This plot shows that all three methods agree well in the
one-phonon regime where the inelastic scattering is small
compared to one, but disagree in the multiphonon re-
girne. %'hen the inelastic-scattering probability exceeds
unity, the distorted-wave Born results diverges on this
type of plot. In addition to a physical curvature in each
curve at low temperatures due to the zero-point motion
of the surface, there is unphysical curvature at high tem-
peratures in the distorted-wave Born series results due to
the divergence caused by the increasing inelastic scatter-
ing outside the one-phonon regime. Even though the
elastic-scattering probability in the self-consistent one-
phonon approximation is bounded between zero and one,
there is a downward curvature outside the one-phonon
regime (where the distorted-wave Born approximation re-
sults are not small compared to one, which occurs at high
temperatures in this plot). This is not to say that
straight-line behavior is expected, just that the observed
deviations in these curves are unphysical and hence
meaningless. This curvature is necessarily absent from
the exponentiated inelastic-scattering model because the
distorted-wave Born approximation inelastic-scattering
probability is proportional to the temperature for temper-
atures larger than the surface Debye temperature. Since
none of these models are valid in the Inultiphonon re-
gime, none can reliably predict in that regime that the
logarithm of the elastic-scattering probability should be
proportional to the temperature in this limit or that there
should be less or more elastic scattering.

The other two methods shown in these two figures are
related to the Debye-Wailer factor. The temperature
dependence of the specular-scattering probability (specu-
lar scattering is elastic scattering without difFraction, for
a Sat surface specular and elastic scattering are the same)
18
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diferent in surface-scattering situations. One way, illus-
trated in Fig. 5, is to use the mean-square efFective height
of the surface rather than the mean-square displacement

P,~

——exp[ S—mE, (h(R) ),z] . (3.4)

Since the mean-square displacernent is more than twice as
large as the mean-square enective height, if we were to
use the former (3.3} in place of the latter (3.4), the
elastic-scattering probability would be much smaller and
further from the perturbation-theory-based results in the
weak-inelastic-scattering limit.

Surprisingly it is possible to account for most of the
changes in scattering probabihties for systems with
different attractive potentials by shifting the incident nor-
mal energy by the change in the well depth. Use of this
shift in the Debye-Wailer factor leads to

the choice of using the derivative of the full potential or
of the repulsive potential in the interaction potential.
The effect of the 6rst assumption is illustrated in Fig. 3
which compares the mean-square displacement of the
surface with the mean-square effective height of the sur-
face. The inelastic-scattering probability is roughly pro-
portional to the mean-square elective height; if the paral-
lel wave vector cutoff were not included in the interaction
potential, the inelastic scattering would be approximateiy
twice as large. This difference highlights the difliculty in
extracting information about the scattering system from
the experimental temperature dependence; here the
mean-square efFective height that would be extracted
from these calculated curves in a Debye-Wailer analysis
is not simply related to the mean-square displacement of
the surface atoms.

=exp[ —sm(Z, +D)&a(R) ),„], (3.5}
1.0

where D is the well deptl). Known as the Beeby-
corrected Debye-Wailer factor, ' in Fig. 5 it moves (cf.
Fig. 5) the elastic-scattering probability even further from
the perturbation-based results. This increased deviation
could be compensated for by including the effects of the
softness of the surface potential because that correction
would increase the elastic-scattering probability from the
Debye-Wailer result. In Sec. III A 1 we study the effect
of a steeper potential on the elastic-scattering probability.
We find that in the hard-wall limit the elastic-scattering
probability is very close to the Beeby-corrected Debye-
Waller result implying that the difFerences are due to the
softness of the potential. Unfortunately we know of no
simple way to account for the softness of the potential in
a Debye-Wailer-like analysis; a correction that would
have to depend not only on the range parameter of the
potential but also on the well depth and on the scattering
energy.

Figure 6 compares elastic-scattering probabilities, cal-
culated using the exponentiated inelastic-scattering mod-
el, with experimentally measured ones. ' The agree-
ment is surprisingly good for a calculation with no ad-
justable parameters, although it is better for the 63-meV
results than it is for the 21-meV results which are closer
to the one-phonon regime in which this calculation
should be more reliable. The experimental data cover a
larger range of temperatures than that shown here. At
higher temperatures the inelastic scattering is so strong
that a one-phonon-based theory really should not apply;
the elastic scattering departs from linearity on a Debye-
Waller plot. Possible explanations are either that this
departure is a natural consequence of the perturbative ex-
pansion or that it is due to anharmonic behavior of the
phonons at the surface. Similar effects have been seen
for helium scattering from nickel. %e view the latter
explanation as more likely both because it should be
present in some degree and because the first explanation
1s based on calculations outsIde their range of valldlty.

The assumptions about the potential that have the
largest effect on the scattering probability are (1) the
choice of the forln and values for the dependence of the
interaction potential on the phonon parallel wave vector,
(2) the range parameter of the repulsive potential, and (3)

~ph
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FIG. 6. Comparison of calculated with experimental elastic-
scattering probabilities. The two panels show experimentally
measured (Ref. 38) (dotted curves snd open symbols) and
theoretically calculated (solid curves and symbols) elastic-
scsttering probabilities as s function of surface temperature for
two incident energies, 63 meV in the top panel and 21 meV in
the bottom, and several incident angles 71.6' (squares), 6.17'
(circles), 51.9' (triangles), 39.0' (dismonds and crosses), and 19.0'
(stars) in the upper panel and 73.5' (squares), 55.5' {circles), snd
3.18 (triangles) in the lower panel. The agreement is surprising-
ly good for a comparison with no adjustable parameters snd
may be fortuitous given the uncertainty in some of the approxi-
mations made in this model. The probabilities have been calcu-
lated using the exponentiated inelastic-scattering method (dis-
cussed in Sec. III A) with additional assumptioqs about the form
of the potential which includes the Bat-surface approximation
(see I), the isotropic elastic continuum model for the phonon
spectrum (Sec. II C), and the form of the interaction potential
(Sec. II 8). Using the derivative of the repulsive potential rather
than the full potential in the interaction potential will increase
the inelastic scattering, or the exponent in the exponentiated
inelastic-scattering model, by roughly a factor of 4. Ignoring
the wave vector cutoff in the interaction potential will increase
the inelastic-scattering probabihty by slightly more than a fac-
tor of 2.
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1. Dependence on potentia/ parameters

The sensitivity of the elastic-scattering probability to
the choice of the potential can be tested using a Morse
potential, which allows easy variation of the potential pa-
rameters. Calculations ' using a one&imensional model
and the distorted-wave Born series have found results
similar to these calculations. We use the exponentiated
inelastic-scattering model because it is the simplest and
because the behavior should not ddfer from the other two
perturbation-based approaches in the regime where the
three can be trusted. Figure 7 shows the elastic-
scattering probability for the exponential van der Waals
potential and a Morse potential chosen to have the same
well depth and the same range parameter for the repul-
sive part of the potential.

We attribute the slight difFerence between the two re-
sults to the difference between the attractive potentials in
the region near the classical turning point. As we show
in Sec. 111B, the inelastic scattering primarily takes place
near the classical turning point and not in the region
where the potential is dominated by the attractive poten-
tial. At the classical turning point this Morse potential is
steeper than the exponential van der Waals potential so
the inelastic scattering is stronger, and hence the elastic
scattering is weaker for the Morse potential than it is for
the other. That a steeper potential gives weaker elastic
scattering is borne out by studying the elastic-scattering
probability as a function of the range parameter.

