
PHYSICAL REVIEWS 8 VOLUME 37, NUMBER 13

Relaxation and equilibrium of a spin system coupled to a radiation Held

M. Matti Maricq
Department of Chemistry, Broion Uniuersity, Pnmidence, Rhode Island 029I2
(Received 28 September 1987; revised manuscript received 4 December 1987)

The paper presents a Geld-theoretical view of the long-time evolution and equilibrium properties
of a large number of mutually coupled spins subject to an external radiation 5eld, and contrasts this
view to the usual semiclassical approach. It is showa that the semiclassical approach breaks down

at long times because it has no provision for the spins and radiation Seld to equilibrate to a common
temperature. The Geld-theory vicar predicts that a macroscopic collection of spins will relax to the
temperature of the radiation Seld much in the same way that a spin system equilibrates with pho-
nons in spin-lattice relaxation. This idea is used to explain the saturation of magnetization observed
experimentally after long times in the ol'-resonance irradiation of a dipole-coupled spin system, a
phenomenon not satisfactorily described by conventional average Hamiltonian methods. The satu-
ration rate is calculated and compared to experiment. The theory predicts that a critical Seld inten-

sity is required for the saturation elects to occur.

I. IN'f ROBUST:I'aON

In their book, Nuclear Magnetism: Order and Disor
der, Abragam and Goldman' discuss a problem they call
the "Magnus paradox. " It arises for the following
reason. On one hand, the existence of a spin tempera-
ture in the rotating frame is well established, providing
insight into phenomena ranging from cw spin locking to
cross polariztttion. 4 On the other hand, the average
Hamiltonian theorys (AHT) is a powerful and well-
known tool for analyzing magnetic-resonance spectra ob-
tained under multiple-pulse and a variety of other forms
of irradiation. Yet, combining these two ideas to predict
the long-time evolution of spins subject to radio-
frequency irradiation in some situations leads to contra-
dictions with experiment. It is the purpose of this paper
to address this issue from a field-theoretical view of the
radiation field. Comparison of this view to the semiclas-
sical approach will clarify the difficulties described by
Abragam and Goldman. '

The advent of multiple-pulse spectroscopy, and oth-
er experiments using complex forms of rf irradiation,
brought with it extensions of the spin-temperature hy-
pothesis from the rotating frame to toggling and other in-
teraction frames. The standard semiclassical description
of these experiments produces a time dependent, noncon-
servative spin Hamiltonian, one not suitable for the appli-
cation of thermodynamic principles. The AHT provides
a prescription for Snding a time-independent effective
Hamiltonian I, under which the evolution of the system,
when observed stroboscopically, mimics the true evolu-
tion of the system. The accuracy in the predicted
magnetic-resonance spectra con6rms that the ART accu-
rately describes the short-time dynamics of the irradiated
spin s.

The situation at long times is less clear. Pines and
Waugh combine the AHT with spin thermodynamics to
determine the dipolar spin temperature of a spin system
irradiated by a phase-alternated sequence of resonant

pulses and obtain predictions agreeing with experimental
values. Similarly, Quiroga et al. 'o investigate the efFect
of adiabatic variation of the pulse angle in the Waugh,
Huber, and Haeberlen" (WHH) pulse sequence on the
final dipolar spin temperature and Snd agreement be-
tween the spin-thermodynamics-AHT predictions and
experimental results. For other experiments, however,
the theory is not so good.

In a series of experiments on pulsed-spin locking in a
crystalline samPle of CaFz, Erofeev and co-workers'z '

Snd that the experimentally measured magnetization ap-
proaches the "equilibrium" value predicted by the spin-
thermodynamics-AHT theory at intermediate times, but
then decays over longer times. In addition to this experi-
ment, Abragam and Goldman' describe a nonpulsed ex-
periment for which the spin-thermodynamics-AHT ar-
guments also lead to incorrect conclusions. They consid-
er a dipole-coupled spin system irradiated by a weak cw
Seld far above resonance. As in the experiment of Ero-
feev and co-workers, '2 ' the spin system approaches
over intermediate times the "equilibrium" state predicted
from an apparently straightforward use of the AHT, but
then continues to decay over longer times. The paradox
exists because one obtains via the Magnus expansion' a
conservative model of the system; yet it fails to predict
the correct equilibrium state.

