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The weil-known continuum model theory for planar channeled energetic particles in perfect crys-
tals is extended to layered crystalline structures and applied to superlattices. In a strained-layer
structure, the planar channels with normals which are not perpendicular to the growth direction
change their direction at each interface, and this dramatically influences the channeling behavior.
The governing equation of motion for a planar channeled ion in a strained-layer superlattice with

equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced
with a sequence of 5 functions. These 5 functions, which are of equal spacing and amplitude with

alternating sign„represent the tilts at each of the interfaces. Thus upon matching an effective chan-
neled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the
period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance
effects are expected. The condition of one efFective wavelength per period corresponds to a rapid
dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per
period corresponds to no enhanced dechanneling after the Srst one or two layers {resonance chan-
neling). A phase plane analysis is used to characterize the channeled particle motion. Detailed cal-
culations using the Moliere continuum potential are compared with our previously described
modi6ed harmonic model, and new results are presented for the phase plane evolution, as well as
the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scal-

ing laws are developed and nearly universal curves are obtained for the dechanneling versus depth
under catastrophic dechanneling.

I. INTRODUCTION

Rutherford bsckscattering analysis of energetic parti-
cle channeling in superlattices has recently led to the ob-
servation of a new channeling phenomenon. ' Further-
more, it hss led to new techniques to measure the strain
in these structures, ' which is the subject of a recent
review. Strained-layer superlattices consist of alternat-
ing layers of two materials of similar crystal structure
witli lattice constaiits which have a lattice iillsrfiatch of
the order of 1% Thus un. der commensurate growth, for
example by molecular-beam epitaxy (MBE) or metalor-
ganic chemical-vapor deposition (MOCVD) epitaxy,
these structures have alternating compressive and tensile
strained built into the layers. These artificially modulat-
ed semiconducting materials, called strained-layer super-
lattices (SLS's), have interesting new electro-optic proper-
ties. '

Three channeling methods to study SLS structures
have been exammed. The basis of these HleasureIIlents Is
the fact that the p1anar and axial directions undergo
slight alternating tilts along sll crystal directions incbned
to the growth direction; these tilts are of the order of the
critical angle for channeling (0.1' to 1'). The first two
methods involve axial channeling, one being the measure-
ment of the rate of dechanneling of the beam along axial
directions ' ' '" and the other being the measurement of

angular scans with respect to axial directions. ' ' ' ' A
third technique involves the measurement of the planar
dechanneling under a resonance condition, referred to as
catastrophic dechsnnellng. Strong dechsnnelIng occurs
after the beam passes through a few superlattice layers, in
this case due to a matching of the efFective channeled par-
ticle wavelength with the superlattice period. ' This latter
technique is made particularly sensitive by measuring the
angular dependence of the depth of catastrophic dechan-
neling. Of these three techniques the planar channeling
approach provides the greatest sensitivity to the measure-
ment of small strain. Lattice mismatches =0.1 to 0.5%
can be detected with good sensitivity. Also the planar
resonance effect introduces a new channeling
phenomenon, and raises questions of interest from the
basic viewpoint of atomic collision studies in solids.

Here we present the general theory for planar channel-
ing in layered structures and apply it to strained-layer su-
perlattices. %e wi11 develop the theory within the contin-
uum model' framework for energetic planar-
channeled particles. This model is valid, for example, for
He ions with energies greater than -500 keV. A more
general theory for channeling in crystals with nonstraight
channels was briefly discussed in a previous work on
dechsnneling by dislocations ' in terms of an arbitrary
curvature function. However, the specialized case of lay-
ered structures with straight channels within each layer
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and tilts in the channel direction at each interface pro-
vides for some particularly fascinating behavior. The
governing equation of motion for strained™layer superlat-
tices is a one degree of freedom nonlinear oscillator
which is forced with a periodic forcing function of an im-
pulsive nature representing the tilt at each interface.
Thus one expects resonance elects to play an important
role when the natural frequencies are near the forced fre-
quencies. In this model transverse energy is conserved in
each layer; thus we do not include electronic or nuclear
multiple scattering or other effects which lead to a non-
conservation of transverse energy of the particles with in-
creasing depth. The continuum approximation is partic-
ularly good for catastrophic dechanneling conditions in
SI.S's, since the depth region of interest is relatively near
the surface, within the first few planar channeled particle
wavelengths. We emphasize that while the present
theory is discussed in detail for strained-layer superlat-
tices of equal-layer thickness, it can be apphed to any
strained-layer system involving one or more layers. This
application may be valuable for future planar channeling
studies, for example, in single-strained quantum wells and
other heteroepitaxial systems with one or more strained
layers present.

In this paper we first present the basic theoretical
framework for channeled particle trajectory motion in a
layered structure. Calculations of channeled particle
motion are then carried out for a static Moliere potential
with a dechanneling criteria based on a minimum impact
parameter of the Thomas-Fermi screening distance from
the planes. The results are compared to our previous
modified harmonic model (MHM), which gives good
pliysical ilndel'standiilg of tlie planar chanllelillg reso-
nance phenomena. We then discuss how a phase plane
analysis of the planar channeled particle transverse posi-
tion and momentum distribution as a function of depth
gives valuable insight into the resonance dechanneling be-
havior. Two types of resonances are discussed: catas-
trophic dechannehng which gives a maximum in the rate
of dechanneling when the effective channeled partial
wavelength matches the superlattice period, and reso-
nance channeling which gives a minimum dechanneling
with depth when the elective wavelength equals one half
the period. Dechanneling-versusQepth results are then
presented for both conditions, and the importance of the
angular dependence of the incident beam is discussed for
the case of catastrophic dechanneling. Finally we devel-

op scaling laws for planar channeling in strained-layer su-
perlattices and present a set of nearly universal curves for
catastrophic dechanneling as a function of normahzed
depth and strain angle.

This theory paper is the first of a sequence of papers in
which we wi11 discuss planar channeling in strained-layer
superlattices.

II. PLANAR CHANNELING THEORY

A. Continuum model

%e begin by presenting that theoretical framework for
the continuum model '~ needed to extend channeling
theory from the perfect crystal to layered structures.

When an energetic particle beam enters a crystal at a
small angle with respect to a set of crystal planes, the col-
lective atomic potentials steer the particles back and
forth between the planes. The motion of a nonrelativistic
particle is governed by the Hamiltonian

H = (p +p„+p, }+V(x,y,z),2'
where V is a periodic potential rejecting the crystal sym-
metry and taken to be the sum of screened Coulomb po-
tentials with the lattice atoms fixed at the perfect crystal
lattice sites. This model includes the efFects of electrons
only to the extent that they screen the nucleus of the lat-
tice atoms; it does not contain the scattering or energy
loss of a channeled particle due to the individual elec-
trons. Also, this model does not contain the efFect of the
thermal motion of the lattice atoms. In general, these
effects cannot be ignored; however, it is H which is pri-
marily responsible for the particle motion; thermal vibra-
tions, electron multiple scattering, and energy loss can be
treated as perturbations. In our case, we can ignore ener-

gy loss and electron multiple scattering to a good approx-
imation, since we are dealing with very shallow depths
into the crystal. The effect of thermal vibrations can be
incorporated into the continuum model in a zeroth-order
way as discussed later and in a forthcoming paper. z'

The crystal planes are taken to be parallel to the y-z
plane. Because the energetic channeled particles are
moving fast and nearly parallel to this plane, the poten-
tial of Eq. (1} can to good approximation be averaged
over the y-z plane. This is called the planar continuum
model' 2 and U(x) will denote this averaged, continu-
um model, potential. For heavy particles of MeV ener-
gies (i.e., protons and larger) classical mechanics applies.
Clearly, the y and z momenta are conserved and without
loss of generality we assume p„=0; hence, the equations
of motion become

dx, dz
m +U'(x)=0, m i =0.

dh dr

Since the z velocity v, is constant, z =v, t can be taken as
the independent variable which gives

dx 1

i + U'(x) =0, (3)
dzi 2E,

where E, =—,'mu, . Furthermore, planar channeling only
occurs for angles less than the characteristic angle

g =(2mZ, Z2e Nd ar/E)'~

and this angle is small (e.g., for 1.2-MeV He along the
I 110) planes of Gap g =0.39 ); thus the incident parti-
cle energy E and the energy E, are nearly identical for
channeling and we replace E, by E. In the above equa-
tion, Z, is the atomic number of the incident particle, Zz
the average atomic number of the target crystal planes, N
is the density of atoms in the crystal, d is the interplanar
distance, and aT ——0.8853ao(Z', ~ +Zz~2 } ~, where

ao ——0.529 A is the Bohr radius.
The most commonly used atomic potential in Eq. (1)

for the purpose of channeling is the Moliere approxima-
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tion to the Thomas-Fermi potential, namely,

