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The transport equation for the slovring down of an energetic particle in matter is solved in a P&

approximation, both for a half space and for an infinite medium. Nuclear stopping vrith a pomer-

law dependence on energy is assumed. The existence of the target surface affects the range distribu-

tion near the surface and the asymptotic energy spectrum of backscattered particles. In a half

space, the range distribution decreases to zero at the surface and the backscattered particle spec-
trum is flatter than in the in5nite medium. For the case of recoil generation, the analogous results
for the deposited-energy distribution and the spectrum of sputtered recoils are derived. Explicit re-

sults are given for the case of hard-sphere cross sections eath a po~er-law dependence on energy.

The phenomena associated with the slowing down of
an energetic atom or ion in matter have been studied ex-
tensively in the past, and many quantities like t'he range
distribution of implanted atoms and the energy spectrum
of backscattered projectiles' are by now well under-
stood. The case when the projectile initiates a recoil
cascade in the target has been studied analogously, and
the damage or deposited-energy distribution and the
spectrum of sputtered recoils have been calculated.
Analytical progress in this area has depended to a large
extent on simplifying the target geometry such that the
slowing-down process is often considered to take place in
an infinite medium. In this case the linear transport
equations describing the Sux of the implanted and recoil-
ing atoms are readily solved by taking spatial moments.
The reconstruction of the space dependence of the flux
from its moments is not a trivial problem, but may be
performed with sufficient success. '

In some problems, however, a more detailed knowledge
of the spatial dependence of the fluxes of moving atoms in
the target is desirable. Examples are the calculation of
the tails of the Suxes far inside the target or the descrip-
tion of slowing down and range profiles in layered tar-
gets. Another outstanding problem is the question of
how the process of particle slowing down and recoil gen-
eration in the target is afFected by the existence of the tar-
get surface. This surface e6'ect is of decisive importance
for the energy and angular distribution of backscattered
or sputtered particles since these are given by the cruxes
through the surface itself. But also the range and energy
deposition profiles in the vicinity of the surface may be
modified due to the surface.

A number of investigations have studied the surface
effect via a sort of perturbation approach, starting from

the inffnite-medium solution, or via an image type of ar-
gument. Corrections to the backscattering ' and
sputtering yields and spectra, ""as well as to the range
and deposited-energy distributions, ' ' have been dis-
cussed in more or less detail. A few model solutions us-
ing synthetic scattering cross sections discuss the surface
effect in a more detailed manner. '

The present investigation is motivated by an approach
by Winterbon's who uses what is called a P, approxima-
tion to the particle flux to calculate the range distribu-
tion, reffection coefficient, and backscattering spectrum
of projectiles. We extend his results and show that the
range and deposited-energy distributions vanish at the
target surface in a nonanalytical way, and that the energy
spectra of backscattered and sputtered particles deviate
characteristically from their inffnite-medium values for
not too small bombardment energies. Both facts are inti-
mately connected. For a certain form of particle interac-
tion, viz. , that of energy-dependent hard spheres, we give
analytical results for the range distribution and energy
spectra.

H. EQUATIONS AND P i APPROXIMATION

In this section, we introduce the formalism to describe
the motion of an energetic projectile in matter; we closely
follow standard notation. The extension to include
recoil generation is straightforward and will be presented
in Sec. VII.

Consider a beam of projectile atoms or ions of mass M
&

slowing down in a target consisting of randomly distri-
buted atoms of mass Mz. A forward transport equation
is readily wrlttcil dowil for 'thc phase-space density
f(r, E,Q) of particles moving at point r with energy E
into direction 0 '4

uQ f(r, E,.Q)=X JdE'd 0'fK(E', 0'~E, Q)u'f (r, E', 0') K(E,Q~E', 0')uf—(r,E,Q) jj+S(r,E,Q) .
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Here, X is the target-atom number density,
u =(2E/M, )'~ the projectile velocity, and S denotes the
stationary projectile sources. Furthermore, K (E,Q
~E', Q')dE'dzQ' is the scattering cross section for a
projectile of energy E and direction 0, to scatter at a rest-
ing target atom into energy E' and direction 0', it may
be written explicitly as

K(E,Q~E', Q')dE'd Q'

lision. The choice g{t)=t is a convenient approxi-
mation for scattering in a potential V(r)~r
Another model cross section which has been considered
in the literature is g(t)=1, which denotes hard-sphere
scattering with an energy-dependent scattering cross sec-
tion. ' '

When inserting (8) into (6)„ it is convenient to scale the
depth variable z to a length characteristic of the bom-
barding particle:

=(r(E, T)dT 5(Q O' P—)d Q',
2m

(2)

where T =E —E' is the transferred energy and P is the
cosine of the projectile de@ection angle; e(E, T)dT is the
cross section for energy transfer T in its usual notation. '

In the following, we shall be interested in a planar
geometry; we denote by z the depth into the target, and
by (u the direction cosine of Q with respect to the inward
target normal, i.e.„ the z axis. For a stationary and homo-
geneous beam of current density g (particles per unit time
and area), the source may be written as

S(r,E,Q)=QQ(z, E,p), (3)

Expanding 4 into Legendre polynomials

where cylindrical symmetry was assumed. We now intro-
duce the projectile Aux by

4(z, E,p, )=—uf(r, E,Q) .1

Thus from now on the nondimensional flux and sources

a(x, s,p, )=E,C(z=xX,,E=sE,,( ),
Q(x, e,p) =AOEOQ(z =xylo, E =sEO,(u),

will be used. Finally, after a (fimte) Mellin transforma-
tion in c:

1

4(x, s,p, )= ds e,
' '4(x, s,(u),

0

Eq. (6) reads, in the P, approximation,

(12)

4((x,s) = —Ao(s)C)0(x, s —2m)+ Qo(x, s),

and to scale the particle energy E to the bombarding en-
ergy E0:

(10)

4(z, E,p)= g (21+1)P((p)4((z,E),
1=0

4, (z,E)= ,' f dp P, )p)CKz, E,p),-—1

Eq. (1) becomes (for details see Ref. 5)

[p4{z,E,p]( ——Ã JdE'[rr(E', E' —E)P,(P)4((z, E')
z

o(E,E —E'—)4(( Ez) ]

+Q, {z,E),

l
40(x,s) = —A ((s)4,(x,s —2m)+ Q((x, s),

with

~((s)= I dt g (t)[1—(1—t) (P({({})]
0

and

P(t)=(1—t) '" 1—
2M I

(13)

where [E(p, )]( denotes the Ith I.egendre moment of an
arbitrary function F(Is), in accordance with Eq. (5}.