Figure 7 also shows the elastic-scattering probability
for several other Morse potentials in which the range pa-
rameter varies by a factor of 16. As expected a steeper
potential produces stronger inelastic scattering, although
the variation is much more dramatic as the range param-
eter is decreased. The results for the two steepest poten-
tials lie on top of each other indicating that the potential
has reached a hard-wall limit. The differences between
the results for the physical potential and the results for
the potentials in the hard-wall limit are very close to the
differences between the physical potential and the Beeby-
corrected Debye-Wailer factor results in Fig. 6. For
these systems, helium and molecular hydrogen on copper,
the potential is close to but not in the hard-wall limit.

In the previous section we mentioned that the effect of
the attractive potential can be accounted for to a large
extent by adding the well depth to the energy in the
motion normal to the surface; this is examined in Fig. 8

by varying the well depth of the Morse potential by a fac-
tor of 8. Adding the well depth does not completely
correct for the elects of the attractive potential because
the Morse and exponential van der %'sais potentials that
have the same well depths, but different forms of the at-
tractive potential do not have identical scattering proba-
bilities (as seen in Fig. 7). The difference is due to the
slope at the classical turning point depending on the form
of the attractive potential even for potentials that give the
same well depth. If the idea behind the Beeby correction
is correct, the curves in this figure should be shifted with
respect to each other along the energy axis by an amount
equal to the difFerence between the well depths. Using
the inset at the top of the figure as a guide, this is seen to
be correct for this choice of range parameter and these

various well depths.
The Beeby correction would be exact (i) if the part of

the potential further from the surface than the well
minimum were both decoupled from the phonons and
sufficiently slowly varying and (ii) if the entire potential
inside the well minimum, i.e., both the attractive and
repulsive contributions were coupled to the phonons.
The results in Fig. 8 show that these conditions are well
satisfied for this potential. On the other hand, if only the
repulsive part of the potential is coupled to the pho-
nons, ' these conditions are not satis5ed, and the Beeby
correction is not a good approximation. The two types of
coupling disagree by roughly a factor of 2 in the amount
of inelastic scattering predicted.

By comparing He and D2 scattering from several Hat

surfaces, it should be possible to distinguish between
models for the interaction potential because, except for
the presence of weak rotationally mediated selective ad-
sorption resonances, the most important difference be-
tween the two systems is the strength of the attractive po-
tential. The surfaces should be flat because the increased
attraction for the deuterium molecular can also increase
the effective corrugation that the molecule experiences.
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FIG. 7. The range parameter dependence of the elastic-

scattering probability. The inelastic-scattering probability in

the distorted-wave Born approximation (the right-hand scale)

and the elastic-scatteriag probability in the exponentiated
inelastic-scattering model (same curves, but left-hand scale) are
shown as a function of incident energy for diferent models of
the potential. The dotted line is calculated using the exponen-

tial van der %aals potential used in the previous Sgures, and the
solid line closest to it is calculated using the Morse potential
with the same well depth and range parameter in the repulsive

part of the exponential van der %aals potential. This and Fig. 8

show how the inelastic scattering changes as a function of the

potential that is used to calculate it. Here, the range parameter

of the Morse potential is varied in the series a=ao/4, ao/2,
&0,2~, M, where ao ——0.63a 0 ', giving the curves from the up-

permost to the lowest, respectively. The we11 depth for these

potentials is Do ——5.656 meV. The curves for the two steepest

potentials a=2ao and a=4ao but not that for a=ao are coin-

cident to within the accuracy of the calculation indicating that
while the Srst two potentials are both in the hard-wall limit the

latter is not. The difference between the results for the hard-

wall potential and the physical potential account for much of
the dieerences between the Beeby-corrected Debye-%aller fac-

tor results and the results for the physical potential.
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We also ffnd that over the range of potentials we have
investigated inelastic scattering is proportional to the
mass as is predicted by the Debye-%'aBer and related
treatments. The distorted-wave Born approximation in-

tegrated over all Snal momenta depends on the mass
through an overall factor of mass and the mass depen-
dence of the wave functions. The mass dependence of the
lncldent %'ave vector at constant 1nc1dent enelgy 18 can-
celed by a similar factor from the integration over the
final states. That the inelastic-scattering probability
scales with the mass implies that the matrix element of
the scattering states is only very weakly dependent on the
Glass.

We summarize the dependencies we have found. (1)
The potentials we use for helium and hydrogen scattering
are almost but not quite in the hard-wall limit with
respect to the variation of the range parameter. (2) For
the model of the interaction potential we are using, the
efFect of the attractive potential can be accounted for by
adding the well depth to the incident energy in the
motion normal to the surface (but not if we were to use
the repulsive potential inelastic coupling). (3) The inelas-
tic scattering, which is the exponent in the exponentiated
inelastic-scattering model, is proportional to the mass of
the scattering particle. Previously, in Scc. II C, we
showed that (4) the inelastic scattering is roughly propor-
tional to the eff'ective mean-square eff'ective height based
on the form of the phonon-wave vector dependence of the
interaction potential.

(H „,—Ei, —i')$0'+„'(r, k)

= J d'r'X(r, r', E„)y~„'(r,k), (3.6)

where X is the self-energy calculated in the one-phonon
approximation. Using the assumptions for the form of
the interaction potential discussed in I, the self-energy
rcdllccs'to

d(bE, )
X(z„z',E, )= J — V'(z)Gi(z, z', E, bE, i'—)—

2. Optical potentials

It would be desirable to develop an approximation
scheme that could be used to calculate elastic-scattering
probabilities more simply than is done in this calculation.
Above we concluded that Debye-%aller factors can be
used with phenomenological 6tting factors but need dras-
tic modi6cation to be used to predict scattering probabili-
ties. Another possible approach is to use an optical po-
tential, a potential with an imaginary part that causes
ffux to be absorbed from the incident wave function. We
have not been able to find a model that can reproduce the
desired features; to illustrate the difficulty we have calcu-
lated the self-energy for the self-consistent one-phonon
approxlmatlon [scc Eq. (4.12) of I]. Tlic self-energy is
equivalent to a nonlocal energy-dependent optical poten-
tial because the zero-phonon-change amplitude discussed
ill I satisfies

X&(bE, )V'(z') . (3.7)
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FIG. 8. The wel1 depth dependence of the elastic-scattering
probability. Similarly to Fig. 7, the elastic-scattering probabili-
ty calculated using the exponentiated inelastic-scattering model
is shown as a function of energy for a variety of potential well
depths. For the curves from the top to bottom the weH depths
are D =Do/2, D =DO„D =2Do„and D =4DO, where the physi-
cal well depth is Do =5.656 rneV. The ticks on the inset in the
top right-hand corner give the separation of the energies of the
potential wells used in these calculations; Beeby-corrected
Debye-%aller calculations give elastic-scattering probability
curves separated by these amounts. Surprisingly this exponen-
tiated inelastic-scattering model gives the same result indicating
that the potential beyond the well minimum only contributes to
the dynamics by speeding up the incident atom. The dotted
curves are each of the calculated curves shifted horizonaHy by
the mell depth of the potential that was used to calculate them.
This result does not occur if only the repulsive part of the po-
tential is included in the interaction potential.

The Green's function can be calculated for small but
finite value of the imaginary piece ii by using its spectral
forIQ.