Z)Z28 —p;r
g a;exp

QT

where a= t0.1,0.55,0.35I, P= I6.0,1.2,0.3I, and ar is the
Thomas-Fermi screening length. The Moliere continuum
potential for a single atomic plane, obtained by averaging
the potential in Eq. (1) over the plane, is then

3

V~, (p) =Eg„g exp-
i = I QT

where g~ is defined in (4) and p is the distance froin the
plane. ' An approximate correction for the thermal vi-
bration of the lattice atoms may be included by convolut-
ing the continuum potential as a whole with the probabil-
ity distribution for the vibrating atoms. For the Moliere
case, inclusion of thermal averaging gives

r r

3 p;u, g,.p/ar 1 P( ii i p+e ' erfc +
V2 Qy Q)

(7)

where r, =(p; u, /&2az ) . In the derivation of (7) it is as-
sumed that the individual atoms vibrate independently
and that in each translational degree of freedom the prob-
ability density of the displacement is normal with mean
zero and variance u i. Other atomic potentials that have
been used include the Lindhard approximation to the
Thomas-Fermi potential' and the Doyle-Turner poten-
tial which is based on a Hartree-Fock calculation for
isolated atoms. The Doyle-Turner potential has recently
been shown to be quite accurate in channeling radiation
studies with electrons and positrons, and it vali be corn-
pared with the Moliere potential and experimental results
in a forthcoIIling paper.

For the full planar continuum potential U needed to
describe the motion of a particle in a channel, we sum the
contributions from the two adjacent planes, giving

where x is measured from the midpoint between the
planes and U has been adjusted so that U(0)=0. Four
planes would be more accurate but this is a negligible
correction here. The Mohere and thermally averaged
Moliere potentials as defined by (6)-(8) are shown in Fig.
1 for He ions incident on the I 110] planes of GaAs„P,
with x=0.075. In order to illustrate the theory of chan-
neled particle motion in a SIS we need to choose a
specific case. We have chosen equal layer thicknesses of
GaP/GaAs„P, „with x=0.15. Since changes in inter-
planar spacing and planar yotentials are negligible from
layer to layer we use the average composition in our cal-
culations. The insert shows the contribution from indivi-
dual planes as given by Eq. (6). In analytical analyses of
planar channeling, a harmonic approximation U(x)
=—,'ax2 to Eq. (8) is sometimes used. This is also shown
in Fig. 1 where o, has been chosen to match the static
Moliere potential a short distance from the plane. The
harmonic model gives a number of the qualitative proper-
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FIG. l. Various continuum potentials for planar channeling of He ions incident along the t110} planes of GaAs„P& „with
x=0.075. The dotted curve is for a harmonic potential, the dashed curve is for the static Moliere potential, and the solid curve is for
the 300 K thermaBy averaged Mohere potential. Enlargement of the figures near the I 110) plane is also given.
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ties of planar channeling, but in general it is not a good
approximation for quantitative analysis.

The equation of motion for channeled particles given
in (3) has the conservation law

Ei =E + U(x}, (9)

Ej is commonly called the transverse energy, and the fact
that Ei is constant along solutions x (z) of Eq. (3) is easily
seen by difFerentiating Eq. (9) with respect to z and mak-
ing use of Eq. (3). For channehng trajectories, the angle
g the path x (z) makes with the z axis is 0(g~ ), also g~ is
small and |t =tang=dx/dz. Therefore, in the following
we take g=dx/dz. Equation (9) de6nes a one-parameter
family of concentric ovals in the (x,g) phase plane as Ei
varies, thus the solutions of Eq. (3} are periodic. The
wvavelength of the periodic trajectories as a function of Ej
is given by

X(E,)=4vZ J'
0 QE —U(x)

(10)

where a is the amplitude of the motion defined implicitly
by

U(u)=Ei .

The wavelength for 1.2-MeV He in (110I GaAs„P,
x=0.075 for the Moliere potential is shown in Fig. 2 as a
function of both Ei and normalized amplitude
A =a/(d~/2) and can be obtained from the universal
curves for determining A, as a function of amplitude given
in Ref. 18. Notice that A, is a monotone decreasing func-
tion, which is characteristic of channehng potentials, be-
cause the closer a positive particle moves to a plane, the
harder it is pushed away by the positive nuclei of the lat-

tice atoms. Thus channeling potentials are hard spring-
type potentials, in contrast to„ for example, the pendulum
equation which has a soft spring potential. Furthermore,
it is important to note that knowing A,(Ei) is equivalent
to knowing U(x) since A(Ei) uniquely determines U(x)
from its inverse by

x(U)= J dEi .
U A(Ei)

4rr~E o Q U E,
(12)

This is discussed in Refs. 18 and 27 and has been used by
Gibson and Golovchenko to examine the potential from
measurements of A,. The dilFerence between the harmonic
and Moliere potentials is much more apparent in Fig. 2
than in Fig. 1. This is true in general, so that it is much
easier to compare and contrast dHFerent potentials by
looking at the wavelength function rather than the poten-
tial itself. The arrows in Fig. 2 show how to use A, versus
A and A, versus Ei to determine the potential, that is,
choosing A =2a/d gives k(A) and A,(Ei) which gives
Et= U(a}. For the thermally averaged potential (not
shown), A, decreases to a minimum near the thermal vi-
bration amplitude and then increases to inSnity as the
amplitude approaches d~/2.

The phase plane portrait in the (x,g} plane for the
channeled particle motion provides a convenient means
to follow the evolution of an ensemble of channeled parti-
cles as they penetrate a crystal. In Fig. 3(a}, we show
several phase plane ovals deSned by Eq. (9) for the
Moliere potential with the largest oval corresponding to a
particle with the maximum transverse energy, Ei„
dellned by Ei, = U(x, ), where x, is defined as a critical
distance such that particles are dechanneled if they ap-
proach the planes more closely than this value. In Fig. 3
we have chosen x, =d~/2 —ar for illustrative purpose.
The x, P axes are normalized by x, and P„where these
are related by

NORNALIZKO AIIII)L.ITVOK: A ~/(cIp/2} Ei, =EP = U(x, ) . (13)
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FIG. 2. Wavelength for 1.2-MeV He in I 110I GaAs„p,
x=0.075, as a function of normalized amplitude (solid curve)
and as a function of transverse energy |dashed curve) for the
Moliere static potential. The arrows indicate a way to deter-
mine Ej given A. For example, A =0.6 corresponds to A, =975
A, which corresponds to E~ =14A eV. The harmonic potential
of Fig. 1 for 1,2-MeV He gives k=880 A independent of A or
Ej..

The value of g, is typically on the order of g~. As each
planar-channeled particle moves through the crystal, it
moves clockwise on the oval defined by its transverse en-
ergy with wavelength given by Eq. (10) (see also Fig. 2).
If we consider a beam incident on a crystal with an angle
1/io with respect to the planes and uniformly distributed in
space then it appears as a horizontal line labeled 0 in the
phase lane as shown in Fig. 3(b). In Fig. 3(b) we have ig-
nored those particles eath E~ )Eq, . As the beam. moves
through the crystal, the line begins to spiral as shown in
the figure for depths of z= 74, 148, and 222 A.. The parti-
cles on the outer ovals have a larger average angular ve-
locity than those on the inner ovals because A, is a mono-
tone decreasing function of E~. As the beam evolves,
these spirals become @round tighter, eventually giving rise
to a coarse grain statistical equihbrium distribution.
For a harmonic potential the angular velocity is constant
and the phase Sow curves eall remain straight lines. Par-
ticle trajectories x (z), for the case of Fig. 3(b) are shown
in Fig. 3(c) and one can see that typical quarter wave-
lengths are on the order of 200 A, consistent with Fig. 2.
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B. MocMied harmonic model

The phase flow curves of Fig. 3(b) and the sample paths
of Fig. 3(c) must be obtained by the numerical integration
of Eq. (3). In our early work on superlattices, we wanted
an analytical/geometrical procedure for following the
phase How. %e first used a harmonic potential
U(x)= —,'ax and tried to adjust the parameter ct to ob-
tain agreement with experiment, but this one-parameter
approach did not give satisfactory results. %e then
developed what we call the modi6ed harmonic model
(MHM) which allows for separate but simple approxima-
tlolls to x (z) and $(z).

