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Atomistic analysis of the enhanced-modulus effect in metallic superlattices
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Experimental reports of large enhancements (severalfold) in certain elastic moduli of composi-
tionally modulated transition-metal-noble-metal superlattices have appeared over the last decade.
Two general classes of explanations have been proposed for this e6'ect; one depends upon changes
in the electronic structure resulting from the superlattice periodicity, whereas the other is based
on nonlinear elastic elects driven by the coherency strain of the strained-layer superlattice struc-
tures. An atomistic analysis of the elastic properties of a Cu/Ni superlattice has been carried out
to differentiate between these ideas. In the case of Cu/Ni superlattices with (1OO) interfaces and

two, four, or six monolayers in each layer, we And roughly a 15% enhancement in the biaxial

stretching modulus, compared to the reported severalfold enhancement. The observed enhance-

ment is therefore not due to nonlinear elastic e8'ects driven by coherency strain or interfacial ener-

getics, but probably results from electronic e6'ects associated with the superlattice periodicity.

I. INTRODUCTION

Composition-modulated metallic superlattices with
small (10-30 A) modulation wavelengths composed of
certain pairs of noble and transition metals (e.g., Cu/Ni,
Cu/Pd, Ag/Pd, etc.) are observed to have greatly
enhanced (several hundred percent) elastic moduli rela-
tive to the corresponding homogeneous alloy. ' Al-
though this enhanced-modulus, or "supermodulus, "
effect is by now well established experimentally, general
agreement on a mechanism for the phenomenon is still
lacking. There are at present two approaches toward
understanding the enhanced-modulus effect. In the 6rst,
the effect is thought to result from a change in electronic
structure owing to interaction of the Fermi surface with
the folded Brillouin zone of the superlattice (this class
of mechanisms will be abbreviated FSBZI). In this view,
the peak in the modulus as a function of compositional
wavelength (Fig. 1) appears where this interaction is
most efrective. The electronic mechanism depends on
the periodicity of the superlattice, but not fundamentally
upon coherency strain, although it is possible that coher-
ence would play some role in such a mechanism. The
second approach seeks to explain the modulus enhance-
ment through nonlinear elastic effects generated by the
large biaxial strains appearing in a coherent superlat-
tice. In this model, interfacial coherency is essential to
the proposed mechanism, and the peaks in the moduli
result from loss of modulation intensity by interdNusion
at short wavelengths and from loss of interfacial
coherency by introduction of mis6t dislocations at large
wavelengths.

It would seem that a tentative choice could be made
between these two approaches by experimental studies of
the correlation, if any, between interfacial coherency and
the presence of the supermodulus

effect.

Although
coherency does seem to be a common feature of those
superlattices exhibiting the supermodulus effect,
enhanced moduli are also found in systems such as

Ni/Au, ' where the large lattice mismatch (16%) would
seem to preclude formation of a coherent structure.
Also, there are systems such as Ag/Pd in which the
peak in modulus enhancement occurs at a modulation

0

wavelength of 23 A, whereas x-ray measurements show
that the superlattice structures are coherent at least to a

THEORY ( EAR )

FIG. 1. Scaled biaxial modulus for a Cu/Ni superlattice as a
function of superlattice wavelength. The experimental data are
taken from Ref. 2„and are scaled to the biaxial modulus for a
homogeneous Cuo 5Nio 5 alloy. The theoretical results are ob-
tained in this paper using the embedded-atom method (see
text).
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wavelength of 33 A, which argues against the loss of
coherence causing the fallofF in modulus at a large wave-
length. The current experimental picture on a neces-
sary correlation between the supermodulus efFect and in-
terfacial coherency seems inconclusive.

Since a choice between the two principal suggested
mechanisms for the supermodulus efFect cannot, at this
time, be made based solely upon the experimental evi-
dence, one possible approach is to resolve this issue
through contradiction, i.e., by showing that one theory
or the other makes predictions inconsistent with some
subset of the experimental results. At present, however,
the ideas on which the FSBZI models are based do not
seem suSciently developed to make such an approach
tractable. In contrast, models based on the nonlinear
elastic properties of coherent layered structures are rela-
tively well characterized, and ofFer possible 6elds within
which to seek contradictions.

The first major work along these lines was carried out
by Jankowski and Tsakalakos, who calculated the elas-
tic constants of the noble metals as a function of biaxial
strain, such as would appear in a coherent layered struc-
ture, using a pseudopotential approach. They found that
the elastic constants, and specifically the biaxial moduli
F~ &oo~ and F~ » & ~, are strong functions of applied biaxial
stress e, and are nearly linear in e, with compressive bi-
axial stress producing larger values of F~,oo~. For exam-
ple, in the case of Cu undergoing biaxial strain in a
plane perpendicular to the [100] direction, Y~~oo~ varies
from 0.178 to 0.084 TPa (bulk value is 0.124 TPa) as e

varies from —0.015 to 0.015. This increase in F, &DO~ on

compression is of the order of magnitude of the increase
observed in a Cu/Ni superlattice having a modulation
wavelength around 15—20 A, which has encouraged the
speculation that the nonlinear elastic efFects serve a ma-
jor role in driving the enhanced-modulus efFect. Howev-
er, the pseudopotential methods they used could not
easily be applied to other than noble metals, so that the
equivalent efFect in, for instance, Ni, was not calculated.
As the supermodulus effect is not observed in superlat-
tices made up of pairs of noble metals„ this treatment of
nonlinear elastic properties remained inconclusive on the
origin of the enhanced modulus efFect.