Figure 9 shows the imaginary part of the self-energy
for three diff'erent energies as a function of the two spatial
arguments for a surface temperature of 240 K. The main
point of this figure is that it is very difficult to approxi-
mate this function in any manner that retains the impar-
tant physics. The diSculty arises because this self-energy
is strongly energy dependent, nonlocal, and nonseparable
as well as being temperature dependent. The energy
dependence of the elastic-scattering probability results
from the energy dependence not only in the incident
scattering state, but also from energy dependence of the
Snal scattering states near the incident energy. This
dependence on the final states complicates any optical po-
tential treatment because the strength of the optical po-
tential depends on the incident energy. Any local optical
potential would have to be regarded as ad hoc.

The nonlocal and nonseparable aspects of an optical
potential will drastically slow any numerical calculation.
If the self-energy were approximately local, i.e., propor-
tional to a 5 function of the difFerence of the two spatial
arguments, it would be possible to treat the optical poten-
tial as though it only had one spatial argument, which
would allow calculating scattering probabilities in a way
that would not be much more complicated than the cal-
culation for a static surface. On the other hand, if the
self-energy dependence were separable, the calculation of
the scattering probabilities would involve an extra spatial
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integration over the second spatial argument„but that in-

tegration could be done independently of the other spa-
tial argument allowing a simple self-consistent solution of
just a single differential equation. The temperature
dependence of the self-energy would be well approximat-
ed as proportional to the mean-square effective height of
the surface.
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FIG. 9. The self-energy for helium scattering from copper in
the one-phonon approximation. The imaginary part of the non-
local sclf~ncrgy [sec Eq. (3.7)] is plotted as a function of the
Srst spatial argument with ihe 84xend spatial argument taking
the values z'=3.0,3.2, . . . ,4.6@0 for three dilerent energies
(given in each panel). The static surface potential for helium

scattering that is used in these plots is shown in Fig. 1, and ihe
phonon density as a function of energy is shown in the bottom
panel of Pig. 4 as the 240 K curve. To associate each curve in a
panel with its second spatial argument, find the curves for
which the erst peak (moving from left to right) occurs at the
same position; the curve with the lowest peak height has the
lowest value of the spatial argument. The Srst peak in the opti-
cal potential is near the classical turning point (z=3.6ao for
E;=24 meV, z=3.45ao for E;=36 meV, and z=3.3ao for
E; =48 mcV}. This peak height increases ss thc soco11d spatial
argument increases until it reaches a maximum. Then as the
second argument increases further the peak shifts to the right
and decreases, reaching the rightmost part of the panel for the
last included value of the second spatial argument. The self-

energy goes to zero for large values of either spatial argument
because the interaction potential vanishes and goes to zero for
small (and negative) values of either spatial argument, because
there are no inelastic wave functions with energies near the in-

cident energy that penetrate into the surface.

S. Molecular-hydrogen scattering

Molecular-hydrogen scattering differs from helium
scattering because (1) the mass is difFerent (except for D2),
(2) the potential well is deeper because the attractive po-
tential is stronger, and (3) the molecule has rotational de-

grees of freedom. The effects of changing the mass and
the well depth are among the topics discussed in Sec.
III A. The rotational degrees of freedom affect
molecular-hydrogen scattering in two ways: (1) the mole-
cule can make rotational transitions, both real transitions
and virtual rotational transitions into bound states of the
surface potential, and (2) the potential of the molecule de-
pends on its rotational state (even if no rotational transi-
tions occur). For H2 and Dz the effects of the rotational
degrees of freedom are much less important than they are
for the much more asymmetric HD molecule.

1. Selective adsorption resonances

Although the rotational effects are more prominent for
HD scattering they can still be seen for Hz and 02 in Fig.
10 which shows the inelastic-scattering probability calcu-
lated in the distorted-wave Born approximation for
different incident angular momentum states. Experimen-

tally ' hydrogen diffraction, rotationally inelastic

scattering, and selective adsorption resonances have been

observed. However, the resonances are too weak to mea-

sure the interaction between selective adsorption and in-

elastic scattering.
The large peaks in Fig. 10 are due to the selective ad-

sorption resonance enhancement of the inelastic scatter-
ing. A rotationally mediated selective adsorption reso-

nance occurs when a molecule makes a virtual rotational
transition into a bound state of the gas-surface potential
and spends a long time in this rotationally excited state
before it leaves the surface. Typically selective adsorp-
tion resonances are seen in a scattering experiment

through difFraction (or rotational diffraction) intensities;
at the resonances there are large rearrangements of the
scattering intensities between various elastic- and rota-
tionally inelastic-scattering channels (allowed zero-

phonon-change final states). For low-incident energies in

the systems studied here specular scattering is the only

possible zero-phonon-change final state, i.e., no rotational
transitions can occur and no rearrangement can take
place. However, selective adsorption resonances still
have experimental consequences, because they enhance
inelastic scattering which in turn changes the elastic-
scattering probability. Resonantly enhanced inelastic
scattering has been seen using time-of4hght measure-
ments for helium scattering from corrugated sur-
faces.

Since the particle spends a long time in the region of
the potential minimum the probability for inelastic
scattering is increased giving the peaks seen in Fig. 10.
For these symmetric hydrogen molecules the
translational-rotational coupling is very weak so that the
resonances are narrow, i.e., once a molecule makes a
transition into a rotationally trapped state it remains
there for a long time before it makes a transition out of
the trapped state (ignoring inelastic scattering).

At this point it is useful to de6ne several terms used in
this discussion of selective adsorption resonances, partic-
ularly with respect to the widths of the resonances as a
function of energy (ail widths refer to functions of energy
in this section}. The term static surface refers to the sur-
face with all of the lattice displacements fixed to zero and



should not be confused with a zero-temperature surface
for which the lattice atoms move with their zero-point
motion. If we hypothetically scatter molecules from a
static surface there is no inelastic scattering, and the
selective adsorption resonances have a width that is
determined by the translational-rotational coupling; we
call this width the elastic width and its inverse the elastic
lifetime

—1
~el ~el (3.8)

For particles that scatter from a surface that is free to
move, even if it is zero temperature, the width of the
selective adsorption resonances increases due to the in-
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FIG. 10. Molecular-hydrogen inelastic-scattering probabili-
ties. The top panel {82) and the bottom panel (D&) show the
distorted-wave Born approximation results for the inelastic-

scattering probability for molecular-hydrogen scattering from a
zero-temperature copper surface. The three curves —solid

{)=0, m =0)„dashed (I=1, m =0), and dotted (I=1„
m = 1)—are for c48erent rotational states of the incident mole-

cule. These three states are not coupled by the surface potential
because the fiat surface conserves the azimuthal quantum num-

ber„and there is no nuclear spin coupling to convert ortho (odd
I H& and even I 0&) to para (even I 82 and odd I 02) or vice ver-

sa. For the low incident energies the scattering is in the one-

phonon regime except at selective adsorption resonances which

are the sharp narrow peaks in the inelastic-scattering probabih-

ty. The inelastic scattering is so strongly enhanced at reso-

nances to the point where it is well outside the one-phonon re-

gime. The difference between the curves in each panel are due
to (1) the dilerent rotational energy splittings for the odd and
even angular momentum species leading to di8'erent selective
adsorption resonance energies and (2) the dilerent spherical
harmonic matrix elements of the potentials that are important
for each species. The differences between 82 and 02 are due to
the di8erence in the mass leading to (1) stronger inelastic
scattering for 02, (2) lower rotational energy splitting so that
the resonances occurs at lower energies, and (3) more and more
closely spaced bound states for 02.

elastic scattering. The width of a resonance is given by
the sum of the elastic width and the inelastic width

1 1I =I e+I;„,=—= +
+el +inel

(3.9)