The MHM is obtained as an approximation to the full
model of Eqs. (3) and (9) by first defimng a critical dis-
tance x, such that particles are dechanneled if they ap-
proach the planes more closely than this value. This
defines a critical transverse energy Ej, and a critical an™
gle tt, by Eq. (13). Our erst approximation replaces the

phase place ovals defined by Eq. (9) by the ellipses
. 2

. . 2
' 2 '2

p(z) x (z) Wo xo
+ +

xc '(('c xc

where x (0)=xo and P(0) =I)'jo. One can see that the el-

lipse with right-hand side equal to 1 goes through the
points (0,$, ) and (x„0),so that this ellipse is a good ap-
pI'oxlIIlatioll to the oval of Eq. (9) with Ei ——Fic. Frolll
Figs. 3(a) and 3(a') one can see that other ovals are some-
what less well approximated. Our second approximation
takes the phase plane rotation rate to be a fixed value of
2ir/k, „where A,, is an effective wavelength parameter to
be determined. Note that distances along the channel
convert to rates through the particle velocity
u, =&8/2m along the channel. With these two approxi-
Illatlolls x (z) alld 'lp(z) call be wrlttefl
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FIG. 3. Calculations based on Moliere potential for 1.2-MeV
He ions in simple crystal GaAs„P& „@=0.075 are shown on
the left-hand side. (R) Potential contours (1) Phase Jato a.t
depths of 74, 148, and 222 A. Black dots refer to the motion of
a single projectile. (c) Trajectories for projectiles at several ini-
tial conditions. On the right, [(a'), (1'), (c')j, the calculations are
based on modified harmonic model (MHM). Potential contours
simplify into circles, phase How reduces to a rotating straight
line, and a well-de6ned focus is evident for the trajectories.

Here we have two free parameters, the wavelength A,, and
the dechanneling parameter x, . The other parameter f,
is determined from (13). We choose x, to be the same as
in the full model and choose A,, to approximate the phase
Now in the full model.

Equations (15) cannot be obtained by approximating
U(x) by a harmonic potential. This is because in the har-
monic model lNZ)=dx(z)/dz which implies from Eq.
(15) that A,, =2nx, /g, . However, in the MHM x, and A.,
are chosen independently and in general do not satisfy
this relation. It is because of this distinction that we call
this model the modified harmonic model. Also, this illus-
trates an important aspect of thinking in terms of the
phase plane, namely, it facilitates separate approxirna-
tions for x (z) and tt(z).

The MHM is illustrated in Fig. 3. Figure (3b ) shows
the phase Row of the particles. Notice that the initial line
remains straight, because of the second approximation
which Axed the phase plane rotation rate. Also notice
that the rotation rate has been chosen so that the straight
line approximates in an average way the Moliere phase
flow line of Fig. 3(b). The trajectories in Fig. 3(c) are
drawn using Eq. (15a), with A,, =888 A. It is of interest
to note that for the Moliere potential X=888 A corre-
sponds to a normalized amplitude of approximately 0.75
as is seen from Fig. 2. In a practical situation X, can be
chosen by computing the wavelength function from Eq.
(10) and picking an appropriate A. or from a backscatter-
ing experiment as mentioned in Sec. IV B.

A. Continuum mod, el

In a strained-layer superlattice planar channels in-
clined to the growth normal are no longer straight, but
are made up of straight segments of planes of 6xed length
s. %e refer to s as the path length per layer, it is related
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to the layer thickness through the cosine of the angle be-
tween the normal and inc1ined directions. At each inter-
face, along these planes, the planar direction changes al-
ternately by +hP (in lattice-matched superlattices
6I)j=0). Tlie situatioll is sllowI1 scheIIlatIcally II1 Fig. 4.
Thus in each segment the motion evolves according to
Eq. (3) and since the coordinate frame changes at each in-
terface, the angle of a trajectory with respect to the
planes has a jump discontinuity of kb, g at each interface.
Thus, the equation of motion [Eq. (3)] becomes

d x 1

z + U'(x)= g ( —I)'5/5(z —js),
dz2

where 5 denotes the Dirac delta function. Integrating
Eq. (16) from js to js+ gt'ves

consistent with the superlattice structure of alternating
+kg tilts at each interface. Here we have used the
small-angle assumption so that g=dx/dz. By conven-
tion„we take the first angular change to be negative.

Equation (16) is written for equal path lengths per layer
s, but clearly it is easily written for any other layer com-
bination. Hence it can be applied to any strained-layer
system involving one or more layers. In fact these eases
can be viewed as a limiting situation of the more general
theory of channeling in curved crystal planes which was
developed in a study of the efFect of dislocations on chan-
neling motions. In that case the equations of motion
are defined by the I.agrangian

I.(x,z, x,z)= —,'III Ix +[1+xiI(z)] z I
—U(x),

where ~(z) is the curvature of the planes as a function of
the distance z down the channel. In the case of the SLS
the curvature is just the right-hand side of Eq. (16).

A spatially uniform beam incident at an angle $0 with
respect to the first set of planes can be represented by a
horizontal line as shown in Fig. 3(b). Here a positive $0
means in the direction that the second set of planes tilt
relative to the first set of planes (first layer). The phase
flow of this line evolves just as is shown in Fig. 3 in the
first layer. Then at the first interface all particles are

moved down by b,g in the phase plane. The phase Aow

then evolves according to Eq. (3) until it comes to the
second interface, at which depth all particles are moved
up by hg. This process continues and a particle is said to
be dechanneled if it comes within a critical distance of
approach to the planes

~

x(z)
~
)x, . This defines the

dechanneled fraction of the beam at a depth z as a func-
tion of E, $0, h1(, and s. Because for typical channeling
potentials Eq. (3) must be solved numerically, we calcu-
late the dechanneled fraction by numerically integrating
Eq. (16) for a large number of initial x positions xo keep-
ing track of the depth at which each particle becomes
dechanneled. ' ' This contains all the necessary theoret-
ical information to describe particle channeling in
strained-layer structures. For the calculations in this pa-
per, we take for the alternating layers GaAs„PI „/GaP,
x=0.15, use a static Moliere potential based on an aver-
age of the two layers take the critical distance for chan-
neling x, =dz /2 —aT, and assume equal path lengths per
layer of s=444 A for the superlattice. Also we take
d =1.9322 A which is the average interplanar spacing
for Gap and GaAso &5P0 85 and ar ——O. I375 A. The po-
tential and wavelength functions are thus shown in Figs.
1 and 2.

Our calculation gives the spatial density p(x;z) of
channeled particles at a depth z with a sharp cutoff in
channeling at x =x, . A more exact treatment would
introduce a probability for a particle being dechanneled
given it is at position x and then compute the dechan-
neled fraction as the integral over p. Our approach is
consistent with not including multiple scattering effects
and gives the essential physics of channeling in superlat-
tlces.

Equation (16) is a nonlinear oscillator with a periodic
forcing term, and so one expects nonlinear resonance
effects. In fact, because the forcing term is a periodic del-
ta function this is the simplest type of equation for the
study of nonlinear resonance. Various other types of
forcing functions, both periodic and nonperiodic, would
result for other strained-layer structures, and our ap-
proach is easily extended to such cases. The forced non-
linear oscillator has a rich literature and Ref. 33 contains
references that may be of interest in the present context
of Eq. (16).

B. Modi6ed harmonic model

FIG. 4. Schematic representation of an inclined ( 110) planar
channel of a I 100j SLS. The x-z frame of reference is set by the
channel direction in each SLS layer; thus the reference frame is
rotated at each interface. The dimension is signi6cantly en-

larged relative to our planar spacing tdp =1.9322 A), tilt angle
(b,l(=0. 15'), and beam incident angle ( —2 &$0~2') as com-
pared with the path length per layer of the SLS t,'s=444 A)
along the inclined [110j channels.