A continuum-mechanical analysis of the cumulative
efFect of nonlinear elastic properties on the average elas-
tic moduli of a Cu/Ni superlattice has been carried out
by Ba,nerjea and Smith. They model the nonlinear elas-
tic properties of the individual layers by using the bulk
elastic constants through fourth order, and then calcu-
late the average elastic response of the composite system
with conventional nonlinear continuum-elasticity
theory. ' They agree with Jankowski and Tsakalakos
that the coherency strain does cause a major change in
the elastic moduli in any given layer. However, in the
superlattice structure, alternate layers are strained in
compression and tension, resulting in alternate increase
and decrease in the biaxial modulus. The result, aver-
aged over the entire superlattice, is that essentially no
change in the biaxial modulus is obtained for a Cu/Ni
superlattice, whereas a severalfold increase is observed
experimentally.

There are (at least) two substantial limitations of this
analysis. First, by considering only up to fourth-order
elastic constants, Banerjea and Smith do not reproduce
all of the nonlinearity found in pseudopotential calcula-
tions of Jankowski and Tsakalakos. This may represent
a small error in this case (see Fig. 2), but inclusion of
nonlinear elastic efFects to all orders seems to be needed
to rule out safely nonlinear elasticity as a prime cause of
the supermodulus efFect. Second, the inhuence of inter-
facial energetics on the overall elastic properties is not
included in the continuum-elasticity analysis of Banerjea
and Smith. This is nearly unavoidable, since the nature
of such efFects in continuum elasticity is not well known.
However, neglect of such efFects on the elastic response
of small-period superlattice structures, in which essen-
tially all atoms are near internal interfaces, seems poten-
tially dangerous. Thus, the analysis of Banerjea and
Smith, although serving to discourage the point of view
that the enhanced-modulus efFect results primarily from
nonlinear elasticity driven by coherency strain, cannot
be taken as a strong contradiction of this proposed
mechanism.

In this paper the average elastic properties of superlat-
tices consisting of alternating slabs of Cu and Ni, having
thicknesses of two, four, and six monolayers, are calcu-
lated using the embedded-atom method (HAM) of Daw,
Baskes, and Foiles"' so as to treat the combined non-
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FIG. 2. ES'ect of biaxial strain on elastic properties of
copper. The even part of the change in the biaxial modulus
yj, oo, (F,(e)=F(e)+ F( —c)—2F(0)j is plotted as a function
of absolute value of biaxial strain for three models of the elas-
tic properties. Curve 1 includes up to third-order elastic con-
stants (Ref. 4)„curve 2 includes fourth-order elastic constants
(Ref. 9), and curve 3 is the result of a pseudopotential calcula-
tion (Ref. 4). Note that even the fourth-order elastic model
does not reproduce the nonlinear elastic behavior fully.
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linear elastic effects resulting from the coherency strain
and the high density of interfaces to all orders. Al-

though the EAM is based on an electronic model for the
interatomic interaction, the model is too coarse to in-

clude effects related to the proposed FSBZI mechanisms
for the supermodulus effect. This calculation will thus
provide a clean differentiation between the two classes of
proposed mechanisms.

II. ATOMISTIC DESCRIPTION OF
A BIMETALLIC SUPERLATTICE

In order to calculate the effective elastic moduli of a
CulNi superlattice using an atomistic model, it is neces-
sary to choose an interatomic potential which is capable
of describing the energetics of such bimetallic structures.
The use of simple pairwise potentials would be tractable,
but such potentials do not describe even the simplest

elastic properties of metallic structures properly (for ex-
ample, the Cauchy pressure C,2-C~ is zero). These
inadequacies can be patched up by addition of a
volume-dependent energy term, but the ambiguities in-
troduced by applying this procedure to most realistic
structures make this approach inappropriate for the
current problem. The embedded-atom method (EAM)
describes the structural energy of a system of atoms as
the sum of a repulsive pairwise interaction and an
"embedding" energy, which is the energy released by
embedding each atom in the local electron density pro-
vided by the other atoms in the structure. This local
electron density is always well defined, so that the ambi-
guities resulting from use of volume-dependent energy
terms do not appear.