We attempt to solve Eq. (6} in a P, approximation
which consists in restricting the p variation of 4(z,E,p}
to

Q((x, s) = ,'5{x)P((tso)—, (16a)

In an infinite medium, the stationary unit source in-
jects particles into the target as Q (z,E,p, }
=5(z)5(E —Eo)5((((,—po}. In the P, formalism, this
reduces to

4(z, E,IJ, ) =40{z,E)+3Is4, (z,E) (7)
( I=0,1) and is supplemented by the boundary conditions

and neglecting higher-order Legendre moments, i.e., the
infinite expansion (S) is truncated after the P( term,
whence the name. Equation (6) is then reduced to a cou-
pled system of tv' integro-differential equations.

%'e shall solve the above equations for scattering cross
sections that obey a power law:

(r(E, T)dT =CE g
T dT

E (8)

0(T (yE (otherwise, (r vanishes),
y=4~(~z/(~(+Mz) . Here 0(m (1, and g(T/E)
measures the degree of forward scattering in a single col-

4((x —+k oo,s):—0 . (16b)

4(z =O, E,p, & 0)= 1 5(E Eo)5(pp—((), ,—
IM

and setting the source Q(z, E,Is)=0. Both approache—s

A half space may be described by either of the following
approaches: One may retain the same source Q(z, E„(u)
as in the in5nite medium and additionally stipulate that
no particles from the outside enter the half space:
Q(z =O, E,p&0}=0; alternatively, one may put the in-
cident current into the boundary conditions, demanding
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give identical results when applied to the original trans-

port equation (1) or (6), ' but certainly not when applied
to the I', approximation (13). For the purposes of the
present paper, we choose the latter alternative, since it
gives more succinct results. We note explicitly, though,
that the main qualitative results of the present paper may
be obtained by either approach.

In the I', approximation, (17) can certainly not be
fulfiHed rigorously; the boundary condition is usua11y im-
plemented using Marshak's condition

f dp jii@(z =O, E,p, )=—,'4o(z =O,E)+4,(z =O, E)

Yo(x, u) = ,'—e
Ti(u)

+

goTo�(
u )sgnxv3

and for the half space

Yo(x, u}=b (u)e

Yi(x, u)= — Yo(x, u) .1

3

—k[ —
)Mo — + —,

' T, (u)sgnx

(26)

(27)

=5(E E—o) . ( 18)
Here

Thus, for the half-space problem, Eq. (13) is supplement-
ed by

k =k(u)=V3e2 "

and b (u} is the Laplace inverse of

(28)

Q, (x,s) =—0,
—,'4o(x =O,s}+@i(x=O, s)=—1,
4,(x~+ ao,s):—0 .

(19)

We note that no information on the incident direction p,o
is retained in this half-space formulation of the P, ap-
proxlInatlon.

b(s)= f du e "b(u)=
0 —Do(s) — —D, (s)I 1

2

(29)

From (20}and (23), the solution of the system (13) is now
obtained as

41(x,s) =D&(s)f du e '"Yi(x, u) .
0

IV. ENERGY SPECTRUM

O'I(x, s) =Di(s)X&(x,s), (20)

We solve the coupled system of difFerence differential
equations (13) using Wailer's trick. ' ' '5 Write

The Mellin-transformed energy spectrum of emitted
particles is given in the in6nite medium by

Q3 Do(s)
4o(x =O,s)=—

4 D)s

where the D&(s}satisfy

Do(s) = —A i(s)D, (s —2m),

D, (s )= —A o(s)Do(s 2m ) . —

X,(x,s) =Xo(x,s —2m)+ Qo(x, s),1

X Di s

1 8 1
Xo(x„s)=X,(x„s —2m)+ Q, (x,s),

D((s)
4,(x =O, s) = — po Do(s

(21) and in the half space by

Do(s)
4o(x =O, s)=

1—Do(s) Di(s)
3

Di(s)
4&(x =O,s)=—

1
2
-'D, (s) — D, (s)v'3

(32)

Y, (x,u)=e "Yo(x,u)+T, (u)Qo(x),
Bx

3 Bx
Yo(x, u)=e "Yi(x,u)+To(u)Q, (x),

(24)

= f "due-'"Ti(u) .
D, (s) o

For the in5nite-mediuln problem we get

which is readily solved using the Laplace transform:

X&(x,s)= f du e '"Yi(x, u) . (23)

For a monoenergetic source, Q is independent of s and we
obtain Do(s +4m ) = A, (s +4m ) Ao(s +2m )Do(s),

D, (s+4m)= Ho(s+4m}A, (s+2m)Di(s) .
(33)

Consider first the case of di8'erent projectile and target
masses, y «1. Then, by definition, all A&(s) are entire
functions, and they have no poles in the s plane. There-
fore the rightmost poles of the D, (s) are caused by the
rightmost zeroes of the A&(s), with different /. Ao(s) has
its rightmost zero at s =1, whereas A, (s) has its right-
most zero at another point o on the real axis, with o g 1.
From (33), it foHows that the nghtmost pole of Do(s) is at

In order to assess the rightmost poles of 4&(x =O,s),
which give us the asymptotic energy dependence of
4,(x =O, E) for E ««Eo, we have to study in some detail
the analytical properties of the D&(s). From (21) we have
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s =1—2m, and that of D, (s) is at si ——max(1 —4III,
a —2m} .Hence, we obtain the asymptotic behavior of
the infinite-medium solution, Eq. (31}:

4o(x =O, e)-e " ', a~~ 1

C&i(x =0,C) —e
(34)

Note that for small m, st ——1 —4m.
In the case of equal projectile and target mass, @=1,

the A&(s) are no longer entire functions, and we have to
show that the poles of the A&(s} do not change the
asymptotics (34). AII(s) has its rightmost pole at s =0,
and A, (s) at s =——,'. Therefore Do(s) has its rightmost
zero at s = —2m, and D, (s}at s =max( —4III, ——,

' —2m).
Thus these zeroes are not relevant for the asymptotics of
the energy spectra, and again Eq. (34) holds.