The extension of the MHM to the strained-layer super-
lattice is straightforward. Once x, (and thus f, ) and A, ,
are chosen then the angular rotation, 8=2ms/A, , of the
phase Sow line in each layer and the jump +b,/If, of
the phase Aow line at each interface are determined.
Thus the MHM leads to a very simple geometrical pic-
ture. The initial straight line is rotated clockwise 0 units,
moved down b,g/1(, at the first interface, rotated clock-
wise 0 units and moved up hP/ttj, at the second inter-
face, rotated 8 units and moved down hp/1(, at the third
interface, and so on (see Figs. 5 and 6). As before, a par-
ticle is dechanneled if its position x reaches x, . Be-
cause of this simplicity, analytical formulas for the
dechanneled fraction at a depth z as a function of A,„I)jo,
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nance efIIects might be anticipated for those particles
whose unforced frequencies are close to the forcing fre-
quency. The MHM gives a simple qualitative framework
and geometric interpretation for understanding and pre-
dicting the motion of planar-channeled particles in a SLS
near such resonances. It indicates that matching half the
effective wavelength k, with the path length per layer
gives 8=2ms/A, , =m which corresponds to a maximal
rate of dechanneling. %'e call this condition catastrophic
dechanneling. In contrast, matching the effective wave-
length with the path length per layer gives 8=2m, which
corresponds to the minimal dechanneling and is called
resonance channeling M. ore generally, catastrophic
dechanneling occurs for (n ——,

'
}A,, =s and resonance

channeling occurs for nk, =s,, where n is a positive in-

teger. We will elaborate these two resonance phenomena
in this section for n =1, since they have been observed in
our experiments.

FIG. 5. Phase fiow in the phase plane based on the MHM for
the catastrophic deehanneling condition where the impulse
occurs at every m rotation and the half wavelength equals the
path length per layer (A, /2=s}. Maximum dechanneling occurs.

b, i', and s are easily determined for special values of 8 as
shown in Sec. IV. Notice that b,g/g, controls the degree
of dechanneling per layer for a given rotation. Thus the
proper choice of g, is important for numerical estimates.

Since the periodic structure of the SLS provides an an-
gular impulse at each interface, as given in Eq. (16), reso-

A. Connection between different resonance conditions

Resonance has a number of technical meanings in both
mathematics and physics. At this point we are using the
term loosely to mean an enhancement; thus the resonance
phenomenon of catastrophic dechanneling is an enhance-
ment in the rate of dechannehng whereas resonance
channeling is an enhancement in the fraction of chan-
neled particles.

In the context of the MHM, catastrophic dechanneling
is closely related to the phenomena of linear resonance in
differential equations where the forcing period is equal to
the natural period of oscillation. The classic example of
such resonance behavior is the harmonically forced sim-
ple harmonic osciHator: X+aPx =Fcosr02z, where the
amplitude of the response is proportional to (cubi

—roz)
which becomes unbounded as ~2~co, . While this illus-
trates the type of behavior seen in catastrophic dechan-
nehng, it does not contain the features of resonance chan-
neling. To see how both these phenomena can arise in a
linear model we consider Eq. (16) in the approximation
U'(z) =ax and with the special initial condition
x(0)=g(0)=0. A simple calculation shows that the
phase plane coordinates just after the nth interface
z =ns+ are

LLLL

LLL»

LLLL

LLL
L
LLL

X

Xc

x (ns+ ) = g ( —1)~sin[(n —j)cos],
j=l

g( ns+ )=bg g ( —1)Jcos[( n —j)cos],
i=]

where co =a/2E and n =1,2, . . . . From Eqs. (9) and
(17) we find

2 22$2+~2x 2
~

FIG. 6. Same as Fig. 5 for the resonance channeling condi-
tion where the impulse occurs at every 2m rotation and the
wavelength equals the path length per layer (A, =s). Maximum
channeling occurs.

n, cos(cats}= —1
2

1+( —1)"+'cos(n cps)
cos(cos)& —I .

1+cos cos

This clearly shows the usual resonance phenomenon with
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Ei(n) growing with the square of n for cos(sos) = —1. If
we let A (n, H) =Ei(n)/E (b P) with 8=~s then it can be
shown that the least-upper bound of the function A (n, H)

over pl 1s

A (8):= lub I A (n, H)J
n&1

2m'
1 +cos

4m +3
I+cosH

8 p
PPl = 1,2). . .

Zm 4m +2
(19)2

otherwise,
1 +cos

where p is an integer. Since cos(2m/4m +2) is close to 1

for m+1, 3 (8)=2/(1+cosH) for all practical purposes.
Thus the least-upper bound for the transverse energy Ei,
of particle xo =go=0 as a function of superlattice layer
thickness s is given by

E(b,g)
2

1+cos(n&s)

0~I

II

r r r W

Xo = O.O
10 — II'o = O.O'

0 I I a s

I(A)
444 888 1332

t
ASTRO
HANNI

FIG. 7. Calculated maximum value of the normalized trans-
verse energy over the 6rst 6ve layers of a SLS for a particle
entering the crystal at xo= $0=0 vs the rotation 8 per layer on
the phase plane which depends on the path length per layer s.
The dashed line corresponds to the critical transverse energy,
E„=Eg, for channehng for the case of a SLS tilt angle
hi( = i(,/2. Based on a harmonic potential and Eqs. (17)-(20).

Since in the SLS case we are usually interested in the
channeling over the first few layers, we show in Fig. 7 the
normahzed value of the transverse energy for the max-
imum taken over the first five layers. Except for the dip
near 8= 2n and ', n —this c—urve is nearly indistinguishable

from Eq. (20};thus the convergence is very rapid.
To better understand Fig. 7, assume that the energy E

and potential coefficient a are fixed and that the SLS tilt
angle d,p= —,IIIt„where the critical transverse energy for
channeling is EI, =EQ2. The horizontal dashed line is

E„=Ei,=4E(hg) and so when A, is below the dashed
line in Fig. 7 the transverse energy of the particle with in-
itial coordinates x =/=0 has not exceeded the critical
transverse energy Ej, In contra. st, there are values of
the SLS path length per layer s such as for 8 near m and
3m where the function has exceeded this critical trans-

verse energy at one of the first five interfaces so that the
particle has been dechanneled. This response curve
therefore shows the usual linear resonance phenomena of
unbounded solutions, which we associate with the catas-
trophic dechanneling. However, it also has two new
features, namely, a minimum in the response curve which
we associate with resonance channeling and a periodicity
in the maxima and minima which corresponds to multi-
ple wavelengths within superlattice layers. In Secs. V
and VI, we will discuss these resonance conditions in the
nonlinear model, here we further discuss them in the
MHM.

B. Catastrophic dechanneling

The MHM predicts a catastrophic dechanneling for
8=ir as illustrated in Fig. 5. The beam is incident on the
crystal planes with an angle of go=+(b, g)/2 and is uni-

formly distributed over ( —dz/2, dz/2) as shown by the
horizontal line labeled 0 in Fig. 5. As the particles move
through the 6rst layer, the phase line rotates through an
angle ~ as it comes to the first interface (lines labeled 1).
At this interface, the horizontal phase ffow line moves
vertically from —(b,1(I)/2 to —3(b,g)/2. The horizontal
line then rotates through an angle m in the next layer to
/=3(bg)/2, and the interface changes the angular coor-
dinate from 3(hP)/2 to 5(b,g)/2. The next rotation and
impulse moves a11 particles out of the phase circle and
thus they will become dechanneled as they rotate into the
planes at x = —x, in this layer. Therefore for
H=m(A, , /2=s), we have a constructive reinforcement
which moves the particles out of the channeled beam as
rapidly as possible. The MHM thus suggests this as an
interesting case to investigate both theoretically in the
nonlinear model and experimentally.

Experimentally an e8'ective planar-channeled wave-
length can be determined from the oscillation in the
backscattered yield as a function of depth. Thus the ca-
tastrophic dechanneling condition is determined experi-
mentally by varying the beam energy until the distance
between the planar channeling oscillation peaks, which is
one-half the effective wave length, equals the layer thick-
ness in the superlattice. It is not obvious, of course, that
this gives the maximum rate of dechanneling, but it
should be close. Our initial work on catastrophic
dechanneling is reported in Refs. I and 2 and more de-
tails will follow in two forthcoming papers.