The EAM is formally derivable from density-
functional theory, but development of a practical
method requires additional approximations, resulting in
a semiempirical procedure. The primary simplifying as-
sumptions are that the local electron density at the
atomic site is just the sum of the free-atomic electron
densities of the neighboring atoms, and that gradient
contributions to the embedding energy are zero. (Note
that calculation of the local electron density as the sum
of free-atomic densities removes any information con-
cerning the superlattice periodicity from the electron
density. This means that the FSBZI mechanisms are not
treated in this approximation. ) The structural energy of
a system of atoms is then

tion is determined uniquely by requiring that the
structural energy for the homogeneously strained fcc
solid agrees with the universal equation of state intro-
duced by Rose et a/. , ' which provides a reasonably ac-
curate description of the cohesive energy over a wide
range of density. The resulting four-parameter model is
fitted to selected pure-metal and alloy properties. The
EAM in this form has proven quite accurate over a wide
range of bulk, surface, and alloy properties, and thus
seems a reasonable choice to treat the current problem.

The EAM must be tested to ensure its accuracy in the
case of biaxial strain. The biaxial modulus of bulk Cu
was calculated as a function of biaxial strain using the
EAM and the parametrization described above, and the
results were compared with the equivalent pseudopoten-
tial calculations of Jankowski and Tsakalakos. The
slope of the modulus is about 10% greater for the pseu-
dopotential calculation, but the overall features of the
dependence, including the slight upward curvature, are
very similar using both approaches (see Fig. 3). The
EAM can thus be used to analyze the current problem
with a reasonable level of confidence.

III. ELASTIC BEHAVIOR OF A
Cu/Ni SUPERLATTICE

The object is to calculate the effective elastic proper-
ties of a bimetallic superlattice, and compare them with
experiment. %e have chosen a structure composed of
alternating slabs of Cu and Ni, having coherent inter-
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where p; is the local electron density at site i, I'(p) is the
embedding energy (which is a function of the local elec-
tron density), and 4,"(Rv) is the repulsive pairwise in-

teraction.
This basic form has been applied to description of the

alloys of the noble metals Cu, Ag, and Au, and the
neighboring transition metals Ni, Pd, and Pt, by Foiles,
Baskes, and Daw, ' who obtain excellent agreement with
a wide range of experimental pure-metal and alloy prop-
erties. Briefly, a parametrized form for the pairwise po-
tential is chosen. Given this form, the embedding func-
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FIG. 3. Comparative calculations of the dependence of the
biaxial modulus Y(&00) of copper on biaxial strain. The predic-
tions of the embedded-atom method (EAM) obtained here
agree well with the more rigorous pseudopotential calculation
carried out by Jankowski and Tsakalakos (Ref. 4), which
justi6es the use of the EAM in the analysis of the supermo-
dulus e8'ect.
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faces perpendicular to the (100) layers, partly because
this geometry shows a large experimental enhancement,
and partly because this enhancement has been seen by a
number of independent investigations. '* ' The slab
thicknesses are varied from two to six monolayers, with
equal thicknesses in both materials. This range of thick-
ness covers the regime of modulation wavelength (8—24
A) over which the supermodulus efFect appears in Cu/Ni
superlattices. Each layer is five unit cells square with
periodic boundary conditions in both [100] directions
perpendicular to the surface. An infinite superlattice is
simulated by introducing periodic boundary conditions
on the surfaces on the stack parallel to the Cu/Ni inter-
face. Treatment of an in6nite superlattice is a reason-
able approximation, since the experimental structures
are composed of thousands of layers. The structure is
large enough that any two atoms in the structure in-
teract directly in only one direction, despite the periodic
boundary conditions on the sides. The resulting
configuration simulates an infinite-bulk superlattice
structure. The energy of the test structure is minimized

by varying the atomic positions, and the elastic con-
stants are then calculated by numerical difFerentiation of
the dependence of the structural energy on the applied
strain conditions.

Upon carrying out this procedure, the biaxial modulus

F~,oo~ for our test superlattices is found, for all modula-
tion wavelengths calculated, to be 0. 17+0.01 Tpa, com-
pared to the value of 0.152 Tpa expected for a homo-
geneous Cuo ~Nio &

alloy. This represents an increase of
10—15 % in this biaxial modulus, compared to the exper-
imental increase of several hundred percent. ' '

The obvious conclusion to be drawn from the above
result is that the enhanced modulus efFect does not result
from nonlinear elastic efFects driven by biaxial coherency
strain or interface density, but that some other mecha-
nism must produce the experimental observations. The
increase in the contribution to Ft, oo~ from the Cu layers
in biaxial compression is almost completely compensated
by the reduction in the F~,oo~ contribution from the Ni
layers, which are in biaxial tension. %hatever contribu-
tions arise in this system from the interfacial energetics
apparently do not upset this compensation.

In summary, attempts to explain the enhanced-
modulus efFect to date have fallen into two broad
categories: those based on nonlinear elastic effects
driven by coherency strain, and those based on electron-
ic structure efFects driven by the superlattice periodicity.
The present work has strengthened the case against the
first of these classes. However, it is clear that exclusion
of the elasticity models does not prove the accuracy of
the FSBZI mechanism. The present state of the models
based on electronic superlattice efFects is not satisfactory,
and must be considerably refined to make a definitive
test of such models possible. Although the field of possi-
ble explanations is now narrowed considerably, a satis-
factory theoretical understanding of the enhanced-
modulus effect is not yet available.
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