We note that the two spatial moments

+ o0 1
400(s) = Cx @II(x,s) =

oo 2 2 II s +2III

III
I (s }=f dx 41(x,s ) =—00 2 A i s +2III

(35)

e'01(x =O, e)-e ', e(~1 .

are calculated correctly in the PI approximation. ' We
observe that in the infinite medium, the spatial mean of
the density 4c(E) has the same asymptotic energy depen-
dence as 4~(x =O, E) evaluated at the surface. For the
current III I this is not ne:essarily true; for small rn in par-
ticular, 4el(E) will underestimate 41(x =O,E). The
reason hereto is that 41(x,E}generally changes sign as a
function of x and is negative at the surface while its mean
is pos1tivc.

The above discussion is summarized in Fig. 1 where
the behavior of D(I)s /D(II)s, which determines the
asymptotics of the infinite-medium solution, is sketched.
We used the fact that because of Eq. {21) and since
lim, „[AD(s)/8 I (s)]= 1, it follows hm, „[D,(s)/
Do(S)]= —l.

For the half-space solution, the pole of Do(s) at
s =1—2III is irrelevant. As neither DII(s) nor D, (s) have
a pole to the right of s„obviously one has to look for the
zeroes of the denominator of Eq. (32), —,'DII(s)
—(I/v 3)DI(s). As sketched in Fig. 1 there is indeed
one and only one zero of the denominator of the half-
space solution for Res & st, which we will call so:

DI(so)
Do(SO) 2

(36)

Thus in the half spac~ @0 and @I po»e» the same
asymptotics; it 18

D(a}

(s}

P

4

!

I

I

I

I
I

I

I

I

0

FIG. 1. A sketch of the behavior of D, (s}/D~(s} for real s,
s ps&. Values are taken for the case of hard-sphere scattering
with m = ~, Eq. (66). See text.

Note that this asymptotics is in between that of the
infinite-medium density 40(x =0,e) and current
4I(x =O, e):

s l Q $P Q 1 —2Ptg (38)

Furthermore, since 41(x =O, e)/@0(x =O, e) does not
vanish for e ~0, the angular distribution of emitted parti-
cles does not become isotropic at low emission energies,
in contrast to the infinite-medium solution, Eq. (34).

V. REFLECTIGN AND STICKING COEFHCIENTS

In order to discuss reflection and sticking coefficients,
and to calculate the range distribution from the particle
flux, it is convenient to introduce the slowing-down densi-
ty " X(r,E). It corresponds to the so-called Brice dis-
tribution function utilized in other work on half-space
ranges and spectra. ' ' X is defined as

dQ'
E

Here {Bf(r,E,Q)/Br ) ii is used as an abbreviation of the
right-hand side of Eq. (1) (without sources); it means the
time rate of change off (r, E,Q) due to collisions. Since
we deal exclusively with down scattering, X(r,E)d r
denotes the number of particles scattered down through
cllcrgy E at polIlt (r, d P) pcI' illllt tllllc Ifrcspcctlvc of
direction. In planar geometry, w'e have

X(z,E)= 2f 'dE—'N f 'dE-[~(E-,E" E')4~{z,E")—g(E', E' E—) q(l,zE)]—. (39')

F« the cross sc«ion (8) we change to the nondimension-
al depth variable, Eq, (9):

and obtain after Mellin transformation in e, cf. Eq. (12),

X(x, e)=&OX(z =xA, II,E =CEO)
Ao(S +1}

4,(x,s+1—2m) . (41)
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R (x)=Res X(x,s) =2 lim [ Ao(s)40(x, s —2m) j .
s=0 s~l

(42)

From Eq. (6) we observe that the important continuity
equation holds

Bj(x, e) (}
X(x,s)=Q(x, e) „ (43)

Particles scattering down through energy E =0 define the
range distribution. It is well defined if s =0 is the highest
pole of X(x,s};then"

dxR x =1. (48)

We wish to retain the normalization (48), but also stipu-
late the condition (46), r +a =1=j;„both requirements
may be accommodated for the bombardment direction
j(io——I/v 3, i.e., for this bombardment direction the P,
approximation is best. ' In future we sperialixe our re-
sults for sticking and reffection coefficients to @0=1/~3.

In the half space, it is

where

j(x,e) =2@i(x,e) (44)

is the nondimensional particle current, and Q (x,e }
= fdpS(x, e,y)th, e angle-integrated source. It allows

us to define the reffection coefficient r and the sticking
coefficient a by

1

r = — de j(x =O, e)

2

~3 Dc(1)
2 Di(1)

I'=J —gIn

Here we wish again to normalize a +r =1=j;„,and we
thus use in future the ffux

= —2[4,(x =O, s =1)—4,(x =O,s~ m )],
(45)

4i (x,e)= . 4i(x, e)
1

Jll
(50)

a =J dx R(x)= —2D, (s =1) dx Xo(x,s =1—2m),
0 0

which satisfy in view of Eq. (43) the obvious relationship
1r+a =j;„= de j(x =O, e)=24, (x =O, s~ao) .

(46)

The symbol 1 in the integration limit is introduced here
in order to separate the contributions of the source at
e = 1 from the backscattered particles at e & 1. If sources
Q(x)(x5(x) are present, x =0+ is to be taken in Eqs. (45)
and (46). For the inffnite-medium solution (26) we get

j;„=—,
' (1+&3MO),

as the true half-space result.

VI. RANGES

The range distribution is obtained via Eq. (42) from the
particle ffux 4. Whereas the infinite-medium range in
general does not vanish at x =0, it is our purpose to show
in this section that the half-space range decreases to zero
at x =0. For an analysis of the latter it is convenient to
introduce the spatial Mellin transform

&p, '(ps) Jdx x,s ='%ps(x, s) . (51)
0

It is

Di(l)
a = 1 —+3@0

2 Do(1)
(47)

HS@HS(p s)
(D,(.+2

P (p )3
—P /2

1
mp) — D, (s +2mp)

D, (1)
2 "' '+D, (1)

Furthermore, it holds independently of po that

HS
(p, s)= — 40 (p, s),v3 Dos

and thus the Mellin-transformed range distribution is

(52)

Di fl)
R (p)= —2

—,'Do( 1+2m (p —1

I (p)3

))— Di(1+2m (p —1))1
(&3)

As was shown above, Do(s) has its rightmost pole at s = I —2m, and the rightmost zero of the denominator
—,'Do(q) —(1/&3)D, (q) is at q =so, where 1 —4m &s, &so & 1 —2m. Hence R (p) is regular at p =0, and possesses poles
at p = —p, only in the negative half plane (p,. & 0). We thus get an expansion

Di(1)
R(x)= —2 . g Cx ',

jill j =0

I (p)3
C, = Res

0
' —'Do(1+2m (p —1)}— —Di(1+2m (p —1))v'3
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where the leading term for small x is

R (x) ~x~,

1 —2m —so
O&p&&,

2p7f

and so is given by Eq. (36).
We conclude that the half-space range distribution

vanishes at the surface like a power x~ with 0 &p & 1.

