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Theory of free-bound transitions in channehng radiation
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On the basis of a single-string model, we derive formulas for the transition strengths of free
bound transitions of axially channeled electrons. %e illustrate the theory by numerical calculations
of these strengths for 3.5-MeV electrons in Si. Experimental evidence for such transitions has been
obtained previously [J.U. Andersen et al. , Nucl. Instrum. Methods 194, 209 {1982)]and is in good
qualitative agreement w'ith our calculations.

I. IN I.Q,GDUcmxQN

In the present study, we will consider a type of radia-
tion which conceptually is intermediate between the
well-known phenomena of coherent bremsstrahlung and
channehng radiation, namely, the radiation given ofF dur-
ing transitions of charged leptons from a free to a bound
state of transverse motion as a leptons traverse a crystal
in one of its channels. We will refer to these as "free-
bound (fb) transitions" and shall calculate here the transi-
tion strength (or radiation intensity) corresponding to
these transitions. No such calculations appear in the
hterature, while the related radiation effects of coherent
bremsstrahlung [corresponding to free-free (ff) transi-
tions] and of channeling radiation fcorresponding to
bound-bound (bb) transitions] have been the subject of ex-
tensive previous investigation.

The physics of the radiation emitted by charged lep-
tons (i.e., electrons or positrons) while traversing a crystal
has a long history. Ordinary bremsstrahlung of leptons
interacting with an isolated atom of matter gets modiffed
if the atoms are arranged in a crystalline structure, and
interference effects appear, as first pointed out by Willi-
ams. The ensuing phenomenon of "coherent brems-
strahlung" was studied theoretically by Uberall using the
Born approximation, and the effect was subsequently
verified experimentally by Diambrini. 6 Coherent brems-
strahlung furnishes an intense source of quasimono-
chromatic radiation which is tunable and linearly polar-
ized to a high degree. Sources of this radiation were set
up at a number of electron accelerator laboratories and
were used to carry out nuclear physics experiments.

The regular array of lattice atoms gives rise to geome-
trical "channels" in a crystal, and charged particles
traversing the crystal may become trapped in such a
channel, due to the screened Coulomb forces exerted on
them by the atoms of the crystal planes {"planar channel-
ing") or axes {"axial channeling" ).' Positively charged
particles will be channeled between planes or axes, while
negatively charged particles will be trapped along a plane
or an axis, carrying out classically an oscillatory motion

around an equilibrium position of their transverse motion
in the channel. Kumakhov" predicted that this oscillato-
ry motion gives rise to another type of radiation, the so-
called "channeling radiation. "' The existence of this radi-
ation was experimentally confirmed by Berman et al. ,

'

and it was shown later by Andersen et al. ' that coherent
bremsstrahlung and channeling radiation can be con-
sidered as but two diff'erent aspects of one and the same
underlying physical process.

A connection between the two phenomena can be es-
tabhshed by describing the motion of leptons in the crys-
tal in a fashion that separates their longitudinal motion
relative to a (planar or axial) crystal channel from their
transverse motion (the latter being nonrelativistic even at
very high energy, provided the total momentum points
sufficiently closely along the direction of the channel).
While the longitudinal motion of the lepton is essentially
free, the transverse motion relative to crystal planes or
axes (which, to a good approximation, may be considered
as being continuously charged planes or continuously
charged "strings, " respectively'o) is then that of a
charged particle bound by these planes or axes. Quantum
mechanically, the leptons in the potential of the planes or
strings possess a series of discrete bound levels followed
by a continuum at higher transverse energies. The in-
cident lepton beam populates both the bound and the
continuum states in a way that depends sensitively on the
angle of incidence, and subsequently radiative transitions
of the leptons from higher to lower states take place
spontaneously.