In the distorted-wave Born approximation the resonances
are not broadened by the inelastic scattering, so the width
of the resonant enhancement of the inelastic scattering is
given by the elastic-scattering width. The self-consistent
one-phonon approximation allows the inelastic scattering
to affect the elastic scattering in a way that allows the res-
onances to broaden inelastically. Most of the resonances
we discuss have inelastic widths that are greater than
their elastic widths when calculated in the self-consistent
one-phonon approximation,

The narrow H2 and 02 resonances produce enhance-
ments of the inelastic-scattering probability that are so
large that the distorted-wave Born approximation used to
calculate the scattering probabilities is not valid. Unfor-
tunately calculations using the self-consistent one-phonon
approximation are difficult because the peak heights are
so large that an iterative solution does not converge even
when the background values of the inelastic-scattering
probability are in the one-phonon regime. Nonetheless
the results of the self-consistent calculation applied to
HD scattering can be used to qualitatively understand
what happens to H2 and D2 scattering near selective ad-
sorption resonances when inelastic scattering is impor-
tant. Both HD resonances and H2 and D2 resonances for
which the inelastic width is much larger than the elastic
width should behave similarly to each other because the
processes that contribute to the elastic width are similar.

The resonant enhancements, although extremely large,
are narrow enough that their contribution to the inelastic
scattering is comparable to the background when both
the resonant contribution and the background are in-
tegrated over a typical experimental resolution of 0.5
meV. For instance, the H2 resonance near 33 meV has a
width of about 4X10 meV and a weight integrated
over energy of 0.7 meV while the background at that en-

ergy integrated over 0.5 meV has a value of 0.2 meV. If
inelastic scattering did not affect the resonance widths
the resonances would show up as suppressions of the
elastic-scattering probability. However the peak value of
the inelastic scattering at the 33 meV resonance is 56
which is an unacceptable value for a scattering probabili
ty. Since the peaks are so large, they broaden consider-
ably to the point where the widths of the peaks are dom-
inated by the inelastic lifetime as opposed to the elastic
lifetime that determines the widths of the peaks as seen in
Fig. 10. The broadened peaks will have a much smaller
effect compared to the background inelastic scattering as
is seen below in the temperature dependence of the HD
resonances. The inelastic lifetimes of the HD selective
adsorption resonances which should be comparable to the
inelastic lifetimes of the H2 and 02 resonances are much
shorter than the elastic lifetimes of the H2 and D2 reso-
nances.

The resonances are different for H2 and 02 because the
mass and hence the moment of inertia are larger for the
latter. The larger 02 mass yields more bound states in
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the gas-surface potential, and further the bound states are
closer together in a given energy range. The mass also in-
creases the background value of the inelastic-scattering
probability by roughly a factor of 2 as was discussed in
Sec. IIIA1, and hence the height of the resonances is
also increased by a factor of 2 over what it ~ould be if the
other aspects of the resonance were unafFected by the
difference in the mass. Since the moment of inertia is also
larger by a factor of 2 for 0& compared to H2 the rota-
tional energy splitting is smaller and the resonances occur
at lower energies than they do for Ht.

The differences between the inelastic-scattering proba-
bilities for different incident angular momentum states
arise from the differences in the spherical harmonic ma-
trix elements of the potential. [See Eq. (5.6) of I.] The
inelastic-scattering probability is determined (for these
systems with weak rotational coupling) by the diagonal
matrix element of the potential with the incident rota-
tional state. The energies of the selective adsorption res-
onances, on the other hand, are determined by the diago-
nal matrix element with the rotationally excited states.

These differences in the inelastic-scattering probabili-
ties lead naturally to the discussion of the dependence of
the sticking probability on the rotational state of the mol-
ecule, a topic of current experimental interest. The in-
terest in this problem is due to the observation in electron
energy loss and work function change measurements that
there were diff'erent proportions of parahydrogen and
orthohydrogen measured on the surface for the same ex-
posure of each gas. 8 Subsequent molecular beam mea-
surements of the sticking probability have borne out this
observation in a surprising way; there are peaks in the
sticking probability when the total energy of the incident
molecule is equal to a rotational exc1tation. Even more
surprising are subsequent measurements of the elastic-
scattering probability that show features related to
those seen in the sticking probability. The results of
these experiments are difftcult to understand in terms of
the assumptions we make in these calculations, particu-
larly difftcult are the peaks that occur when the total en-

ergy of the particle is equal to a rotational transition en-

ergy.
Our earlier calculations for the trapping probability

showed that the rotational dependence of the sticking
probability was not due to the selective adsorption reso-
nance enhanced trapping because the resonances were ex-
tremely narrow and had a very small weight. In that cal-
culation we used a form for the potential that had a
much weaker orientational dependence than found in

subsequent calculations. %e used diFerent phonon
cutoffs, a larger value of coD and Q, than we currently be-
lieve to be the most appropriate. Our potential choice led
us to underestimate the differences due to the rotational
degrees of freedom, and our choice of cutoffs leads to an
overestimation of the efFects of the selective adsorption
resonances because it allowed resonances with higher en-

ergies to contribute to the trapping probability.
Figure 11 shows the results of a calculation for the

probability for trappi. ng onto a zero-temperature copper
surface as a function of 1nc1dent energy. The calculat1on
was done for the molecules normally incident on the sur-

face, and then the energy was scaled by (cos 60') to
convert from the normal energy to the total energy for an
angle of incidence of 60', the experimental angle of in-
cidence. For the approximations we make, using the en-
ergy in motion normal to the surface is sum1cient to ac-
count for almost all of the eFect of ofF-normal incidence
on the inelastic-scattering probabilities. The curves for
orthohydrogen and paradeuterium (both odd angular
momentum species) have been averaged over the possible
values of the azimuthal quantum number. For the values
of the parameters used in this calculation there are no
resonances that contribute to one-phonon trapping for
H2, and the ones that contribute for orthodeuterium are
extremely weak. There are differences of about 10%%uo be-
tween the even and odd angular momentum species of
both Hz and D2 due to the differences in the angular
momentum state matrix elements of the orientationally
dependent potential. These 10% differences are probably
below experimental resolution because the populations of
para- and orthohydrogen in the two diFerent gas mix-
tures are not that well known. The H2 trapping probabil-
ity is roughly twice that of D2 at low energies, but at
higher energies they are almost the same. The low-
energy ratio of the experimentally measured deuterium
sticking probability is larger than that of hydrogen by a
factor of 2, but the ratio increases at higher energies rath-
er than decreases. This increase in the ratio is under-
standable because multiphonon contributions (relative to
the one-phonon contributions) to the trapping are more
important for deuterium, since its mass is greater, than
they are for hydrogen.

A trapping probability as calculated here is not a stick-
ing probability that would be measured experimentally.
A particle in a trapped state will not in general stay in
that state because it is still coupled to the phonons, so a
trapped state cannot be viewed as a proper 6na1 state in a
scattering calculation. However, if the inelastic lifetime
of a trapped state is longer than the scattering time, it
makes sense to use such a trapping probability as input to
a kinetic calculation of the sticking probability. ' It also
makes sense to treat trapping in this manner to study its
efFect on elastic scattering.

On the other hand, it is diScult to see how the experi-
mental features can come out of such a combined trap-
ping and kinetic calculation. This discrepancy indicates
that scattering and trapping for low-energy, low-mass
particles on cold surfaces may be more complicated than
is consistent with the assumptions in such a distorted-
wave perturbative approach.