VII. RECOIL FLUX

While the projectile slows down in collisions with tar-
get atoms, it shares its energy with the recoiBng atoms
which in their turn colhde with other target atoms, etc.
In this way a recoil cascade may build up. A transport
equation describing the recoil atom phase-space density
f'~(r, E,Q) and the recoil flux %(z,E,p, ) is set up in com-
plete analogy to that for the projectile phase-space densi-
ty f and flux 4, the only difference being that to the col-
lision term on the right-hand side of Eq. (1), a recoil term

+N fdE'dzQ'K"'(E', Q'~EQ)U'f'"(r, E', Q') (1')

is added. K'"'E', Q'~E, Q) denotes the cross section for
a particle of energy E' and direction Q' to scatter at a
resting target atorp and impart to it energy E and direc-
tion Q. In general the source term for recoil particles de-
pends on the projectile flux. For the case of self-
sputtering we need not distinguish between projectile and
target species, and the flux of all moving atoms may be
described by O'. We will concentrate on this case.

The P, equations for the recoil flux are then again
given by Eqs. (13), with the boundary conditions given by
(16a) and (16b) for the infinite medium, and by (19) for
the half space. The only difference is that the collision
terms A, (s), due to the inclusion of the recoil term, are
substituted by

Af"(s)= f dr g(r)[1 P,(v'1 r)(—1 —r)'-'—

—P((~t )r' ']

Since 2 0"(s =2)=0, we obtain for an inflnite medium

%0(x =O, e)-s 'z z ', e«1

where now (Bf' IBt) i~
denotes the right-hand side of

Eq. (1} augmented by the recoil term (1'). For planar
geometry, and in nondimensional units, we have

(59')co(x, s) = co(r, E) .
0

In case of negligible electronic stopping, u obeys the con-
tinuity equation

a
jz(x, s) — co(x, s)=sg (x, e) .

Bx e

In Mellin space, it is

Ao" (s+2)
co(x,s) =2 %'0(x,s+2 —2m) .

s
The distribution of deposited energy is then given by

F(x)=co(x,e=O)= lim [Ao (s)%0(x,s —Zm)] .
$~2

In the half space, we obtain the expansion for small x:
F(x)~x~,

2—2' —$0
P= O~p~l .

2lFl

VBI. AN EXAMPLE

(60)

(63)

We have not been able to solve the difFerence equations
(21) for a general cross section (8) other than in a forrnal
way. Certainly, a numerical solution is always possible;
for the purposes of the present paper, however, it appears
more appropriate to study a case where an analytical
solution is available. For the equal mass case M& ——M2
and hard-sphere scattering g(t)=1, the collision terms
Al(s) become rational functions, which fact allows an
easy analytical solution of Eqs. (21}. As an illustration we
will present the solutions for the projectile distributions
for this case. %e have

jz(z, e)=2s+,(z,e),
and the slowing-down energy density' co(r, E), deflned as
the amount of energy slowing down through energy E at
(r, d3r):

co(r, E)=—f dE'd O'E' ' ', (59)

q'i(x =O, s)-s ', s «1,
where s, =max(2 —4m, cr —2m} and o is the rightmost
zero of A; (s). For the half space,

%'0,(x =O, e)-e ', e «1,

s —} s ——1

Ao(s)=, A, (s)=
s 5+-

and the difFerence equations (21) have the solution

s +2m —l

4m

(64)

where s, iso~2 —2m, and

Di(&0) v 3

Do(so) 2

Do(s)=

I s+2m s+4~+ zI
4m 4m

(65)

%e use here the same symbols as in the projectile case in
order to emphasize the complete analogy of the two prob-
lems.

In analogy to the current j and the slowing-down den-
sity g, we now introduce the energy current density

s +48?l
4m

s +2Pfk ——
2
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These functions become particularly simple for
m =1/4n, n =1,2, 3, . . . . I.et us specialize to m = —,'.
Then

eo (x =O, E)= 5(c—I)+ so(c —s ),Hs
v'3 v'3 —

o 0

2 4

(66)
where the normalization (50) was employed and so is the

only positive root of D, (so)/Do(so) =V'3/2:

For better readability, we will in this section use the
abbreviation

so ———,'(v'3 —1) . (75)

(67)

for the depth variable. The in5nite-medium solution then
reads

e,(x,s)= e- D,(s)
4

X Ia(g, s)+[a(f,s) ——,']l/3posgng},

4,(x,s)= ——,'e lrlD, (s)

The half-space range distribution may be rigorously
Mellin-inverted from Eq. (53). We obtain

Z"'(x)= [Pl (3—p, g)+g'-«(I+p, g)]
8

Pr(3 —p)+g -~l (1+p)
v'3

8

( —g)"
n!n=0

X I
v'3p 0[a(g, s) ——,

' ]+a( g, s)sgng I,
1+

n +1+p
(76)

a(gs)= s+ i~i
2

Equations (68) may readily be Mellin-inverted analyti-
cally, but we will not use the general expression for
4I(x, e) in the following. The energy spectrum at the
surface reads

40(x =0+,s) = (1+&3po)5(e—1)
v3

1(a,x)= I dtr' 'e

denotes the incomplete gamma function, 22 and

p= 1 —2s0=2 —v 3

The current 4 l s(x, c) is given (for e « 1) by

@His(x, c)=ln(1/s)gl s(x),

with

(77)

(C
—I/I Cl/I )

4,(x =0+,c)=—(1+v'3po)5(c —1)—

. (70}

pl (x)= —,'[ g e & —( —,
' —so)g 'I'(2+2so, g)

—( —,'+so)g '1 (2—2so, g)];
it diverges for x ~0 as

(78b)

We furthermore obtain the range distribution

(1+v 3@0)(g' +g)+1, x )0
g (x)— e lfl

8 (1—I/3po)(g —g)+ 1, x &0, (71)

4,(x,c)=1n(1/e)P&(x),

with

(72a}

(v 3po+1)(g —g) —v'3po, x &0
y, (x)= —,', e- lel —, (72b)

(v'3po —1)(g +g) —v 3@0„x&0,

which is the leading term of an asymptotic expansion for
e«1. Finally we obtain, for @0=1/v3, the sticking
coef6cient a and the re8ection coef5cient r:

(73)

The half-space energy spectrum reads

which is continuous and twice continuously dieerentiable
at x =0. For small c « 1 the current 4,(x,c) reads

@I (x ~O, S)=——,'ln(l/c)( —,
' —so)l'(2+2so g'

(79)

This llllll't docs Ilot cxlst; tllls ls collllcctcd to thc fact tllat
the energy dependence at the very target surface is
stronger than logarithmic, cf. Eq. (74). Sticking and
refiection coeScients for the half-space problem read

Q =, P' =1-Hs v'3 Hs

2
'

2
(80)

r is slightly larger (about 10%) than the infinite-
medium reflection coeScicnt r, Eq. (73).