The radiation emitted by leptons transitioning from a
bound state to a bound state (bb transitions} corresponds
to "channeling radiation" proper, as predicted by Kuma-
khov" and observed by Berman et al. ' The radiation
from free-free (ff) transitions, i.e., from one continuum
state to another, is identical with "coherent bremsstrah-
lung" as described by Uberall (without considering
tl'ailsverse binding effec'ts) aiid observed by Dlambrinl
et a/. ' In addition, there will be radiative transitions
leading from a continuum state to a bound state (fb); the
corresponding radiation has alternately been classi5ed as
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II. %AVE FUNCxiONS AND Ibm'xNSKTV FOKMUI. AS

Thc translf10n probabllltlcs of radlatlvc. fb trallsltlolls
of axially channeled electrons in crystals will be calculat-
ed here on the basis of the following simple model, which
should be accurate enough for an exploratory theoretical
investigation of the phenomenon. The initial electron
wave function is taken to be a free plane wave gf, and the
final electron is assumed to be transversely bound in the
field of a single continuous string along the axis, with
wave function g&. This approach ignores the Bloch-
function nature of P& in a periodic crystal, but is results
are the same as those which would be obtained by taking
gb as the product of a longitudinal plane wave and a
transverse Bloch function given by the lowest-order
tight-binding approximation. For comparison purposes
we will also derive corresponding formulas for bb transi-
tions uslQg the same model.

The initial- and final-electron wave functions are ap-
proximated by

and

ipr
O' PQ

E+m
(la)

1g„(r)=I.
E'+m

2E'
Q lP zt„,(rl)e '

CF poQ

E'+m

(lb)

respectively. Here I, is the length of the string; E, E' are
the initial and Snal-electron energies, and rn is the elec-
tron mass; p is the initial electron momentum vector and
po= ( —& Vg,pg ), thc subscllpt j. denoting a colllpollcllt
transverse to the z axis and p, the z component of the

channeling radiation (third reference of Ref. 12} or as
coherent brernsstrahlung but it actually should be
viewed as being in a separate class.

This fb radiation has been observed experimentally. '

It can be distinguished from bb or ff radiation by the vari-
ation of its energy with the angle of incidence of the lep-
tons relative to a crystal plane or axis, which is essentially
angle independent for bb transitions, approximately
linear for ff transitions, and approximately quadratic for
fb transitions. ' The radiation from fb transitions has
been recorded experimentally, ' and on a three-
dimensional plot of intensity versus both photon energy
and angle of incidence, it appears in the form of charac-
tcrlstlc horscshoc-shaped rldgcs of lowcl height, located
in front of towering bb pinnacles and opening up away
from the latter (see, e.g., Fig. 9 of the second reference of
Ref. 13, reproduced below}. While as mentioned, theories
for ff and bb radiation intensities are available, no theory
for fb transitions seems to appear in the literature except
for one radiation-intensity calculation for planar channel-
ing of 4-MCV electrons in Si (first of Ref. 13). In the fol-
lowing, we shall provide such a theoretical calculation of
fb-transition intensity in axial channehng based on a fair-
ly simple model. A preliminary account of this work has
been given previously as a conference report. ls

6nal momentum. Moreover, the transversely bound ~ave
functions t„l(rl)are of the form

t„r(rl)=(2') 'i e'~R„I(p), (2a)

where p:—
~
rl

~

and 4 are polar coordinates in the rl
plane. These wave functions satisfy the Schrodinger
equation for transverse motion in the string potential
V(rl):

—(1~2E}~~lt I(rl}+V(rl }t i(rl}=e It I(rl }

where E and e„lare related by

E —m —p,2 2 2

&nI =

(2b)

(3a)

in the present approximation. This means that the state
t„l(rl}can be populated only if the initial momentum p
is appropriately chosen. We normalize t„&(rl)as follows:

fnI fy Iy=l .

The differential intensity of radiation emitted in the fb
transition is

L dp,
'

d1, =2~a(E E' k)k—
~
a~—2'

~

2

(2~)3 2m'
(4a)

where A, =1,2 labels the photon polarization direction,
k= ~k~ is the photon energy, and the absolute value
squared of the pertinent matrix element of the interaction
Hamiltonian is

(4b)

with e'= —„',and

Jz ——J gb(r)(a el )'e '"'ff(r)d'r . (4c)
crystal

Here, e~ is the photon polarization vector and
c ((xl I22 IK3 ), each a, being the usual Dirac matrix.