C. Resonance channeling

In Fig. 6 we show the case 8=2~(A, , =s), which is the
case which maximizes the channeled fraction. Here we
have the same initial configuration as in Fig. 5, however,
the particles rotate through an angle 2m in each layer.
Thus in each layer they come back to their original phase
coordinates. In the example of Fig. 6 the particles start
at 1(o——(5/p)/2, rotate through 2n, and move under the
impulse to —(b, t/r)/2. They then rotate through 2m back
to —( hit )/2 and then move under the impulse to
(b,g}/2. Thus the particles' transverse momenta oscillate
between (b,p)/2 and —(b, itI)/2 at successive interfaces
and dechanneling takes place only in the first layer. Thus
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every initial condition gives rise to a periodic raotion of
pellod 2$, aild tlils case will be liilportaiit 111 our discus-
sion of resonance in the nonlinear model. The MHM
therefore suggests this as a second interesting case to in-
vestigate both theoretically in the full Moliere model and

experimentally. Our experimental discussion of this case
wiH be the subject of a forthcoming paper.

The definition of the two resonance phenomena in the
MHM and the experimental determination of the energy
for catastrophic dechanneling is clear. Furthermore,
since the wavelength is proportional (approximately) to
the square root of the energy, the resonance channeling
energy should be approximately one-fourth of the catas-
trophic dechanneling energy. However, more exact po-
tentials require a nonlinear model [Eq. (16)] and the
definitions of maximal dechannehng and channeling are
not so simple. We postpone our discussion of this prob-
lem and its partial solution until the next section. Here
we take the values as determined by experiment and then
see what the nonlinear model with the Moliere potential
predicts. We take the case s=444 k, b,/=0. 15', and
x, =&~/2 —ttz. The experimentally determined value of
the energy for catastrophic dechanneling is 1.2 MeV and
thus the energy for resonance channeling is 0.3 MeV. We
use the phase flow as shown in Figs. 8-10 to illustrate
two cases with E=1.2 MeV and one case with E=0.3
MeV using the static Moliere potential. In the process

we examine the depth dependence of the dechanneling
and compare the results with the MHM.

Figure 8 shows the calculated phase Sow and associat-
ed trajectories for a catastrophic dechanneling case in
both the full model and the MHM. Here 8=1.2 MeV
and from Eq. (13) g, =0.338'. We integrate Eq. (16) nu-

merically for 200 particles uniformly distributed in
( —d~/2, 1~/2) as shown by the horizontal line labeled 0
in the first phase flow diagram on the right side of Fig. 8.
Initially, there are two groups of particles with transverse
energy Ei & Ei, . The first group has

~
x

~
& x„and these

are taken to be dechanneled immediately. The second
group has Ei&Ei, but

~
x

~
&x„and these are dechan-

neled in the first layer as their clockwise rotation on the
integral curves [de6ned by Eq. (9)] carry them to x =x, .
Those particles with xc &0 reach x =x, first whereas
after some delay those with xo&0 reach x =x, . The
dechanneled fraction as a function of depth is shown in
Fig. 11 by the solid line for catastrophic dechanneling.
Since the fraction of particles in the second group men-
tioned above is quite small, for this example, one observes
in Fig. 11 only a constant dechanneled fraction in the
Srst layer of about 0.15, which corresponds to the initial-
ly dechanneled fraction

~

x
~

& x, =dp /2 —a T.
The phase How has taken the initial horizontal line to

the curved solid line at the Srst interface as shown on the
right side of Fig. 8. Because the particles that started
with Ei & Ei, have been dechanneled in the first layer, all
particles on the solid line have transverse energies less
than Ei, . At the interface this solid line is moved down

hatt to the dashed line in Fig. 8 and now some of the parti-

+d,4/2
I
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I
~r ~~ &i ( it ir i~
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FIG. &. Phase fioat and trajectory calculation for the catastrophic case based on I;a) MHM and (b) Moliere potential. The incident
angle is +hP/2 and E= 1.2 MeV. The solid heavy vertical lines correspond to x ix, = l.



PLANAR CHANNELING IN SUPERLA I I ICES: THEORY

g[ .JL . ~ a

w i. '7-'
X

X

U t w l~

a& ~

[ ~ i ~

S I
l ~

'2', )

s

FIG. 9. Same as Fig. 8, except the incident angle is (b,f)/2. On—e can see the delay of the catastrophic dechanneling depth by ex-
act y one layer thickness for the MHM and approximately one layer thickness for steering by a static Moliere continuum potential

cles have transverse energy greater than Ei, . This line is
shown by the lower solid line in the phase flow diagram
for the second layer. There are now two new groups of
particles with Ei )Ei, and these are at the two ends of
the solid line. As this line moves under the fiow, the
group on the left will reach x = —x, Srst snd become
dechanneled followed by the group on the right. This
gives the two-step structure in layer two (between inter-
face 1 and 2) as shown in Fig. 11. The phase Sow curve
just before the second interface is shown by the upper
solid line. This hne moves up b,g as it crosses the second
interface and is shown by the dashed line.

The dashed phase Sow line shown in the second dia-
gram is replaced by the solid line in the upper part of the
third-phase Aow diagram in Fig. 8. This line has two
groups of particles with Ei &E~„a large group on the
right end and a small group at the left end. As these par-
ticles move into the plane at x =x, they will become
dechanneled. The first group gives rise to the large in-
crease in the dechanneled level of Fig. 11 between depths
2 and 2.5; the second group begins to bc dechannclcd
near 2.5 while the erst group is still being dechsnne1ed.
This is thc reason there is no Rat region in layer three of
Fig. 11 until both groups are totally dechanncled near the
cnd of the layer. There is a small segment remaining at
the end of layer three and this moves to the dashed line as
they cross the third interface. All the particles now have
Ej &Ez, and will be dechanneled in thc fourth layer as
shown in Fig. 11. In studying the phase fiow of, for ex-
ample, Fig. 8, it should bc noted that the particles are

only uniformly distributed on the phase flow line in the
initial state.

The phase liow for the MHM, shown on the left side of
Fig. 8, follows the full model (right side) in an average
way. This similarity is the reason for the qualitative
agreement between the two models shown in Fig. 11 for
the depth dependence of the dechanneled fraction. The
lack of agreement near interface 3 can be understood
from the phase Sow of Fig. 8 where it is seen that in the
MHM all particles become dechanneled in layer 3.

The dechanneled fraction as a function of depth is easi-
ly calculated in the MHM. Here we derive the formula
for the dechanneled fraction at each interface under ca-
tastrophic dechanneling conditions. Let xo, 1(o denote the
initial condition of a particle in Iayer one. Then the ini-
tial condition for the particle's motion in the nth layer is
x o, go, where

xo ——( —1)" 'xo

4o=( —1)" '[4o+(& —1)~f1 .

Therefore the motion in the nth layer is given by Eq. (15)
with xo, Po replaced by xo, go, and z going from 0 to s in
that layer, that is

x(z) xo 2n 6 . 2m
cos z + sin z )x, x, A,, 1(, A.,
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Clearly a particle is dechanneled in layer n if it has not
been dechanneled in layers 1, . . . , n —1 and then reaches
a condition corresponding to being dechanneled in layer
n, that is, (xo/x, ) +($0/P, ) is less than 1 for 1&k &n
and greater than or equal to one for k =n. If a particle is

l

dechanneled in layer n, it is a simple matter, using Eq.
(21a), to find the depth in that layer for which it is
dechanneled. This is the method used to 6nd the dechan-
neling (dashed line) in the MHM shown in Fig. 11. It is

considerably faster than Snding the corresponding curve
for the full model. It is easy to see that the portion of the
line still inside the circle (x /x, ) +(it /g, ) = 1 just before
the nth interface corresponds to the channeled fraction
1 —X(n) at the nth interface, giving

Xc 1—

2x~
1 —X(n) = 1—

'2 1/2
0

'2 1/2
V'0

240 00
&1,

— and & 1

2i)'0 4o
n p 1 — and &1, (22)

it 0 ~1 or

fs) 0-1 - 1.0

~gilt\ ~ ~~

0 Cq„
a K ) 0

1

x/x '-~0 -.0
1 0

0
~10~ 0

{cl)3+-4

~11t+Ily

Notice that for $0——0 the channeled fraction at the first
interface is 2x, /dz and that if bio is negative then it is
possible for the dechanneled fraction to remain constant
over several layers. For the example of Fig. 8, x, =0.829
A, $, =0.338', $0=0.075', and 6/=0. 15', so that for
n =2,