2. HD Static sarface scattering

The asymmetry of the HD molecule has two important
consequences for the dependence of the scattering proba-
bilities on the rotational degrees of freedom. (1) Since the
nuclei are distinguishable, odd angular momentum transi-
tions are allowed. (2) Since the center of mass is offset
from the centroid of the electron cloud, the
translational-rotational coupling is much stronger than it
is for H2 or 02. The increased coupling to rotations gives
much stronger rotationally inelastic scattering and much
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broader selective adsorption resonances. These reso-
nances are broad enough that they can be treated within
the self-consistent one-phonon approximation developed
in I which allows a quantitative calculation of resonant
scattering for these systems leading to a qualitative, un-

derstanding of the CFect of inelastic scattering on selec-
tive adsorption resonances in other systems.

Features of HD scattering from noble metals that have
been seen experimentally are rotationally inelastic
scattering with well-delned rotational transitions, selec-
tive adsorption resonances in the scattering probabilities,
and variations in the temperature dependence of these
quantities. While quantative comparisons with absolute
scattering probabilities are diScult, all of the qualitative
features of these experiments are described by the theory
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developed in I.
Figure 12 gives the scattering probability for HD

scattering from a static (lattice atoms fixed) copper sur-
face. The top panel sho~s the clastic, or I =0, scattering
probability which is unity for all energies below 11 mcV
because there are no other accessible outgoing states.
Above 11 meV the molecules can scatter from the surface
into either the I =0 state or the rotationally inelastic I = 1

state which is shown in the middle panel of the figure.
The translational-rotational couplmg is strong enough
that most of the molecules scatter into the rotationally
excited state. At the selective adsorption resonances the
scattering probabilities change rapidly as a function of
energy with the elastic-scattering probability approach-
ing unity and the rotationally inelastic-scattering proba-
bility approaching zero. This rapid change in the scatter-
ing probabilities is due to the constructive and destruc-
tive interference between the directly scattering Aux and
the Aux that has coupled back out of the rotationally
trapped state. The bottom panel shows the occupation of
the rotationally trapped states that lead to the selective
adsorption resonances; below 11 meV the figure shows
the probability density in the 1=1 state, and above 11
meV it shows the probability density in the 1=2 state.
The probability density is calculated by integrating over
all z the amplitude squared of the scattering state in the
appropriate angular momentum channel of the scattering
state.

The roughly Lorentzian peaks in the trapped probabili-
ty density are better measures of the resonance widths
than the Fano-like elastic-scattering line shapes because
the shape of the latter obscures its width
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FIG. 11. The trapping probability for molecular-hydrogen
scattering from copper. The top panel shows the trapping prob-
ability for H2 and the bottom panel that for 02 calculated in the
distorted-wave Born approximation for scattering from a zero-
degree copper surface for an incident angle of 60'. The calcula-
tion has been done for a normally incident molecule and then
the incident energy adjusted to account for the ol'-normal i.n-
cidence, since it was shown in Sec. II 8 of this paper that using
the normal energy rather than the total energy accounts for al-
most all of the efFects of off-normal incidence. The solid curves
are the trapping probability for the l =0 incident rotational
state molcculcs (parahydrogcn and orthodeuterium) and the
dotted curves are for the l = 1 rotational states averaged over
the azimuthal quantum number. Because of the mass ratio the
D2 trapping coeScients are a factor of 2 larger than those for
H2 except the highest energies w'here they are about the same.
There arc no selective adsorption resonances for 82 in this ener-
gy regime, and those for D& are weak; even if the resonances
were not weak in a distorted-eave Born approximation treat-
ment„ their efkct on trapping would be reduced because all the
inelastic-scattering probabihties are enhanced, so that the
enhancement of each is reduced in a self-consistent calculation.
"rhese trapping probabilities cannot be directly compared to
sticking coef5cicnts but should be used as inputs to a kinetic cal-
culation of sticking probabilities.

where I is the width of the resonance and q is a parame-
ter that measures the asymmetry of the line shape. Be-
cause the line shapes are Fano-like there is structure in
the resonance line shapes that extend over a larger range
of energy than the width of the resonance. This Fano-
like shape with a peak and dip in both channels is not a
general expression for a selective adsorption resonance
bne shape; resonances can consist of isolated peaks or
dips or even more comphcated shapes. This shape
does, however, happen to describe these line shapes quite
well over a small energy range that is nonetheless large
compared to the width of the resonance.

The low-energy resonances are much broader than the
higher-energy ones. The resonance widths depend on the
matrix element of the om'-diagonal parts of the potential
[see Eq. (5.26) of I] with the bound states and the density
of continuum states at the resonance energy. The overlap
of the bound states with the ofF-'diagonal parts of the po-
tential, the largest part of which is due to the /" =1 term
in the potential, is roughly equal to the product of the
derivative of the diagonal part of the potential and the
ofFset of the center of mass. While the lowest-bound state
is centered near the well minimum where the derivative
of the potential is small, the subsequent bound states
penetrate further into the surface but also have more and
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more of their amplitude centered far from the surface.
Due to these confHcting trends the matrix element (for
these potentials) tends to be largest for the second- and
third-bound states. The density of states is larger the
closer the rotationaHy deexcited state is to the vacuum
since the density of states in one dimension (due to the
fiat-surface approximation, the parallel degrees of free-
dom decouple completely in this aspect of the problem) is
inversely proportional to the square root of the kinetic
energy of the scattering particle, E '~ . For resonances
at energies high enough that there are several final states,
the width depends on contributions from all possible final
state, but the largest contribution is from the lowest-
energy rotational deexcitation because the matrix element
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FIG. 12. HD-scattering probabilities from a static copper
surface. The elastic- {top panel) and rotationally inelastic- (mid-

dle panel) scattering probabihties for HD scattering from a stat-
ic copper at normal incidence are plotted as a function of the in-

cident energy. The bottom panel sho~s the density in the rota-
tionally excited trapped state integrated over the position nor-
mal to the surface also as a function of the incident energy.
This quantity, a measure of the time spent near the surface in a
rotationally excited state, is strongly peaked at the selective ad-
sorption resonances. As seen in the middle panel, no rnolecules
with incident energies below 11 meV leave the surface rotation-
ally excited. For these energies I = 1 rotational state can be res-
onant with the bound states of the surface potential as seen from
the broad overlapping peaks in the bottom panel, but the
elastic-scattering probability is not alected because there is only
one final state. Above 11 meV the molecule can scatter into ei-
ther an I =0 or an I = 1 state and leave the surface, and the I =2
state can be resonant vrith the bound states giving selective ad-
sorption resonances. Resonances for w'hich there are more than
one possible Snal state cause peaks in the elastic I =0 scattering
probability and dips in the rotationally inelastic k =1 scattering
probability as well as increased trapped state densities. Unlike
the resonances for energies below 11 meV these resonances are
much sharper and do not overlap each other.

Is laI'gcI' (tllat term ln thc coup11ng potclltlal Is largest),
and the density of states is largest for the rotational deex-
citation that is cIosest to the vacuum.

3. Finite temperature surface scattering

Molecules can also scatter inelastically o8' a dynamic
surface by exciting or absorbing a phonon. Inelastic
scattering strongly affects the scattering resonances in
Fig. 12, as is seen in Fig. 13 where scattering probabili-
ties, calculated using the self-consistent one-phonon ap-
proximation discussed in I, are plotted as a function of
incident energy for a series of surface temperatures. In
these plots the resonances below 11 meV become observ-
able in the elastic-scattering probability due to the
enhanced inelastic scattering for molecules scattering un-

der resonance conditions. The higher-energy resonances
are all considerably broadened and damped by the inelas-
tic scattering.