III. KINEMATICS

(p 2+~ 2
)I /2 (Sb)

and where the transverse energy El(pl } is nonrelativistic,
being given by

We vrill assume that the initial direction of the electron
is almost parallel to the crystal (z) axis, so that 8«1,
where 8 is the angle between P and 2 In addition, we will
assume that the photon is emitted in a direction close to
forward (k, =k cos8k, 81, «1), which is usually the case
for y=E jm ~~1, and that its energy lies in the lower
part of the spectrum (k «p), which is also the case for
coherent bremsstrahlung and for the prominent peaks of
channeling radiation. ' ' One can then approximately
separate the electron energy into longitudinal and trans-
verse parts:

(Sa)
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ps pz+k ~

E=E'+k .

(7a)

(7b)

Solving Eq. (3a) for the final-electron energy and using
the above-mentioned approximation yields

(8a)

so that
2

E,+ ~E,'+fE'+k .Px

This leads to

(pi/2E)+ I &.i I

1 —P,k,

where P, =p, /E, . This expression is essentially the

for free electrons, while for bound electrons (e.g., bound
by a single string), Ei(pi) must be computed numerically.
Under the further assumption that ki/k «1/y (satisfied
if 8„«250mr for 2 MeV, «100 mr for 5 MeV, «25
mr for 20 MeV, or «10 mr for 50 MeV electrons, re-
spectively), one finds the photon energy (in the laboratory
system) of the transition '

k=2y (E E' )—, (6)

an equation ffrst derived by Andersen et al. '3 which is
valid for fb, bb, and ff' transitions.

An alternative derivation of the fb transition energy
can be given which is speciffcally tailored to such transi-
tions. In this derivation, w'e use Eqs. (la} and (4a) to infer
the energy and momentum conservation equations

same, within our approximation„as Eq. (6), see below.
Knowing the bound or continuum-state energies of a

lattice string, Eq. (6) provides the photon transition ener-
gies as functions of the angle of incidence 8, supposed
sufficiently small in the following. The characteristic
variation of these energies with 8 clearly identiffes a given
transition peak as corresponding to an IF, fb, or bb transi-
tion. Indeed, bb transitions yield photon energies which
are essentially angle independent, since here both values
of Ei in Eq. (6) are then essentially the constant (or
narrow-band, for the case of Bloch functions) initial and
ffnal bound-state energies. On the other hand, fb transi-
tions from initial states of sufficiently high transverse en-
ergy show a parabolic dependence on 8, since such initial
energies are well approximated in the laboratory system
by13

Sl
Ei(pi) ns + Uo, (9a)

2$Pl

pi —=
~ pi ~

=p sin8 p8, where Uo is the average lattice
potential caused by the overlap of neighboring string po-
tentials, while Ei is the constant energy of the bound
ffnal state. Finally, ff' transitions, i.e., coherent brems-
strahlung proper, yield photon energies depending ap-
proximately linearly on 8, since k is proportional to the
difference of the initial and final transverse energies Ei
and E'i, respectively, and each of these energies depends
on 8 in an approximately quadratic fashion, as in Eq.
(9a).

Figure 1 presents an example of such a de endence of
fb and bb transition photon energies on 8. ' The ffgure
corresponds to electrons of 3.5-MeV kinetic energy, in-
cident roughly parallel to the ( 100) axis of Si, making an
angle 8 with this'axis. Table I shows the experimental en-
ergies' of the five transversely bound states (in the labo-
ratory system} that exist in this case; the corresponding

I I I l

-0.4' &.3' ~24 0 )4 0.14

28 2p sd 2p

I

0 QO

I I l

Q.4' 8
FIG. 1. Calculated laboratory photon energies as a function of the angle of incidence 8 of various free-bound and bound-bound

transitions as indicated, for the case of 3.5-MeV electrons incident close to the (100) axis in Si. For the fb transitions, an empirical
average lattice potential Uo ———13.9 eV I',in the lab system) was used.
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TABLE I. Experimental {column 1) and theoretical {colujnns
2 and 3) bound-state energies of transverse motion in the labora-
tory system for 3.5-MeV electrons incident close to the (100)
axis of a Si crystal {superscript SS and MB indicate theoretical
level energies obtained using single-string and rnultibeam poten-
tials, respectively).

Bound state

282
+Uo+ I«l

2/m

hence, k is parabolic in 8 for 8&~1, as is the case here.
Equation (9) which follows from Eq. (6), agrees with Eq.
(Sc) as mentioned, if the empirical average lattice poten-
tial Uo is introduced in Eq. (Sc) also.