~ Qadi/g, ~

=0.666 and X(2)=0.36, which is in agree-
ment with Fig. 11.
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FIG. 10. Phase fjow for the resonant channeling case of
E=0.3 MeV calculated for steering of projectile trajectories by
a static Moliere continuum potential. The sequence of phase
Sow portraits (a)-(f) shows phase Bow just before (dashed line
labeled —) and after (solid hne labeled + ) crossing the layer
interfaces of layers 1-6, respectively. The parameter values are
s=444 A, x, =dp/2 —aT, b /=0. 15', and $0=(b f)/2.
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FIG. 11. Calculation of dechanneBng vs depth for SLS lay-
ers. At 1.2 MeV where A.,/2= ~".". A (path length per layer)„ca-
tastrophic dechanneling occurs and maximum dechanneling is
observed. At 0.3 MeV, where k, =".~", A„resonance channeling
occurs and minimum dechanneling is observed. Calculations
are based on the static Moliere continuum potential (solid lines)
and the modified harmonic model (dashed lines) for an incident
angle of {hf)/2
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Figure 9 shows the corresponding phase flow for the
catastrophic dechanneling case with 1(0=—h1(/2. This
corresponds to shifting the incident angle by the superlat-
tice title angle —ht/i and by comparison with Fig. 8 it can
be seen that this change delays the catastrophic dechan-
neling by one layer in the MHM and by approximately
one layer in the full model. The consequence of this con-
nection between incident angle and catastrophic dechan-
neling depth for strain measurements will be discussed in
Sec. VII.

Figurc 10 shows the calculated phase How for the reso-
nance channeling case of E=0.3 MeV, which gives

g, =0.676'. As in the case of Figs. 8 and 9, Eq. (16) has
been integrated numerically for 200 particles uniformly
distributed in ( —d /2, d /2) as shown by the horizontal
line in Fig. 10(a}. In Fig. 10(a) the phase flow has taken
the horizontal line to the curved dotted line labeled 1

just before the Srst interface. The phase flow curve has
returned to its initial position in an average way, whereas
in the resonance channeling case of Fig. 6 for the MHM
it has exactly returned to its initial position. The three
points, ai, az, and P, where the two-phase (low curves
cross in Fig. 10(a) are important. They are related to
periodic solutions of Eq. (16) and will be discussed short-
ly. The solid phase How curve in 10(b) is the dotted curve
of 10(a) moved down bg„and it evolves to the dotted
curve upon passing through layer 2. Notice how all the
particles are staying in the channeled particle portion of
the phase portrait. The solid phase curve in 10(c) is the
dotted curve of 10(b) moved up hg, and it evolves to the
dotted curve in layer 3. This procedure is followed in
layers 4, 5, and 6 as shown in the figure, and the impor-
tant thing to observe is that the spirals, which are becom-
ing wound tighter and tighter, are staying in the center of
the portrait indicating very little dechanneling. This is
verified by the calculation of the dechanneled fraction
which is shown in Fig. 11. Here it is seen that there is an
initial dechanneled level which is maintained through
layer 1, a small amount of dechannehng in layer 2, and
then no dechannehng through layer 5. The calculation
has been carried through 10 layers, over which no addi-
tional dechanneling has occurred. Even though the
phase flows for the MHM and the full model appear very
difFerent, their predictions of the dechanneled fraction
are in agreement.

To help understand the phase Rows of Fig. 10 and the
small amount of dechanneling, we will follow the parti-
cles labeled a, , a2, and P on the horizontal line of Fig.
10(a). If we let (xti, go) denote the initial coordinates of
a, , then a& moves back to its initial position as it moves
through the first layer. At the interface it moves down
b,P to (xo, —$0) and then in layer 2 it moves back to
(xo, —Po) as it approaches the second interface. At the
second interface it moves up hP to (xo, go) and it is now
back to its entrance conditions for layer 1. Since the su-
perlattice structure repeats itself every two layers [the
right-hand side of Eq. (16}has period 2s], the particle ai
has periodic motion. The same argument storks for az.
Thus the initial conditions for a& and a2 give rise to
periodic solutions of Eq. (16}with the period of the SLS.
These motions, as shown in Figs. 10(a) and 10(b) are par-

tially responsible for the small amount of dechanneling,
just as in the case of the MHM of Fig. 6, where all
motions starting on the horizontal line of Fig. 6 are
periodic, and this allows no dechanneling after the first
one or two layers. The particle labeled P also corre-
sponds to a periodic solution as will be discussed in Sec.
VI.

In summary, Fig. 11 shows that the resonance e6ects
predicted by the MHM are corroborated by the full mod-
el. There is clearly a big difFerence between the depth
dependence of the dechanneled fraction for the two cases,
E=1.2 MeV and E=0.3 MeV. %hile it is clear how to
give a precise definition of resonance in the MHM, it is
not so clear in either the experimental situation or in the
full nonlinear model. Theoretical aspects of this problem
will be discussed in the next section.

VI. FURTHER DISCUSSIONS ON RESONANCE

It is important to understand the conditions which give
the maximum rate of dechanneling and the maximum
channeling. A rough estimate of this can be found by
defining an effective channeled particle wavelength A,,
which depends on the beam energy and other channeling
parameters. The catastrophic dechanneling condition is
then A,, =2s and the resonant channeling condition is
then A,,=s. Experimentally, A,, is determined from the
oscillations in the backscattered yield, while theoretically
it can be determined from calculations which produce the
wavelength as a function of amplitude as shown in Fig. 2.
A reasonable A., would be the wavelength associated with
amplitude dz/2 —az., corresponding to A =0.86 in Fig.
2. The other extreme is to carry out extensive numerical
and experimental work to try to determine the maximal
dechanneling and transmission. From a theoretical point
of view neither of these is particularly satisfying, and here
we suggest an approach which, when combined with nu-
merical experiments, may illuminate the problem.

Attempts to analytically characterize the maximum
rate of dechanneling for the nonlinear case were not suc-
cessful and so we focused instead on the resonance chan-
neling problem of finding conditions for which particles
remain in the channeled phase space region. Clearly the
simplest such situation occurs for periodic motions, and
so a study of periodic solutions of Eq. (16) was initiated.
This study is still in its preliminary stages, and here we
report on a special case which we believe contains the
seed for a full understanding of resonance channeling.
Indirectly, this illuminates the catastrophic dechanneling
since those eftects occur at roughly four times the energy
associated with the resonance channeling.

We assume s and hP are given in Eq. (16) and consider
initial conditions on the line g(0}=$0——(b,g)/2. It
should be clear from Eq. (10) that there exists an energy,
position pair E, rl, with 0(g &x„such that A,(Ej )=s,
where Ei =EP~+ U(rl), that is

s =A(Ei}:=4~E J [U(a) —U(x)] ' dx, (23)

where a and U(a) are defined by U(a)=E+~+U(il).
The phase plane position (x, g), at z of the particle start-
ing at (g, $0) with this value of E evolves as follows:
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E/b
1+(Ei/b)

and since

Ei=E +b tan (aq},b,1( 2

Eq. (23) can be solved for E giving

E(ri) = 1

cos (ari)
(24)'2

sa b1(
4m

Thus, the dependence of E on ri is easily understood. To
find a and b we require that the tangent square and
Moliere wavelength functions match for E~ =0 and

Ei = U[0.8(d~/2)]; this is discussed in detail in Ref. 18.
From Fig. 2 these values are 1115 A and 844 A. giving
a=0.92(A) ' and b=45.0 eV. For g=0.75x, we obtain
8=0.27 MeV and for g=0.86x, we obtain E=0.30 MeV
consistent with our experimentally determined resonance
channeling energy of E=0.3 MeV.

It is hoped that the reader now has some feel for this
situation and that Eq. (24) is a handy formula for quickly
estimating the resonance channehng interval. Further-
more, with our conjecture of g= —,'x, having the greatest
holding power we obtain a simple formula for estimating
the resonant channeling energy from Eq. (24) and the ca-
tastrophic dechanneling energy is a factor of 4 larger.