We plot the energy distributions 4I(x =O, c) for the
infinite-medium and half-space cases in Fig. 2(a}. It is
seen that for E ~

—,
' Eo, the boundary conditions do not

in6uence density or current. Below that energy the half-
space solutions he between the values of the infinite-
medium current 4

&
and density 4 o.

Ill Figs. 2(b) Rlld 2(c) wc display 'thc plo'ts of thc I'Rllgc

and the asymptotic current distributions for both types of
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FIG. 3. Energy spectrum of particles emitted from a half
space, —j(x =O, a) = —24&(x =O, a), for hard-sphere scattering
with m = ~i. Sohd lines: P& result, Eq. (74). Histogram: Monte
Carlo simulation.

0.2-

0.1

boundary conditions. For depths x R0.5, the boundary
conditions do not influence the distributions. The range
distribution goes to zero for x~0 in the half space,
though, while the current distribution diverges here.

Note that for large depths, the range distributions for
the infinite medium (pc——1/~3) and the half space coin-
cide:

C„(x}

0 I
(81)

Particles that reach a large depth inside the target must
have come there on a more or less straight line, hence at
large depths the path length distribution P (g)—
measured in depth units along the incoming direction,
f=x/pc —~3x—and the projected range distribution
8 (x) should coincide. P (g) may be calculated rigorously
for hard-sphere scattering. '4's It is

-0.2
-2

FIG. 2. Comparison of particle slowing dovm in a half space
(solid 1ines} and in an infinite medium (dashed lines). The re-
sults are given for equal mass hard-sphere scattering arith
m = 4. (a) Energy distributions at the surface x =0, Eqs. (70)
and (74). (b) Range distributions, Eqs. (71) and (76). (c) Asymp-
totic current distributions, Eqs. (72b) and (78b).

which coincides for m =-,' apart from a constant factor
with {81). This fact enhances our confidence that the
qualitative aspects even of the large depth behavior of the
particle fiuxes are sufficiently well described by a P, ap-
proximation.

In order to assess the accuracy with which the P, ap-
proximation describes the features of half-space transport
problems, we solved the linear Boltzmann equation (1)
with the Monte Carlo code BEST.z All necessary care
was taken to ensure that exactly that transport process as
described by the Boltzmann equation is simulated.
Hard-sphere interaction vms employed. The resulting en-
ergy spectrum of projectiles emitted from a half space is
plotted in Fig. 3 in comparison mth the I', results. As
was observed after Eq. (19), in the P, description of the



H. M. URBASSEK AND M. VICANEK 37

half-space problem, no information on the incoming
direction po is available. We therefore ran the Monte
Carlo code with an isotropic distribution of incoming
directions, thus simulating the boundary condition
4(z =O, E,ls & 0)=5(E —Eo).

A surprisingly good agreement between the Monte
Carlo results and the P& calculation is observed, particu
larly at low energies E, but also up to near the bombard-
ing energy Eo. Further runs were made for several
definite values of the incident direction. The asymptotic
slope is always in agreement with the Pi prediction so.
Not surprisingly, the number of particles emitted at low
energies is strongly dependent on p,o, it increases when po
decreases from normal to oblique incidence. Also the
shape of the high-energy part of the spectrum depends on

po. For normal incidence, j(z=0,E) decreases very
steeply for E~EO, whereas its behavior is much softer
for oblique incidence. We thus conclude that the Pi ap-
proximation correctly describes the lowwnergy slope of
the emitted particle spectrum for all bombardment direc-
tions; it quantitatively describes the whole spectrum, if
the projectiles impinge isotropically on the target.

IX. DKSCUSSIGN

A. Rcliabihty of the Pi ayiiroximation

The method adopted in this paper for the solution of
the transport equations for particle slowing down, viz. ,
the P, approximation, is not meant to allow for a quanti-
tative evaluation of range profiles or reffection and stick-
ing coefficients. Firstly, a number of important physical
features are not incorporated into the linear Boltzmann
equation (1}, such as target (poly)crystallinity and elec-
tronic stopping; and secondly, the class of cross sections
used here, Eq. (8), approximates the reahstic pmjectile-
target interaction only over a limited range of energy for
a fixed value of m. '" Nevertheless, we think that the P,
approximation is well suited to characterize the basic
inffuence that a free surface exerts on the motion of ener-
getic particles in matter. Since it directly solves the spa-
tial difFerential equations, it is able to describe certain
qualitative aspects of particle penetration phenomena
that remain hidden in the method of spatial moments
which is often employed. The P, approximation can to a
certain extent incorporate the boundary conditions at the
free surface of a half space, and it directly presents the
solution for the particle ffuxes at the target surface itself.

It may appear strange at ffrst sight that the Marshak
boundary condition (18) sets for E «Eo the particle den-
sity 40 and current 4& at the surface of a half space pro-
portional to each other, and hence stipulates an identical
energy dependence for 40(z =O, E}and 4,(z =O, E), cf.
Eq. (37). The full boundary condition at a free surface,
Eq. (17), requires, ho~ever, an even stronger interdepen-
dence of the Legendre moments 4i(z =O„E) for E «Eo:
The condition that 4(z =O,E,p, &0)=0 for all p &0 can
only be fulfflled if all the 4i(z =O,E) have the same ener-

gy dependence In a Pi app. roximation, of course only the
collpiing bctwccll 40 alld 4) survives.