1$

Zp

2$
3d
3p

—43.0
—16.2
—10.6
—6.5
—4.1

—42.81
—13.77
—7.07

—43.28
—16.12
—9.95

IV. CALCULATION OF TRANSITION
PROSASIX.ILIES

average potential in the lab system is Uo= —13.9 MeV.
The figure shows the calculated parabolic 8 dependence
of the energy k of the fb photon transition to the ls, 2p,
2s, 3d, and 3p states, as well as the 8 independent 3p-ls,
2p-ls, 3d-2p, and 2s-2p bb transition energies. From Eqs.
(6) and (9a), the fb energy is given by

The transition probabilities can be calculated for fb
and bb transitions in a unified way. Consider first bb
transitions. In this case, J~z in Eq. (4c) is replaced by Jz,
defined by the latter equation, but with the transversely
bound initial and final states QI„it}}I, [approximated by Eq.
(lb} and an analogous equation] replacing ttIf and ttII„re-
spectively, in Eq. (4c):

E'+m
2E'I. fd'r, fdr

C

, , q„i(r,) (a «,*)e-'"'
O' 'PoQ

E'+m
O' 'PoQ

E+m

IP z
y„i(r,)e '

where po is as before. Hence,
' j/2

2% E+m E +m
L 2E 2E'

' 1/2
i&, r, , —t, rr'(POtn'I')

5(p, ~',
'

k, ) d rl—e ' '(u') O':I E 0'nI .
pou

E+m
(11)

By comparing the wave functions ttIf and ttI& of Eqs. (la) and (lb), it is seen that the fb transition matrix element JI, of
Eq. (4c) can be obtained from the bb matrix element J" of Eq. (11)by the substitutions

PO~P s (12a}

(12b)

This will permit us to obtain the fb matrix element from the calculated bb matrix element.
Continuing with the calculation of the latter, Eq. (11),we find by using

(13a}

' 1/2 ' 1/2
217 E +Irt E +Irt g g

L 2E 2E' Pz —Pz z

I, Po+ .( 2. XPo) (Pog. i)' "i.+ l(Po4. I )'X«2. 1
X d ri e ' '(u') q„'I(ri) q„i(ri)+8+m E'+m

(13b)

%e now define the matrix elements

—l kj I'gI 'I, I(&i)= d rJ. e m 'I'(rl)pdP I(rl}

2I'„,„i(ki)= d rie gn'. I.(ri)(po —it)q„i(ri),

1I.«qi)= fd"ie ' '
vi i(r»

(14d)
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The substltutloiis of Eqs. (12), wliicli tl'ansforin Ji iiito

J&, then entail

I„i „i(&i)~(p/L)I„i(qi), (15a)

I„'i „i(&i)~(q/L)l„i(qi). (151)

It is now straightforward to evaluate the integral I i
in

Eq. (131) which corresponds to the term with denomina-
tor 8+m; it is

f = I[(u') u]ei I„,, „,
1 E +pl

For evaluating the second integral with denominator
2E'+ m, we use partial integration, which leads to

Q 'Q Ep
2 E'+m

+i[(u') cru ] (I'„,„,&&a „')
I .

+i[(u') cru] (ei XI„,, )I . (16a) Accordingly,

' 1/2
2m 8+m' =L 2E

E'+m
2E'

' 1/2

5(p, —p,
' —k, )

~i In'i'. n&+'~ (~i. Xln I'ni) '&i. '1«'I' «i
—&&'(&i. &&I i i)

X(u')
E+m E'+m (17a)

ext we average
I Ji. I

over initial electron polarizations and sum it over final electron and photon polarizations,
since at this point we are not interested in studying polarization elrects. The result is found to be

Jbi 2 4ir E+m E +m, I In'i', ni I I
I'n I , ni I

''2Rek I 'i', nl nIn rn'i',
(E+m ) (E'+m ) (E+m)(E'+m)Np, —p,

' —k, )

~e now proceed «evaluate the cross section of the transitions. This is obtained from di, Eq. (4a,), by droppjng the
fa««k, and dividing by the incident electron current, which is p, /L . Expressing the energy-conservation g function
in a well-«own way in terms «one containing 5(k —k„&), with k«given by Eq. (Sc) and carrying out the appropriate
integrations, one has