VII. INCIDENT ANGLE DKPKNDKNCK OF
CATASTROPHIC DKCHANNKLING

The resonance phenomena presented in Secs. IV and V
were discussed for the fixed incident angle $0 +(b g) /2.——
In this section, we consider the incident angle depen-
dence of the channeling at resonance. In the MHM of
Figs. 5 and 6, a change in initial angle corresponds to a
change in the position of the horizontal line labeled 0.
For larger $0, the line will be higher, and for negative $0,
the line will be below the x axis. For resonance channel-
ing in the MHM it is easy to see from Fig. 6, that a
change in the initial angle will only shift the relative posi-
tion of the two horizontal lines on the g/it, axis. Thus
the particles will stiB oscillate between the two angular
positions Po and $0—hP and no dechanneling will occur
after the 5rst two layers. The dechanneled fraction Xz
after this initial dechanneling will be

2 1/22x, $0—i b,f
7& ——max ~ 1 — 1—

i =0, 1 Gp
(25)

as long as
~ $0( and

~ $0 hf
~

are less than g—, . The an-
gular dependence of resonance channeling is therefore
easy to understand in the MHM, and we will not ela-

Thus this initial condition with E =E(ri) gives rise to a
periodic solution of Eq. (16), with E(g} defined by Eq.
(23), as discussed in Sec. IV for the particle labeled a, in

Fig. 10.
By symmetry the initial condition ( —ri, fo) also leads

to a periodic solution. These periodic solutions exist for
the range of energies E(0) & E & E (x, ) (from the calcula-
tion which produced Fig. 10 we know that i) =0.86x, so
that E(0.86x, }=0.30 MeV, and this gives an interval of
possible energy values for the 1TlaxlmuIQ channeling con-
dition which we call the resonant channeling interval.
Clearly the existence of these periodic solutions has the
effect of holding the phase Aow curve in the channeling
region at least for small distances into the crystal. A.iso
the stability and position g of these periodic solutions are
relevant and will control the "holding power. " The prob-
lem is then to flnd the ri in [O,x, ] which has the greatest
holding power. Before making these ideas more concrete
we point out that for every E,q pair giving risc to the two
periodic solutions there exists an g(r)) such that 0& g & ri
and the initial conditions ((, b,f/2) also give rise to a
periodic solutions. To see this, let ( —i), &0}, ( —g, go),
and (ri, $0} denote the points of intersection of the phase
flow curves at z=O and z =s as seen for example in Figs.
10(a). We have already shown that the point (g, fo) on
the phase flow curve at z =s came from the same point at
z=O, that is, s =A,(Ei ) =A, (EQO+ U(g)). Because of
conservation of transverse energy the point ( —(,$0) at
z =s could only have come from ( g, $0) or ( (,fo) at-
z=o and because k is a monotone decreasing function of
Ei it must have come from ((,$0}. Therefore, the point
(g, 1('0) at z=O moves to ( —g, |(to) at z =s under the flo
and then moves to ( —g, —$0) at z =s+ after crossing the
6rst interface. Because the integral curves are symmetric
about the x and g axes, the point at ( —g, —go) at z =s+
moves to (g, —$0) at z=2s under the flow and then
moves to (g', go) at z=2s+ after crossing the second inter-
face. That is, the point (g, go) returns to its original posi-
tion at z=2s+ and since the SI.S structure has period 2s
the particle motion repeats and we have another periodic
solution of Eq. (16). Thus we actually have three periodic
solutions of period 2s helping to hold the phase flow in
the channeling region.

It seems likely that for g small the large tails of the
phase Sow curve could easily become dechanneled.
Furthermore, if q is too large, this particle could become
dechanneled leaving only one periodic orbit to contain
the phase flow. Based on this and our experience with
the nulnerical calculations, we suspect the best holding
power will occur for q= —,'x, and propose this as a reso-
nance channeling condition.

In order to better understand the E,q relation and in
order to obtain a simple estimate for the resonance chan-
neling energy interval, we introduce the tangent square
potelltlal U(x) =6 tail (Qx), whicli gives a vel'y good ap-
proximation to the Mohere potential. ' This potential is
convenient because Eq. (10) gives



PLANAR CHANNELING IN SUPERLA j.-LICKS: THEORY 7303

borate further here .
In contrast to the resonant channeling case, the catas-

trophic dechanneling resonance condition leads to a
much more dramatic dependence on incident angle. In
the MHM, it is easy to see that reducing the incident
direction 1(0 by hf delays the depth of the catastrophic
dechanneling by one layer. This is because immediately
after the 6rst-layer rotation by m the incident beam direc-
tion at the first interface becomes —( $0—b,f)—b,P
= —$0. But for dechannehng considerations entering the
first interface with angle —$0 are identical, by symmetry,
to entering the surface at $0. The left-hand side of Figs. 8
and 9 clearly show this behavior in the case of f0=6,f/2
and $0———b,g/2. If we let D, (g o) denote the depth of
catastrophic dechannehng (for example, the depth at
which 85%o of the particles are dechanneled), then
D, ($0) D, ($0—b,f)=——1 and hence bD, ($0)/b, P
= —1/b, P. Thus the depth of catastrophic dechanneling
versus incident angle should have an "average" slope of
—I/h1( and thus be a measure of the strain b,g.

In Fig. 12 we show the depth for 85% dechanneling in
the catastrophic dechannehng case. The solid line is
based on the full model calculations for the static Moliere
potential as discussed previously. A detailed step struc-
ture is predicted and this structure contains both strain
and potential information.

The dashed line in Fig. 12 represents the MHM and is
easily computed from Eq. (21}. It agrees well with the
full model for the choice of parameters here in spite of
the fact that the detailed phase flows for the two cases are
difFerent. This reflects the fact that the phase IIow in the
MHM follows lli all average way thc phase liow of thc
full model. The jump discontinuities occur across the in-
terfaces n= 1, 2, 3, 4, and 5, at values of $0——$0(n) such
that

2 =I 1 —[(1—X, }d /2x, ] I'~

for X, =0.85, A =0.985. Equation (22) gives the dechan-
neled fraction at the nth interface as a function of $0',

however, it also can be used to determine $0=$0(n) such
that the dechanneled fraction at the nth interface is given
by X(n)=X, . This yields Eq. (26). To understand the
jump discontinuity notice that $0(2)=0.183'. This jump
is due to the existence of a group of particles which for
$0~0. 183' are dechanneled in the second layer but for
go&0. 183' are dechanneled in the third layer. The points
[n, go(n)] defined by Eq. (26) lie on a straight line with
slope —I/b, g as shown by the dotted line in Fig. 12.
This gives a reasonable average for the full MHM calcu-
lation where the particles are counted as dechanneled as
they rotate into the planes. Equation (26) also clearly
shows that the catastrophic depth is delayed by one layer
for a hP decrease in $0 since Po( n + 1 }=$0( n ) b,P—Th.e
fact that the slope of this line (average MH in Fig. 12) is
simply related to the strain and that this line has a slope
fairly close to the average slope of the full model gives a
quick method for estimating the strain from experimental
data.

VIII. SCALING LAVVS

Here we investigate the scaling laws in the full model
and present a set of universal curves for the dechanneled
fraction as a function of depth in the catastrophic
dechanneling case.

The equation of motion given by Eq. (16) becomes

dZ
+0 W'(X, D}= g ( —1)JbÃ 5(Z —j) (27}

under the scaling
1to(n) =1(,A (n —1—)b g,

X=, Z = —, U(x) =EN(X, D)
X z

d /2' s' (28)
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FIG. 12. Calculation of catastrophic dechanneling depth as a
function of incident angle for a static Moliere continuum poten-
tial (solid line), the MHM (dashed line), and the average MHM
(dotted line). The observed angular dependence is highly anis-
tropic.

for E =nz, iie Nd» and D =d»laz, where

2 1E 2s sag0 =—— and b%=
P P

If we introduce the geometrical angle g =(d /2)/s and
note that EP» ——(2/D)E, then Q and b,%' can be rewritten
as

For the case of this paper D=14.06 and g =0.125'. Be-
cause a particle becomes dechanneled when X =X„ the
fraction of channeled particles at a fixed Z depends only
on 0, h%', and D for a given initial angle 4'0. For crystals
of interest, the sensitivity to D is very small. Further-
more, Q has a particular value for a resonance condition,
e.g., Q= 5.96 here for catastrophic dechanneling. Thus
given the resonance condition, an average D value, and
an initial particle ensemble, me can construct a set of
universal curves for the dechanneled fraction versus Z for
various values of the normalized interface tilt angle A%'.
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A set of universal curves of the dechanneling versus
depth based on the scaling for Eqs. (28) and (29) are
shown in Fig. 13 for the resonance case of catastrophic
dechanneling and incident beam direction $0=0. The
curves show the evolution from no catastrophic dechan-
neling for normalized SLS tilt angle h%'=0 to total
dechanneling in the second layer for 6+=140. The in-
crease in catastrophic dechanneling with tilt angle is seen
to occur by the smooth increase in the dechanneled step
heights in the layers and incremental movement to
succeedingly shaBower layers. The solid lines of Fig. 13
are calculated for the standard case used in this paper of
He along the I110}planes with average spacing for the
SLS GaAso, &PO ss/GaP, which corresponds to a normal-
ized planar spacing of D= 14.06. For the case of b,%'= 80
we also show for comparison the dechanneling versus
depth (dashed line) for D=15.54 which corresponds to
the GaAso, PO 2/GaAs (d =2 and ar ——0.1287 A. ) studied
in a forthcoming paper. ~ This range of D values roughly
represents the range of planar spacings to be found in
groups IV and III-V SLS materials. Thus the depen-
dence of planar spacing is weak and the plot of Fig. 13
represents a useful set of universal curves for predicting
the rate of catastrophic dechanneling at $0=0 for any
given strained-layer superlattice of equal layer thickness.
Equation (27) could equally well be utilized to obtain
universal curves for any other resonance condition or
with appropriate modi6cation for any other SLS struc-
ture.