The apparent size of each los-energy resonance in-
creases, with respect to the background, as a function of
temperature. This somewhat surprising result —the reso-
nances become easier to observe as the inelastic scatter-
ing increases —is due to two reasons. First, the reso-
nances are observable only because the inelastic scatter-
ing provides additional channels for the particle fiux be-
sides the elastic channel. The enhanced inelastic scatter-
ing at the selective adsorption resonances in turn de-
creases the amount of elastic scattering making the reso-
nances observable. Second, the elastic widths of the reso-
nances are larger than the inelastic widths for all the tem-
peratures shown in this plot as can be seen in the temper-
ature independence of the trapped state density. Since
the resonances do not broaden they have a larger and
larger efFect on the elastic scattering as the temperature
increases. These resonances are very broad because they
are both low in energy which couples them to a large
density of continuum states and have a large matrix ele-
ment with the translational-rotational coupling potential.
Since the inelastic coupling is strongest between states
with the same angular momentum the inelastic widths of
the resonances do not depend as strongly on the energy of
the resonances as the elastic widths do, because the ma-
trix elements and the densities of states for those states
are independent of the rotational state. In fact, the in-
elastic width of a resonance is dominated by coupling to
the other bound states with the same angular momentum
as is shown in Fig. 17. The inelastic width of the reso-
nance is alected by which bound state is resonant in
much the same way as the elastic lifetime is; it is the ma-
trix element of the bound-state wave function with the
derivative of the diagonal part of the potential (the inelas-
tic interaction potential is proportional to the derivative
of the static surface potential) that is important. For ex-
ample, high-lying bound states have longer inelastic life-
tlHles than 10%'er-1ylGg ones.

The higher-energy resonances have a much narrower
width than the lower-energy states so that the inelastic
scattering alects the Hne shapes more strongly. The
efFect of inelastic scattering on one of the higher-energy
resonances is shown in Fig. 13(b) which shows the reso-
nances broadening and becoming less distinct as the sur-
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face temperature (and hence inelastic scattering) in-
creases. Using the width at half-maximum of the approx-
imately I.orentzian trapped state density as a measure of
the inverse lifetime or width of the resonance gives a
change in width of roughly a factor of 2 between the
zero-temperature and the 280 K surface and another fac-
tor of 2 between the static surface width and the zero-
temperature mdth. For the resonance near 25 meV, for
example, the static surface width is 0.08 meV, the 0 K
width is 0.15 meV, and the 280 K width is 0.25 meV. As
is discussed with respect to Eq. (3.9) the inverse of the
static surface width gives the elastic lifetime of the reso-
nance, and the inverse of the difference between the full
width and the static surface width gives the inelastic hfe-
time of the resonance.

Since the inelastic width is determined by scattering to
other states with the same angular momentum, the in-
elastic widths for the H2 and D2 resonances are likely to
be very close to the inelastic widths found for the HD
resonances that are due to bound states with roughly the
same energy. Since these inelastic HD widths are much
larger than the elastic widths found for the Hz and Dz
resonances (the parahydrogen resonances around 25 meV
have a width of 0.003 meV, while zero-temperature in-

elastic width for HD at the same energy is 0.07 meV), the
total widths of the H2 and Dz resonances will be dominat-
ed by inelastic scattering rather than the translational-
rotational coupling.

Thermal extrapolation . Calculations of scattering
probabilities are most often done for scattering from a
static surface, particularly if a series of potentials are to
be evaluated as to which best matches the experimental
data. To make this comparison it is necessary to take ex-
perimental data which is measured at a finite surface tem-
perature and convert it into data that would be measured
for scattering from a static surface. To study this pro-
cedure we use scattering probabilities calculated in the
self-consistent one-phonon approximation as experimen-
tal data and use various extrapolation methods. Figure
14 shoes the elastic and rotationally inelastic-scattering
probabilities plotted on a logarithmic scale as a function
of temperature for 6xed energies. Although eve only
study HD scattering, this analysis can be generalized to
the interpretation of diffraction intensities for helium
scattering used as a structural probe.

Since the high-temperature limit of the mean-square
displacement and the mean-square efi'ective height extra-
polate to zero at zero temperature rather than to their
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FIG. 13. (a) The energy dependence of HD scattering from copper. The elastic. - (top panel), and rotationally inelastic- (middle
panel) scatters'ng probabihtl~ for HD scattering from copper at normal 1ncidence are plotted as a function of the incident energy for
a series «eigh«emperatures be~~een 0 and 280 K in increments of 40 K. The bottom panel shows the density in the rotationally ex-
cited trapped st te 1ntegrated over the posit1on normal to the surface. The shapes and sizes of these peaks are strongly ~ected by the
inelastic scattering as can be seen by comparing these curves to each other and to the static surface scattering probabilities shown in
Fig. 12. The resonances for energies below 11 meV, which are the dips in the elastic-scattering probability for scattering from a 6nite
temperature surface but not apparent for scattering from a static surface, are only observable through the enhanced inelastic scatter-
ing caused by the resonances. (b} A detail of the scattering probabilities near a selective adsorption resonance. The elastic-scattering
probability I =0 has a maximum, and the rotationally inelastic-scattering probability I = 1, has a minimum due to a resonance. The
maximum in the elastic scattering is strongly reduced by ihe inelastic scattering as the temperature increases (for a static surface the
amplitude of the peak becomes very close to unity, while the minimum in the rotationally inelastic-scattering probability is less
strongly alected. The trapped state probability is also strongly reduced by the inelastic, scattering suggesting that the resonance
width is dominated by the inelastic scattering rather than the translational-rotational coupling.
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zero-temperature values, i.e., the extrapolation eliminates
both thermal and zero-point-motion sects, it is not un-
reasonable to expect that the same type of extrapolation
would work for elastic and rotationaBy inelastic-
scattering probabilities. In particular, if a Debye-%'aller
factor or an exponentiated inelastic-scattering model de-
scribes the efFect of inelastic scattering on elastic scatter-
ing, then the extrapolation of the logarithm of the
scattering probability would give the static surface
scattering probabilities exactly because in the high-
temperature limit the argument of the exponential of
these models is proportional to the temperature. We do
not, however, expect such an extrapolation to work for
resonant scattering conditions because these methods do
not account for the efFect of inelastic scattering on the
resonance widths.

None of the scattering probabilities below 11 meV ex-
trapolate back to unity, the static surface limit, which is
not surprising since those resonances all overlap. The
closer the energy is to the center of a resonance the fur-
ther from unity the extrapolated value of the scattering
probability is. Since the resonances above 11 meV are
much narrower than those below and do not overlap,
both the elastic and the rotationally inelastic-scattering
probabilities shown in Fig. 13 extrapolate back to the
static surface scattering values for nonresonant energies.
Again, the resonant scattering probabilities do not extra-
polate to the static surface values, and because inelastic
scattering plays a much more important efFect on the
widths of these resonances, the extrapolations miss by a
much greater amount than those for the lower-energy
resonances. The extrapolation as a function of energy is
given in Pig. 15 and is compared with the static surface
scattering probabilities.
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FIG. 14. Elastic- and rotationally inelastic-scattering proba-
bihties as a function of temperature for HD scattering from
copper. The top panel shovn the elastic- (I=0) and bottom
panel the rotationally inelastic-scattering probabilities as a func-
tion of temperature. The probabilities are plotted for a non-
resonant and a resonant incident energy 22.7 meV and 20.5
meV, respectively. The dotted lines associated ~ith each curve
show' the extrapolation of the high-temperature scattering prob-
abihties to the static surface limit. These extrapolated values
are sho~n in Fig. 15 as a function of incident energy.