L i I i'
I
I ~ ~

I

—2R k I' ~ k I'
~

E + I «'I nl I Ei+ I n I'.«l
—

n I', nl n'I', nl
k ~ P —q,

From this, and making the substitutions in Eqs. (15), one can now obtain the free-bound cross section:

k I~ i(q ) I' E'+ E+
L d0k 4m pE' 1 (& /E')g E+m E'+m

(18a)

(18b)

In view of the presence of the factor 1/L on the left-
hand side of Eq. (181) and of the fact that the corre-
sponding right-hand side is independent of L, the quanti-
ty (1/L)(dna, /d0k) can be interpreted as the cross sec-
tions per string of length L. However, (1/L)(d ebb/d 0k )

in Eq. (18a} cannot be interpreted in this way, since the
corresponding right-hand side is proportional to I.2. The
source of this diSculty is that here the initial state is
transversely bound, while cross sections are usually
defined with respect to an incident plane wave. Physical-
ly, there is such a plane electron wave externally incident
on the crystal; when penetrating the latter, it will popu-
late the various transversely bound levels in a well-
de6ned fashion, and the excited bound states will then
undergo transitions to lower levels, as described by Eq.
(18a). In order to obtain the experimentally measurable
cross section for bb transitions due to incident electrons,
one has to multiply each dobb by the corresponding
initial-state population. This will be done in the follow-

ing.
The incident wave function is the same plane wave gf

for both fb and 11transitions; in the latter case, however,
it first populates bound states f&(n, l) which in turn tran-
sit radiatively to appropriate lower-level bound states.
The population of the former bound states is given by

Il„i——I A„iI
(19a)

A„i——f gi, (n, l)gf d r .

By Eqs. (la), (14c), (19a), and (19b)„wefind

, Ii.i(pi} I'.
L 2

(19c}

Accordingly, the experimentally relevant cross section
for the bb transitions induced by the incident plane wave
of Eq. (1) is
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) I„.i „i(ki)j +, ~

I„'i„i(ki)
~

—2Rek.l„i„i(ki)k.l'„i„i(ki)E+m E'+n (19d)

from which the factor I. has disappeared. This equation
is on a par with the fb cross section given by Eq. (18).

V. NUMERICAI. EVAI.UATION AND COMPARISON
WiiH EXPERIMENT

Experiments demonstrating the presence of free-bound
transitions in axial channeling radiation were carried out
by the Aarhus group (see the second of Ref. 13). Their
results are shown in Fig. 2, reproduced from that refer-
ence. They are presented as a graph of the laboratory
photon spectra, plotted both versus photon energy k and
angle of incidence 8 of a 3.5-MeV electron beam with the
(100) direction in a 0.3-ym (top of the figure) and a 2-

pm (bottom) Si crystal.
The experimental maxima or "mountain ridges" in this

graph are seen to follow the kinematicaI reiations shown
in Fig. 1. The high ridges that also contain a pair of
peaks symmetric about 8=0 correspond to bb transi-
tions, and lie above the constant-k lines of Fig. 1, while
lower, horseshoe-shaped ridges opening up away from
the bb ridges represent the fb transitions, which lie above
the parabolas of Fig. l. Actually, only the f~ ls transi-
tion is clearly visible, but some indications of the f~&p
and other higher fb transitions are present, especially in
the upper part of Fig. 2.

In Fig. 3 we compare the theoretical and experimental
fb kinematics. The experimental Aarhus ridges are
shown as a shaded band for the 3p ~ ls transition and as
a dashed line parabola for the fels transition. For
Uo ——0, the solid theoretical f~ ls curve would have its
vertex rest on the short horizontal dashed line at k =5.30

10—
CP

eveRQ
A'el')

4 -0.2
p (deO

~g614 3p ts

/. .
/.

'

l.
'

~ X f-2p~~ .
~ ~ ~ ~ ~~ Q ~~ ~ ~ ~ ~ ' ~&L

VrY7&AYr j

' ~ ~ ~, , ~

I I I I I I I

-0.4 -0.3 -0.2 -O.l 0 O.l 0.2 0-3 0.4

8 (deg)

FIG. 2. Photon spectra in the laboratory, plotted both vs

photon energy k and angle of incidence 8, as observed experi-
mentally by the Aarhus group, second reference of Ref. 13.
They @vere obtained with 3.5-MeV electrons incident at an angle
8 with a (100) axis ln a 0.3-pm (top) and a 2-Ism (bottom) Sl
crystal.