Unfortunately, it has not been possible to extend the

calculation to higher-order PL approximations, I. &1;
the difference equations that occur in these cases could
not be solved by us. %e note, however, that the range
distribution at large depths coincides with the path
length distribution in a special case of hard-sphere
scattering, which is reassuring. The energy distribution
at the surface 4t(z =O, E), on the other hand, can be cal-
culated for the case of energy-independent scattering
cross sections, i.e., m =0, with higher-order Pt (I- & 5)
and DPt approximations (L & 3); it may be shown that in
these cases the P, approximation already correctly gives
the leading term of the asymptotic energy dependence of
the particle distributions at the surface of the infinite
medium and the half space.

Since several weaknesses of the P, approximation are
known in the literature, and particularly in the vicinity of
sources and interfaces, ' ' we solved the Boltzmann
equation without any approximation by a numerical solu-
tion scheme based on a Monte Carlo approach (Sec.
VIII). Since the asymptotic slope of the energy spectrum
of reflected particles can be obtained with high precision,
and since it is predicted by the present work to deviate
characteristically from the well-known infinite-medium
value, we took this quantity as the base of our compar-
ison. As discussed in Sec. VIII, the agreement between
the numerical results and the prediction of the P, ap-
proximation is fine. On what regards the absolute values
of the energy spectrum, the P, approximation obviously
describes quite successfully the energy spectrum due to
an isotropic incident particle distribution, rather than a
collimated incident beam, the reason being that the bom-
barding direction po is not easily incorporated in a I', ap-
proximation. This certainly constitutes a drawback of
the present approach. In order to get some insight into
the inhuence of the bombarding direction po on the
asymptotic slope so of the backscattered particle spec-
trum, we performed a number of calculations with our
numerical solution scheme; no variation of so with po
could be found.

8. Energy spectra

Trivially, since particles may leak out of the free sur-
face of a half space without the possibility of returning,
which, however, is possible in an infinite medium, the
density 40 of particles at the surface of a half space is
smaller than the density at the same point in an in6nite
medium. The current 4& at the half-space surface is out-
ward directed, i.e., negative in our notation. By the same
argument as above it is more negative than the corre-
sponding infinite-medium current. It is a salient result of
the present paper that, since the above quantities are en-
ergy dependent, the same relationships hold for the
powers of the asymptotic energy dependence of density
and current. Moreover, since at the half-space surface
4(z =O, E,p &0)=gt" 0(21 +1)Pt(p, )4I(z =O, E)=0
(E &Eo), half-space density @0 and current @, must
have the same energy dependence. As we denote the
power in the asymptotic energy dependence of the half-
space density and current by so, that of the in6nite-
medium current by s» and since for backscattered pro-
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jectiles 40(z =O,E)-E' 2 (E «Eo), we have s, &so
& 1 —2nr, Eq. (38}. Analogously, in the case of sputtered
particles, it is s

&
~ so ~ 2—2m. Whenever particles do not

sufFer large angular de5ections and hence only few sur-
face crossings in the in5nite-medium case, so will be close
to 1 —2m. This is the case if the projectile re5ection
coeflicient is small, e.g.„when the projectile mass is high,
or when electronic energy losses are dominant. On the
other hand, when the particle motion is diffusive, so will

bc closer 'to z 1, thc power dcscrlb11lg thc 11151lltc-111cdllln1

current.
We wish to mention that the case m =0 has been stud-

ied extensively in the literature. ' ' Here the powers
1 —2m = 1 =s, are confluent, and thus only logarithmic
deviations occur in the results. While the infimte-
medium density behaves as (Eo/E)(lnEO/E) '~ for
E «Eo, the in5nite-medium current and both half-space
density and current behave as (Es/E}(lnEO/E)
which is in full agreement with the above observations,
since in the absence of electronic losses particles never
get stuck in the m =0 case and the motion therefore may
be described as ddFusive. A pure power law may be 5tted
to the m =0 particle spectrum with more or less success
giving a power less than 1 for the projectiles, and less
than 2 for the recoil case. 27'4 We wish to emphasize that
such a fit does not do justice to the more delicate behav-
ior described above.

Sputtering from a half space has been studied in an ap-
proximate model solution of the transport equation.
For special cases the energy spectrum at the target sur-
face could be obtained; it showed deviation from the
infinite-medium value in a way consistent with the
present results. In particular, the authors showed for
these cases that the asymptotic slope of the half-space
spectrum, so in our notation, hes between 2—4m and
2 —2m. Since the equal mass case could not be treated in
that reference, a quantitative comparison to our results is
not possible.

C. Range seek current lishibutfiom

The range distribution is connected to the lowwncrgy
limit of the particle 5ux density divided by (Eo/E}'
cf. Eq. (42). Since the half-space density at the target sur-
face follows an asymptotic power law with energy with a
power so &1—2m, it follows of necessity that the range
distribution vanishes at the surface. It is essential to ob-
serve that the vanishing of the range distribution at the
target surface and the deviation of the energy spectrum
from the (Eo/E)1 2™dependence are intimately connect-
ed; each fact can be derived from the other.

The reason the range distribution vanishes near the
surface may be visualized in the following way: Particles
which come to a stop in the immediate neighborhood of a
free surface must have come from inside the target. They
must not travei too far, however, for once they trespassed
z =0 they have no chance to return. Therefore the prob-
ability that a pRrtlclc is stopped at tllc very surface z =0
is vanishingly small, and near to the surface, for z «0, it
is distinctly lower than in the infmite-medium analog,
where also particles coming froxn z ~0 may contribute to
the range distribution at z =0 or z ~ O.

The range distribution decays at the surface as x~,
0 g p ~ I; p is connected to the power of the asymptotic
energy spectrum so via Eq. (55): p=(1 —2m —so)/2m.
According to the discussion above, whenever surface
crossings are not essential, i.e., for high projectile mass or
dominant electronic stopping, p will be close to zero, and
the range distribution will steeply decline in the surface
region and may for practical purposes be approximated
by a jump at the surface. On the other side, when surface
crossings are essential, p will be larger and the range dis-
tribution will decline more gradually towards the surface.
Note, however, that R (x) always has an infinite slope at
x =O.