Another possible way to convert flnite-temperature
data to the static surface limit that we evaluate is the use
of Beeby-corrected Debye-%'aller factor. The advantage
of this type of extrapolation is that it can be done with
data taken at a single temperature, whereas the previous-
ly discussed method required data at several tempera-
tures. A Beeby-corrected Debye-%aller analysis of
diffraction intensities predicts a temperature dependence
given by

I' = expI —2m[(E, +D)' +(E„+D E„,—)' ]

(3.11)

where E, , is the change in the rotational energy during
the scattering process. The temperature dependence is in
the mean-square el'ective height of the surface
(h(R) ),h. A simple Debye-Wailer analysis predicts the
same general form for the temperature dependence
without the addition of the well depth to the incident en-
ergy. The extrapolations of the high-temperature scatter-
ing probabilities using a Beeby-corrected Debye-%aller,
also shown in Fig. 15, do not work as well as the extrapo-
lations using calculated scattering probabilities for
several temperatures. In fact they predict an incorrect
overall energy dependence for the rotationally inelastic-
scattering probability.

All the diSculties encountered using a Beeby-corrected
Debye-Wailer for analyzing temperature-dependent heli-
um scattering from a flat surface discussed earlier in this
chapter also persist for analyzing scattering in systems
that allow rotationally inelastic scattering as can be seen
in the roughly factor of 2 errors made in the total intensi-
ty. For these systems there is the additional question of
whether inelastic scattering leads to rearrangement of
scattering intensity between different rotational channels
and whether the Debye-Wailer factor correctly describes
it. Figure 15 shows the ratio of the rotationally inelastic
scattering and the elastic scattering for the statjc surface
scattering probabilities to the same ratios for the extrapo-
lated scattering probabilities and the Beeby-corrected
Debye-%aller predictions for the static surface scattering
probabilities. The agreement between the static surface
values and the extrapolated values indicates that out of
resonance rearrangement is temperature independent.
The disagreement between the static surface values and
the Beeby-corrected Debye-Wailer values indicates that
this later method incorrectly describes the difFerences in
the elastic and rotationally inelastic scattering due to the
loss in energy in motion normal to the surface. However,
the Beeby-corrected Debye-%'aller factor does account
for roughly two-thirds of the difference between the ratio
of the static surface scattering probabihties and the ratio
of the Snite-temperature scattering probabilities.

4. Densities and disiributrons

Much can be learned about the scattering process by
examining the probability and Sux densities as a function
of distance from the surface as shown in Fig. 16. Com-
parison of' the I =2 probability density of the resonantly
scattering molecules with that for the nonresonantly
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FIG. 15. A comparison of finite-temperature extrapolation
predictions for elastic- and rotationally inelastic-scattering
probabilities. The self-consistent one-phonon approximation re-
sults are analyzed as experimental data in two ways: (1) ihe log
of the high-temperature scattering probabilities are extrapolated
to zero temperature (dashed lines} and (2) the effects of inelastic
scattering are accounted for by a Beeby-corrected Debye-%aller
factor (dotted lines). These predictions are to be compared to
the static surface scattering probability (solid lines). The top
panel shows the elastic-scattering probabihty and the middle
panel shows the rotationally inelastic-scattering probability.
The bottom panel shows the ratio of the rotationa11y inelastic-
scattering probability to the elastic-scattering probability for
the static surface scattering probability and each of the methods
used to analyze the high-texnperature (calculated) data. %'hile
the agreement between the extrapolated predictions (dotted hne)
and the actual static surface results (sohd hne) is good for non-
resonant scattering, there is a roughly 10% discrepancy between
the Beeby-corrected Debye-%aller factor analyzed data (dashed
line) and the static surface results.

scattering molecules shows the large buildup in the rota-
tionally trapped state for the resonantly scattering mole-
cule. It should be kept in mind that these probabilities
are plotted for scattering from an 80 K surface so that
the probability density in the rotationally trapped state
has been signi5cantly reduced by inelastic scattering from
its static surface value. The dimerence between this prob-
ability density and the static surface value (roughly a fac-
tor of 4) indicates why the distorted-wave Born breaks
down at selective adsorption resonances. Because the
amplitude in the rotationally trapped state is significantly
decreased by the inelastic scattering, a calculation that ig-
nores this efFect (the inelastic contribution to the width or
lifetime of the resonance) will overcount the inelastic
scattering due to the selective adsorption resonance. This
feature can also be seen in the bottom panels of Pigs. 13
which show the integrated probability density in the rota-
tionally trapped states for a series of temperatures.

While both the probability density and the fiux density
show that the molecule does not penetrate into the sur-
face, the probability density can be difficult to interpret
because the plane waves have unit normalization rather
than ffux normalization, and there are interference effects

between incoming and outgoing waves in the incident
channel. The flux density provides a more straightfor-
ward interpretation of the dynamics of the scattering pro-
cess, because it shows directly where the scattering be-
tween the various channels occurs. The spatial location
of the Aux changes between the various channels show
that for nonresonantly scattering molecules most of the
rotationally inelastic and inelastic scattering takes place
very close to the classical turning point. This fact
justifies our use of the local-height approximation which
is valid just where it needs to be valid to correctly de-
scribe the inelastic scattering —near the classical turning
point. This narrow spatial region in which the scattering
takes place is due to the molecular wave functions decay-
ing rapidly into the surface and the potential decaying
rapidly away from the surface.

For resonantly scattering molecules there is rearrange-
ment of flux between channels much further from the
surface, because the large build-up of probability in the
rotationally trapped state seen in the 1=2 probability
density compensates for the weakness of the interaction
potential at those distances. This rearrangement is prob-
ably not calculated quantitatively correctly because the
local-height approximation is not as valid that far from
the surface.

It is also possible to compute the distribution of the in-
elastic (one-phonon-change) flux far from the surface over
the possible final states which is shown in Fig. 17 for both
resonantly and nonresonantly scattering molecules. Here
the distributions are plotted as a function of the change
in energy in motion normal to the surface and are in-
tegrated over possible parallel momenta. For the fiat sur-
face potential model that we use in these calculations the
full distribution over final states separates into a product
of a factor that depends just on the change in the energy
in motion normal to the surface and a factor that depends
on both the change in that energy and the change in
parallel momentum but not on any details of the state of
the scattering molecule (only on the phonon density of
states). This separability means that the integral over all
parallel momenta of the final-state distribution still con-
tains all the information about the scattering from the
point of view of the molecule.

The most prominent features in Fig. 17 are the strong-
ly enhanced resonant final states for the resonant initial
state. The enhancement of the final-state resonances for
the nonresonant initial state is much weaker than it is for
the resonant initial state. These two features are due to
the form of the interaction potential that couples the
zero-phonon-change states with the one-phonon-change
states; since the interaction potential is the derivative of
the static surface potential, it couples states with the
same angular momentum much more strongly than it
does states with diferent angular momenta. This form
also explains why the trapping probability is not as
strongly enhanced by resonant scattering as inelastic
scattering to other continuum states is, because the
bound states tend to be predominantly lower angular
momentum states than the resonantly trapped state. The
trapping probability into each bound state can be seen as
vertical bars in the left part of each figure.
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Even though the self-consistent one-phonon approxi-
mation qualitatively describes the correct behavior of res-
onances coupled to inelastic scattering, Fig. 17 shows
why it should not be trusted quantitatively. The problem
is that inelastic scattering out of the resonant final states
is not included in the approximation. The method would
work quantitatively correctly if the resonant final states
(or any small set of states) were not as strongly enhanced
as they are. When the background value of the inelastic-
scattering probability is small, the effect on the elastic
scattering of multiphonon-change processes will be small;
when the inelastic-scattering probability for resonant

states is large and the resonant final states are strongly
enhanced, the approximation breaks down. We tried to
remedy this breakdown by including an optical potential
in the Schrodinger equation for the one-phonon-change
amplitudes, but, as jmght be expected given our inability
to Snd an optical potential that could treat the effect of
one-phonon-change inelastic scattering on the zero-
phonon-change amplitude, we were unable to get this ap-
proximation to work.