FIG. 3. Angular dependence of the photon energy in the lab-
oratory for 3.5-Me electrons incident at an angle 8 with the
(100) axis in a Si crystal. Dashed line: experiment and multi-

beam calculation, f~ ls transition. Solid line: parabolic ap-
proximation Eq. (9a) for fels transition. Dash-dotted line:
approximation for f~2p transitions obtained by shifting
dashed curve inside crossover points and solid curve outside
crossover points by 2y (e» —e»)=3.35 keV. Dotted line: Ap-
proximation for f~2s transition obtained by shifting dashed
curve inside crossover points and solid curve outside crossover
points by 2y~(e&~ —e&, )=4.11 keV. Shaded band: Experimental

3p ~ 1s bb-transition line.
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kcV %'hj.ch represents the continuum boundary. TIM
theoretical wings of the parabola would then lie consider-
ably above the experimental values. Introduction of the
prevailing average lattice potential Uo ———13.9 eV re-
moves this discrepancy in the wings, requiring however
some Aattening out around 8=0. %'ithout such a fiatten-
ing out, the f~2s and higher fb transition energies
would dip below k =0 at the centers of their parabolas
(see Fig. 1). In fact, the angle dependence of the photon
energy obtained from a many-beam calculation (see Fig.
10, second of Ref. 13) shows that the photon energy for
8=0 is underestimated by Eq. (9a) by 1.31 keV. The
inadequacy of Eq. (9a) near 8=0 is not surprising since it
was derived under the assumption that the transverse ki-
netic energy of the electron is large enough so that the
crystal potential may be treated as a perturbation. For
E=4.011 MeV and Uc = —13.9 eV the condition
T~~

~
Uc

~

requires
~

8~ ~~0. 15. From Eq. (3}itisseen
that the solid parabola given by Eq. (9a) and the dashed
experimental curve (which closely coincides with the re-
sult of a multibeam calculation which was carried out in
the second of Ref. 13) intersect at 8=0.25'. Thus by us-

ing the dashed curve for
~
8

I
&0.25' and Eq. (9a) for

~

8
~

& 0.25' one obtains realistic values of k for small an-
gles, and one has a good approximation for large angles
and a smooth transition between the two regions. The
angular dependence of k thus defined was used in our cal-
culation of the f~ ls spectra. For the f +2p and f—~2s
transitions„photon energies used were as indicated in Fig,

or, still to good accuracy (a few percent for the larger
values of 8 in the Sgures}:

1 «ib e 2k 2

E+ I ni qi
&lit

Using Eqs. (2a) and (14c), we obtain:

( 2~ )
1/2e il (4 —m/4 i—

JI 0xP R~t PP P (21)

3. These curves were obtained by shifting the f~ ls an-

gular dependence down by 2y'(ez —e» ) and
22y (e2, —e„},respectively, these level difFerences being

given by the multibeam calculation (see below).
For our calculation of the fb strength Eq. (18b) was

used, assuming k~~p throughout. Although we used the
exact Eq. (18b), it is instructive to note its approximate
form for k~~p, 8 &&1, and k &&E as it was the case for the
Aarhus experiment, since then a clearer view of the
dependence of the cross section on its various variables
emerges. One Snds in this approximation:

E 2k'
L, dQk &

4mp E+m —k E —k 1+(2k jp)+82

(20a)

Si & &GO&

].2 'l.0 0.8 0.6 0.4 0.2 0.4 0.6 0.8 1.0 1.2

20-
DQYI E

POTE
CALCULAT

POTENTIAL;
TED LEVELS
V

x =MEAS
LEVE

FIG. 4. Doyle-Turner string potential and corresponding calculated levels 4,'left-hand side); Aarhus potential and resulting calculat-
ed ieve1s (right-hand side) for 3.5-MeV electrons incident close to the {100) axis in a Si crystal.
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where the inconsequential phase 4 is the polar angle of
qi in the ri plane.