The current distribution which foHows asymptotically
a Iaw (Eo/E) ' for z+0, diverges for z-+0 in the half
space. The current distribution 4, describes the 5ux an
izotropy. While in an infinite medium, the 5ux anisotro-
py decays asymptoticaHy for E «Eo, it remains of the
same order of magnitude as the particle density 40 at the
surface of a half space. Since 4, is negative at the target
surface, more particles are emitted normal to the surface
than at oblique angles. Thus the angular spectrum of
particles emitted at low energies displays an overcosine
behavior. 2" 2'

41(z,E) changes its sign as a function of z: In the vi-
cinity of the surface, particles predominantly move out-
wards and 41&0, and deep in the target, particles tend to
move inwards, so 41~0. ' 1 Thus caution is required if
the spatial mean 41(E) is used as an estimate for the
magnitude of the 5ux anisotropy at the target surface.
This warning applies even more strongly when the
in5nite-medium value of 4, is used, since it will underes-
timate the importance of the 5ux anisotropy at the target
surface even more, cf. Eq. (35).

Reference 6 uses an image-type of argument to discuss
the surface efFect on the depositedwnergy distribution, ar-
guing that the particle density at the surface will vanish,
while the current will increase by a factor of 2 in compar-
ison with the in5nite-medium value. This picture obvi-
ously correctly reproduces the basic trends —at least
when the re5ection coefficient is high —as discussed
above and as is also observed in Fig. 2(a).

A number of attempts to estimate the effect of the tar-
get surface on slowing-down quantities employ an ingeni-
ous connection between the energy spectra (and the
slowing-down densities) of the half-space and the
in5nite-medium solutions. This relationship, which is
given in the form of an integral equation, is used to calcu-
late half-space quantities from a knowledge of the
in5nite-medium solutions; the latter are usually obtained
via a spatial moments method. This approach allows the
inclusion of realistic scattering cross sections and elec-
tronic stopping; it has been applied to the calculation of
re5ection coefficients, backscattering energy spectra, '

range distributions, and sputtering quantities. Howev-
er, no analytical result for energy spectra or range distri-
butions have been made available from these investiga-
tions. Quahtativeiy, the half-space range distributions
obtained via this method' alw'ays He below their in5nite-
me5um counterparts, in agreement with the conclusions
of the present paper. The behavior at the target surface



37

stopping follow's the E' behavior down to such low en-
ergies. ' In view of this uncertainty we refrained A'om

including electronic stopping in our description of low-
energy particle motion in matter. Some results on quali-
tative aspects have been given above.

The effect of the surface barrier on emitted particle
spectra is well known and it might easily be included in
the present calculations in the standard way. * ' Be-
cause the energy spectra displayed in this work are well
described by their asymptotic distribution as soon as
E 5 —,', Eo, measured energy spectra should follow a power

law E ' for U~~E ggEO (U is the surface binding en-
ergy). Apart from surface binding efFects, measured sput-
tered particle spectra follow a power law with energy
~E ", with n =2+0. l. It is, therefore„often concluded
that the value of m describing low-energy motion in
solids must be quite close to zero. We shall discuss these
matters further elsewhere.

The validity of the calculated half-space range distribu-
tions near to the surface seems to be more questionable,
since strong chemical and thermodynamical forces may
exist near there which are bound to distort the range dis-
tributions described here. We think, however, that when
studying the behavior of the range distribution near to a
surface, it is useful to start by describing the efFects of a
surface on the motion of energetic particles in matter,
and to include other forces in a second step.

Quite recently, a numerical assessment of the influence
of a planar surface barrier on the near-surface range
profile of light ions in matter was presented. i3 Since in
that case particles which tend to escape the solid with too
little perpendicular energy are reflected back into the
solid, the surface acts rather as a source of low-energy
particles than as a pure drain, such as is the case for a
free surface. Consequently, the range distribution in the
near-surface regions attain larger values than in the free
surface model, and it no longer holds that R (z =0)=0.

In the present communication, we obtained an analyti-
cal description for the eH'ect of a free surface on energetic
particle motion in matter. More quantitative details for a
number of realistic interaction cross sections, and taking
into account the effects of surface binding, as well as a
comparison to existing computer simulation work, will be
given elsewhere.

itself is diScult to investigate via a spatial moments
method, and the results presented in Ref. 12 show even a
nonzero probability for a projectile to be stopped outside
the target.

Very recently Luo and Wang published a numerical
calculation of the range distribution of light ions in
matter. 29 Their procedure is very different from the
present approach, in that they use a continuous slowing-
down approximation, separate the collimated and for-
ward scattered part of the incoming beam from the
difFusely scattered part, and take care to reach conver-
gence in their numerical scheme, rather than staying at a
P, approximation and looking for analytical results, as
we do. The range profiles plotted in that work all display
R (z =0)=0 at a free surface, in agreement with the
present results. Since the approach of Luo and Wang is
so different from the present one, and since on the other
hand those authors cared to use high-order approxima-
tions, we are satisfied that their data corroborate our re-
sults.

We refrain from a quantitative comparison of our re-
sults with those of other groups studying half-space range
distributions'2'2s for the following reasons. First, and
most important, the present approach is not meant to
yield quantitatively correct range distributions, but rath-
er to display the qualitative changes that a free surface is
bound to generate. The main reason for this restriction is
the inability of the Pi approximation to handle the bom-
barding direction po satisfactorily. Previous methods, in
contrast, aim at a quantitative description of range
profiles. 'z'2 Secondly, the cases where we can obtain an
analytical description of the inSnite-medium and half-
space range distributions, viz. , for hard-sphere scattering
cross sections in the equal mass case and neglecting elec-
tronic stopping, lie far outside the problems studied in
Refs. 12 and 29, which are interested in realistic scatter-
ing cross sections and light ions, and take into account
electronic stopping. We believe that the advantage of the
present approach resides rather in its analytical capabili-
ty than in its quantitative predictivity.

D. 0)thel fijllueaces

X. CONCI. USIONS

(1) The transport equations describing the slowing
down of an energetic particle in matter, and the genera-
tion and slowing down of recoil atoms, are solved in a I'&

approMmation for the case of a scattering cross section
cr(E, T) ~E,which obeys a power law in energy.

(2) Results for the range distribution and for the ener-

gy spectrum at the target surface are derived, both for an
infinite medium and a half space.