There are also several features in this 6gure that seem
generally applicable. (l) The phase difference between
diferent angular momentum channels causes interference
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FIG. 16. (a) Probability and Nux densities for HD scattering from copper out of resonance. The top panel shows the probability
density of each angular momentum comp nent of the wave function for which the phonons in the surface have not changed their
state (the square of the zero-phonon-change amplitude) as a function of position. The HD molecule with a nonresonant energy of
22.7 meV is incident normally on the copper surface at 80 K. The incident part of the molecular wave function (as l =0 angular
momentum state) beats against a much smaller amphtude outgoing wave in the same angular momentum state giving the oscillatory
behavior in the solid curve. There is also an outgoing wave in the l = 1 angular momentum state, but none in the l =2 because there
is not enough energy in the incident particle to leave the surface in a state that highly rotationally excited. There is a slight average
decrease in the probabihty in the potential weH where the particle would be moving faster classically and a buildup of probability just
before the classical turning point. That there is a net Sux toward the surface is much easier to see in the lo~er two panels showing
the lux density in each angular momentum state as a function of position, Positive values of the Sux are net cruxes toward the surface
and negative values are Buxes away from the surface. The solid line l =0 shows the unit incident Aux and the almost imperceptible
outgoing Aux in that anguhar momentum state, and the dashed line l = 1 shows the Aux away from the surface in the rotationally ex-
cited part of the zero-phonon-change state. Finally, the bottom panel shows the inelastic Aux, which is all away from the surface, in
each angular momentum state integrated over all of the one-phonon-change states. %hereas the amplitudes of these states cannot be
added together since dilerent phonons have been excited, the 8ux densities can be. The distribution of Aux between the dilerent
channels changes very close to the classical turning point ixnplying that all of the rotational and inelastic scattering takes place at this
point. Adding all the zero-phonon-change Suxes and the one-phonon-change Auxes together will give a net Lx toward the surface,
because there is Aux lost to trapping in this model. (b) Probability and fiux densities for resonant HD scattering from copper. This
5gure shows the same quantities as (a) except that the incident energy is the resonant energy 20.5 meV. The resonance is immediately
apparent in the large probability density seen in the l =2 angular momentum state in the top panel. For this energy both the
inelastic-scattering probabiBty has increased as can be seen in the bottom panel and the elastic l =0 zero-phonon-change scattering
probabihty has increased as can be seen in the increased amplitude of the oscillations in the l =0 zero-phonon-change probability
density and in the deviation of the l =0 zero-phononwhange Aux from one in the middle panel. The spatial location of the changes in
the Sux densities shows that the rotational and the inelastic scattering no longer just take place near the classical turning point but
also further into the weH where the buildup in probability density in the rotationally excited trapped state is large, and the derivative
of the potential is still appreciable.
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effects that change the line shape of the Snal-state reso-
nances. (2) A related CS'ix:t is that when there is a more
than one possible angular momentum Snal state, the cou-
pling seems to be strongest to the final state in which
there is the strongest scattering in the static surface
scattering problem. (3) There is a decrease in the final-

state flux near the incident energy indicating that the ma-
trix dement for coupbng to sma11-energy transfers is
small because for finite temperatures the phonon matrix
element is largest for small-energy transfers.

The self-consistent one-phonon approximation is useful
for understanding the interaction between elastic-
scattcring cSccts Rlld 1ficlast1c scattcrlllg, bllt 8111cc 1t is R
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FIG. 17. Final-state scattering probabilities for HD scatter-
ing from copper. For the scattering conditions in the previous
two plots, these two panels shovv the Snal-state distribution as a
fullctlo11 of thc pliQI cilcfgy in both Iliotloll 11018181 to thc sur-
face and in rotational motion integrated over all 6nal parallel
momenta. The top panel shovn these quantities for a non-

resonant incident energy 22.7 meV and the bottom panel for a
resonant incident energy 20.5 meV. The sohd curves are for
molecules that leave the surface in the rotational ground state
after scattering inelastically, and the dotted. line is for the mole-
cules that leave the surface rotationally excited after scattering
inelastically. The short vertical lines in the lower right part of
each panel give the trapping probability in each bound state of
the surface potential. The top panel shows that most of the par-
ticles that scatter inelasticaOy vrith Snal energies greater than 11
meV also scatter into a rotationaHy excited I = 1 state. For the
nonresonant incident state, the enhancement of inelastic scatter-
ing by resonant final states is smaH, but for the resonant in-

cident state the final-state resonance enhancement is very large
except for resonant states arith energies close to the incident en-

ergy. The strong coupling between initial and Snal state reso-
nance is due to the diagonal (in the angular momentum states of
the scattering particle) elements of the interaction potential be-

ing much stronger than the o8'-diagonal elements, so that the
large amplitude in the rotationaHy trapped state couples most
strongly to the part of each 6nal-state wave function with the
saxne angular momentum.

one-phonon approximation it will not work quantitative-

ly in situations such as selective adsorption resonances
that are inherently multiphonon scattering dominated.

In this paper we have used previously developed for-
mal methods to calculate scattering probabilities for heli-
um and molecular-hydrogen scattering from Sat copper
surfaces W. e have developed a model for the interaction
potential, calculated specific scattering probabilities, and
made generalizations for other systems based on these re-
sults.

It is beyond current capabilities to calculate the in-
teraction potential from first principles. To study the dy-
namics in these systems we have developed a procedure
for extracting an approximate interaction potential for
fiat surfaces from the static surface potential. There are
three general approximations: the Sat surface approxi-
mation, the CS'ective height approximation, and the at-
tractive potential coupling. These approximations are
the simplest that contain the essential features of the
physics of scattering in these systems.

Using this interaction potential with no fitting parame-
ters we found good quantitative agreement between ex-
perimental and calculated helium-scattering probabilities.
We also found we could reproduce the essential features
of HD scattering probabilities, including the behavior of
the selective adsorption resonances. Within our model,
however, it is not possible to explain the low-energy,
low-surface temperature-scattering probabilities for
molecular hydrogen.

Based, on the agreement between theory and experi-
ment we can generalize our results to other systems. In
particular we showed how scattering will depend on the
detaHS of the potential such as the steepness and the well
depth Exam. ination of the temperature dependence of
selective adsorption resonances gives general rules for
how inelastic scattering and selective adsorption reso-
nances will effect each other depending on the relative
contributions of elastic coupling and inelastic scattering
to the width of the resonances. The temperatures depen-
dence of the elastic- and rotationally inelastic-scattering
probabilities shows that it should be possible to extrapo-
late Snite-temperature difFraction probabilities to the stat-
ic surface Hmit. This extrapolation allows the compar-
ison of the data with scattering calculations to determine
the potential.
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