We evaluated the radial wave function R„I(p)numeri-
cally by solving the radial Schrodinger equation corre-
sponding to Eq. (2b) with suitable string potentials
V(

~ r,
~

) = V(p). An appropriate single-string potential
for Si is given by Eq. (21) of the second reference of Ref.
13, with the parameters listed in Table I of that reference
(we adopted the first set of their parameters a, , b, , and
p=0. 1 A). This is the Doyle-Turner potential, shown on
the left-hand side of Fig. 4 together with the energy levels
obtained from our solution of the transverse Schrodinger
equation. These levels are also sholem in the column 1a-

beled e'„'I in Table I. The right-hand side of Fig. 4 shows
the continuum potentia1 due to the entire crystal in the
direction towards the nearest-neighbor string (scaled to
3.5 MeV from the second reference of Ref. 13). Solving
the Schrodinger equation vnth this potential yields the
energy levels shown on the right-hand side of Fig. 4 and
in the column e„l in Table I. It is seen that the lowest

(ls} level predicted by both potentials is in close agree-
ment with the experimental value, but that in general, as
expected, the levels due to the multibeam potential devi-
ate less from the experimental values e'„*Ii'than those cor-
responding to the single-string potential. ("Absolute" ex-
perimental values e'„sly were obtained from the experimen-
tal transition energies of the six:ond reference of Ref. 13
by normahzing with Uo}.

With the wave functions thus obtained, we evaluated
I„Iof Eq. (14), and subsequently the forward cross section
(do/dQk)o/L(e /4n) of Eq. (20b) for all three transi-
tions investigated. The dashed lines (labeled Sl, 2, 3)
shown in Fig. 5 correspond to the results based on the
single-string potential, the solid lines (labeled M 1, 2, 3) to
those using the multibeam potential, which we took from
the second Ref. 13 in scaled numerical form, using it as
an efective, realistic potential for our single-string calcu-
lation. In order to facihtate a better coinparison of these
results with those in Fig. 2, we depict the same result on
a three-dimensional graph above the k-8 plane in Fig. 6,
where the curves of (der /d Qk )rr/I. (e /4m ) are plotted in
the form of horseshoe-shaped ridges as in Fig. 2. The
quahtative agreement of our calculation with the experi-
ment is evident if one observes that the two extra peaklets
on both sides of 8=0 in Fig. 2 actually do not belong to
the f~ ls ridge, but rather to the 3p ~is bb transition
which kinematically overlaps the f~ls parabola near
8=0 (see Fig. 3}. The f~ls horseshoe ridge is rather
smooth in this region; in contrast, the f~2p ridge goes
through a null at 8=0, and the f~2s ridge through a
null at 8=+0.1'.

By inspecting these results, it becomes evident that
more experiments, carried out with better resolution, will
be needed in order to allow a quantitative comparison
with theory. On the theoretical side, we are now extend-
ing our approach to a calculation of the bb transition
spectra given by Eq. (20b), in order to el'ect a comparison
with the experimental bb ridges of Fig. 2 with the same
single-string model used here for the fb transitions. In
addition, a calculation of the polarization of fb and bb ra-
diation is in progress.

0.8 x 10-6" T=3.5 MeV

2 x 10-9
0.1

I I I I

0.2 0.3 0.4 0.6 0.6 0.7

FIG. 5. Forward photon intensity for f~ ls (curves Ml and
S1),f~2@ (curves M2 and S2), and f~2s (curves M3 and $3)
transitions of 3.5-MeV electrons incident at an angle 8 with the
(100) axis of a Si crystal. Solid curves (Ml, M2, M3): results
based on multibeam potential. Dashed curves (S1,52, S3}: re-
sults based on single-siring potential.

)6—0.

FIG. 6. Data of Fig. 5 plotted above the kinematic parabolas
of Fig. 3, in order to facilitate comparison with the experimen-
tal results shown in Fig. 2.
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Free-bound transitions in coherent bremsstrahlung-
channchng radiation pl ocesscs %'ere obscrvcd, cxpcnmcn-
tally, " but (with one exception for planar channehng)
have hitherto not been analyzed theoretically. In this
work, we have obtained analytic expressions for the spec-
tral intensities of the photons emitted by axially chan-
neled electrons, as well as for the analogous quantities in
bound-bound transitions to which they may be com-
pared. Numerical calculations have been carried out in

order to obtalI1 qllantltatlvc I'cslllts for thc pllotoII llltc11-

sities of speciSc transitions; the results are in good quali-
tative agreement with the available experiments.
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