IX. CGNCI. USIONS

In conclusion we have developed the continuum theory
of channeling for layered crystalline structures and ap-
plied it to superlattices. Because these structures are in
the surface region, energy loss and multiple scattering
can to 6rst order be ignored. The model is a one-degree-
of-freedom nonlinear oscillator forced with a periodic
delta function with alternating impulses, an equation of
current mathematical interest. Because the natural
periods are close to the forcing periods for MeV channel-
ing in SLS's of current interest, resonance effects are to be
expected and we have explored two of these e8'ects in de-
tail. In the nonlinear model the resonance channeling
(minimum dechanneling) is easier to define than catas-
trophic dechanneling because of the existence of periodic
solutions of Eq. (16). Also, a simple linear model is used
to explain the relation between the two resonance condi-
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tions. We compared our nonlinear model with our previ-
ous MHM, which is basically a linear resonance model,
and found good agreement. This agreement results be-
cause the phase How in the MHM follows the nonlinear
phase How in an average way for the shallow depths of in-
terest. %'e gave a detailed discussion of the depth depen-
dence of the dechanneling for both resonance conditions
in terms of the phase How (Figs. 8-10) and used this to
explain the depth profile of the catastrophic dechanneling
(Fig. 11). A set of nearly universal curves for the depth
profile of catastrophic dechanneling was presented. Fi-
naBy, the incident angle dependence of the catastrophic
dechanneling was discussed in both the nonlinear m.odel
and the previous MHM.
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FIG. 13. Universal curves of the depth dependence of catas-
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corresponds to the case of GaAso 85PO l5/GaAs SLS (D= 15.54).

1% K Chu J A Ellison~ S T. P1craux, R.M. BIefeld, and G.
C. Osbourn, Phys. Rev. Lett. 52, 125 (1984).

2S. T. Picraux, %'. R. Allen, R. M. Biefeld, J. A. Ellison, and %'.
K. Chu„Phys. Rev. Lett. 54, 2355 (1985).

3%'. K. Chu, %'. R. Allen, J. A. Ellison, and S. T. Picraux„Nucl.
Instrum. Methods 8 j.3, 39 (1986).

~S. T. Picraux„L. R. Dawson„o. C. Osbourn, and %'. K. Chu,

Appl. Phys. Lett. 43, 930 {1983).
5S. T. Picraux, L. R. Damson, Q. C. Osbourn, R. M. Biefeld,

and %'. K. Chu, Appl. Phys. Lett. 43, 1020 (1983).
6C. K. Pan, D. C. Zheng, T. Q. Finstad, %'. K. Chu, V. S.

Speriosu, and M. A. Nicolet, and J. H. Barrett, Phys. Rev. 8
3t, 1270 (1985).

7J. H. Barrett, Phys. Rev. 8 28, 2328 (1983).



37 PLANAR CHANNELING IN SUPERLATTICES: THEORY 7305

SW. K. Chu, F. %.Saris, C. A. Chang, R, Ludeke, and L. Esaki,
Phys. Rev. 8 M, 1999 (1982).

9W. K. Chu, C. K. Pan, and C. A. Chang, Phys. Rev. 8 28, 4033
(1983).

~OJ. H. Barrett, Appl. Phys. Lett. 40, 482 (1983).
~ ~S. T. Picraux, L. R. Dawson, G. C. Osbourn, and %'. K. Chu,

Nucl. Instrum. Methods 218, 57 (1983}.
I2A. T. Fiory, J. C. Bean, L. C. Feldman, and I. K. Robinson, J.

Appl. Phys. 56, 1227 (1984).
'3J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K.

Robinson, J. Vac. Sci. Technol. A 2, 436 (1984).
14S T Picraux, %. K. Chu, %. R. Allen, and J. A. Elhson,

Nucl. Instrum. Methods 8 15, 306 (1986).
~5G. C. Osbourn, J.Appl. Phys. 53, 1586 (1982).

J. Lindhard, Mat. Fys. Medd. Dan. Vid, Selsk. 34, No. 14
(1965).

D. S. Gemmell, Rev. Mod. Phys. 46, 129 (1974).
'SJ. A. Ellison, Phys. Rev. 8 18, 5948 (1978}.

T. J. Burns and J. A, Ellison„Phys. Rev. 8 29, 2790 (1984).
2oH. S. Dumas and J. A. Eihson, in Local and Globa/ Methods of

Dynamics, Vol. 252 of Lecture bootes in Physics, edited by R.
Cawley, A. %. Saenz, and W. %'. Zachary (Springer-Verlag,
Berlin, 1986),

2'J. A. Ellison and S. T. Picraux, Phys. Lett. 83k, 271 (1981).
22S. T. Picraux, R. M. Biefeld, %'. R. Allen, %. K. Chu, and J.

A. Ellison (unpublished).
23W. K. Chu, %'. R. Allen, S. T. Picraux, and J. A. Ellison (un-

publi. shed).
2"W. R. Allen, W. K. Chu, S. T. Picraux, R. M. Biefeld, and J.

A. Ellison (unpublished).
~5P. A. Doyle and P. S. Turner, Acta Crystallogr. Sec. A 24, 390

(1968).
~6J. U. Andersen, K. R. Eriksen, and E. Laegsgaard, Phys. Scr.

24, 588 (1981).
27L. D. Landau and E. M. Lifschitz, Mechanics (Addison-

Wesley, Reading, 1969), pp. 27—29.
28%. M. Gibson and J. A. Golovchenko, Phys. Rev. Lett. 28,

1301 (1972}.
29J. A. Ellison and T. Guinn, Phys. Rev. 8 18, 5963 (1978}.
3 Equation (3) is integrated numerically using the subroutine

RaF4s which is a high-quality subroutine based on Runge-
Kutta formulas developed by E. Fehlberg and implemented

by L. F. Shampine and H. A. %atts in 1974. It requires six
function evaluations per step. Four of these function values
are combined with one set of coeScients to produce a fourth-
order method, and all six values are combined with another
set of coe5cients to produce a fifth-order method. Compar-
ison of the two values yields an error estimate which is used
for step size control. In our calculations we used absolute
and relative errors of 10 . A discussion and listing of this
code can be found in G. E. Forsythe, M. A. Malcolm, and C.
B. Moler, Computer Methods for Mathematical Computations
(Prentice Hall, Englewood Clil's, 1977), Chap. 6. A similar
code is a part of the so-called sI.AZTEC library. For more de-
tails see Ref. 31.

W. R. Allen, Ph.D. dissertation, University of North Caroli-
na, Chapel Hill, 1986.

3~This calculation gives the joint spatial-momentum density

p(x, P;z), but only p(x;z) is required for the dechanneling cal-
culation.
J. K. Hale, Ordinary Differential Equations, 2nd ed. (Krieger,
Florida, 1980), Chap. V; A. J. Lichtenberg and M. A. Lieber-
man, Regular and Stochastic Motion (Springer-Verlag, New
York, 1983);J. Guckenheimer and P. Holmes, Nonlinear Os-
cillations, Dynamical Systems and Bifurcations of Vector
Fields (Springer-Verlag, New York, 1983).
Equation (10) shows the v F. dependence exphcitly, however,
E can also enter in the Ej and a terms. This latter dependen-

cy is small.