(3) The energy spectrum of particles backscattered
from a half space behaves asymptoticaHy as (Eo/E) '
where Eo is the bombardment and F. the ejected particle
energy (E &&Eo). The power so diff'ers from the infinite-
medium value; it is between the powers of the in6nite-
medium particle density, which is 1 —2m, and that of the

Electronic stopping has been entirely neglected in the
course of this work, although it definitely iidluences-
particularly at very high bombardment energies—
particle motion in matter. The elfects we discuss in this
paper, namely the low-energy asymptotics of emitted par-
ticle spectra and the shape of the range distribution at the
very surface, have their origin, however, in loiii energy-
particle motion. The value of the electronic stopping
power at not too low energies is known to scale as E'~2.
For pwer-law scattering, the nuclear stopping scales as
E' . Thus, for rn ~ —,', it is obviously justified to
neglect the e8ect of electronic stopping. In very-low-
energy motion, below& 100 eV, say, nuclear stopping may
be characterized by a power parameter m g —,', and efFects
of the electronic stopping on the magnitude of the
sputtering yield have been discussed. Experimental
data on electronic stopping in this regime are not avail-
able, but it seems highly questionable whether electronic
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infinite-medium current density, which is l —4m for
small m.

(4) The current has the same asymptotic energy depen-
dence as the particle density; thus the Aux remains aniso-

tropic at the very target surface even at very low energies
E. This is in contrast to the behavior in an inSnite medi-

um, where the angular distribution becomes isotropic.
(5) The range distribution declines to zero at the half-

space surface as xt', where x is the depth inside the target,
and 0&p~ l. p is closely connected to the asymptotic
slope so of the energy spectrum at the target surface.

(6) If the re6ection coeScient of the projectile is small,
e.g., for a high projectile repass or for dominant electronic
stopping, so is close to l —2m, and p=O. For a small

projectile mass, and negligible electronic stopping, the de-
viations from the in6nite-medium behavior are more pro-
nounced.

(7) The analogous results hold for the energy spectrum

of sputtered particles and the deposited-energy distribu-
tion.

(8) As an illustration, analytical results for half-space
and in5nite-medium range distributions and energy spec-
tra for the case of equal mass hard-sphere scattering with
the scattering cross section depending on energy like
E '~2 (m =—„') are derived. These are confirmed by a nu-

merical solution of the linear Boltzlnann equation via a
Monte Carlo simulation.

%CENO%I.ED@MENTS

Thanks are due to Bruce %interbon for drawing our
attention to Ref. 15. One of the authors (M.V.) acknowl-
edges financial assistance by the Deutsche
Forschungsgemeinschaft.

'J. Lindhard, V. Nielsen, and M. Scharff, K. Dan. Vidensk.

Selsk. , Mat. Fys. Medd. 36, No. 10 (1968); J. Lindhard, M.

Scharff, and H. E, Schigftt, ibid. 33, No. 14 (1963); J. Lin-

dhard, V. Nielsen, M. Scharf; and P. V. Thomsen, ibid. 33,
No. 10 (1963).

D. K, Brice, Ion Implantation Range and Energy Deposition

Distributions (Plenum, New York, 1975), Vol. 1; K. B. Win-

terbon, Ion Implantation Range and Energy Deposition Distri-
butions {Plenum, New York, 1975), Vol. 2.

3E. S. Mashkova and V. A. Molchanov, Medium-Energy Ion
Reflection from Solids (North-Holland, Amsterdam, 1985).

~P. Sigmund, Phys. Scr. 2S, 257 (1983).
5K. 8. %interbon, P, Sigmund, and J. B. Sanders, K. Dan.

Vidensk. Selsk. „Mat, Fys. Medd. 37, No. 14 (1970).
P. Sigmund, in Sputtering by Particle Bombardment I, edited by

R. Behrisch (Springer, Berlin, 1981),p. 9.
~K. B.Winterbon and J.B.Sanders, Radiat. EN'. 39, 39 (1978).
~D). K. Brice, Nucl. Instrum. Methods 8 17, 289 (1986).
9J. Bgfttiger, J. A. Davies, P. Sigmund, and K, 8. Winterbon,

Radiat. EN'. 11,69 (1971).
' U. Littmark and A. Gras-Marti, Appl. Phys. 16, 247 (1978).
~ ~M. Imada, J. Phys. Soc. Jpn. 45, 1957 (1978).
'2S. Fedder and U. Littmark, J. Appl. Phys. 52, 4259 (1981).

U. Littmark and G. Maderlechner, in Physics of Jonized Gases,

Book of Contributed Papers, edited by B. Navinsek (J. Stefan

Institute, Dubrovnik, 1976), p. 139.
'"M. M. R. Williams, Prog. Nucl. Energy 3, 1 (1979).
'5K. 8. Winterbon, Radiat. Eff. 39, 31 (1978).
'6G. Leibfried, Bestrahlungsegiekte in Festkorpern (Teubner,

Stuttgart, 1965); D. K. Holmes and G. Leibfried, J. Appl.
Phys. 31, 1046 (1960).

iiP. Sigmund and J. B. Sanders, in Proceedings of the Interna

tiortal Conference on Applications of ion Beams to Semicon
ductor Technology, edited by P. Glotin (Editions Ophrys,
Paris, 1967), p. 215.

~88. Davison, Neutron Transport Theory {Oxford University
Press, London, 1957); K. M. Case and P. F. Zweifel, Linear
Transport Theory (Addison-Wesley, Reading, 1967).

~9I. %aller, Ark. Fys. 37, 569 (1968).
2 U. Littmark and P. Sigmund, J. Phys. D 8, 241 (1975); H. E.

Roosendaal, U. Littmark, and J. B.Sanders, Phys. Rev. 8 26,
5261 (1982).

2iM. M. R. Williams, The Slowing Down attd Thermalisation of
Neutrons (North-Holland, Amsterdam, 1966).

2zHattdbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Natl. Bur. Stand. , Washington
D.C., 1965).
M. Uicanek and H, M. Urbassek, Nucl. Instrum. Methods 8
(to be published).

~~K. T. Waldeer and H. M, Urbassek, Nucl. Instrum. Methods
8 iS, 518 (1987).

2~K. T. Waldeer and H. M. Urbassek, Appl. Phys. A 45, 207
(1988).

26M. Urbassek, Nucl. Instrum. Methods 8 4, 356 (1984); 6, 585
(1985).

27M. M. R. Williams, Philos. Mag. A 43, 1221 (1981).
I. Lux and I. Piszit, Radiat. EN'. 59, 27 (1981}.

2~Z. Luo and S. Wang, Phys. Rev. 8 36, 1885 (1987).
3OM. M. Jakas and D. E. Harrison, Jr., Phys. Rev. 8 32, 2752

(1985).
3~P. Sigmund, Nucl. Instrum. Methods 8 27, 1 (1987).
32M. %'. Thompson, Philos. Mag. 18, 377 (1968).
33Z. Luo (unpublished).