Previous measures to resolve the "Magnus paradox"
have retained the semiclassical perspective. Provotorov
and coworkers'6 's abandoned the AHT. Instead they
transform the pulsed-spin-locking Hamiltonian into a
toggBng frame and use time-dependent perturbation
theory to obtain satisfactory agreement with experiment.

I have subsequently shown that the AHT is not funda-
mentally at fault; it is the transformation that provides
Provotorov and co-~orkers the improved agreement with
experiment. ' ' The AHT can lead to poor results for
two reasons 2. (1) It is becoming clear that the Magnus
expansion generally does not converge, 23 zs and (2) spin
thermodynamics can be applied to H only under certain

Qc 1988 The American Physical Society



M. MATTI MARICQ

%(t)=H2O+coi cos(cot) I„, (1.2}

with H20 the secular dipole interaction. When to«HL,
the local field experienced by the spins, the ART yields
H=H20. Indeed, H provides a good description of the
short-time dynamics viewed stroboscopically at intervals
of 2m/r. It might provide a good account of the long-
time behavior if condition (1.1) were met. But even with
co «Ht there are some pairs of levels in the wings of the
dipole line shape that differ in frequency by more than
2m/r Becaus.e of these levels, averaging out the oscillat-
ing term in Eq. (1.2) produces a serious error. It ignores
absorption by the spin system of quanta the size %co from
the radiation field. Over short times this does not present
a significant problem, because the absorption is slow.
Over long times it causes heating of the spin system.
Some progress can be made in deahng with the errant lev-

els, namely a transformation is used to reduce their ener-

gy spacing; however, the process is not entirely satisfac-
tory.

The problems with the semiclassical approach arise be-
cause the spins and radiation field are not treated on
equal footing. The radiation 6eld is constrained to a clas-
sical coherent state, while the spins are described by
time-dependent operators. In the present approach, we
consider a system of N spina coupled to n photons of a
single-mode radiation field. The evolution of the coupled
oscillator-spin system is studied via the dressed state ap--
proach introduced by Cohen-Tannoudji. This ap-
proach has a number of advantages: it puts the spins and
radiation 6eld on equal quantum-mechanical footing, the
spin —radiation-field Hamiltonian is conservative, unlike
its semiclassical counterpart, and it has provision for the
spins and radiation 6cld to evolve to a common equilibri-
um temperature. %e show that relaxation of the spins by
the photons is responsible for the saturation observed in
the experiments of Abragam and Goldman. ' Essentially
the radiation 6eld plays a role analogous to the lattice in
the phenomenon of spin-lattice relaxation.

I apply the dressed-state approach to two situations.
One is the near-resonant irradiation of a dipole-coupled
spin system in a static magnetic field, i.e., the cw spin-
locking experiment. ' The second is the experiment cit-
ed by Abragam and Goldman' in their discussion of the
"Magnus paradox. " In both cases the Hamiltonian con-

restrictions. The principal requirement for both (1}and
(2) is that

i
A.,

—A,, i
&2m/r

for all pairs of cigenvalucs k,. and A,J- of 0, where v is the
period of the semiclassical Hamiltonian. ' ' The trans-
formation of the pulsed-spin-locking Harniltonian into
the toggling frame goes some way in satisfying condition
(1.1), but does not completely satisfy it.

It is relatively easy to understand the difFiculty in the
semiclassical description at long times. The averaging
process of the AHT eliminates oscillating terms from the
semiclassical Hamiltonian. For example, in the experi-
ment described by Abragam and Goldman' the Hamil-
tonian is

II. SPINS DRESSED BY A RADIATION FIKI.D

A. HamHtonian

This paper considers the long-term c8'ects of a nearly
resonant radiation field on the evolution of the spins in a
spin-locking experiment and the long-term effects of ofF-

resonance irradiation of an initially-dipole-ordered state.
These two examples difFer primarily in the initial state of
the spins and in the values of certain parameters of the
Hamiltonian. Both involve a system of N mutually in-
teracting spins coupled to n single-mode photons, which
for the sake of definiteness we place in a cavity of volume
V. The starting point for describing how spins interact
with a radiation field is the Hamiltonian

%=a)a a+cool, +H +A,I (ca+a'a ) . (2.1)

The 6rst term represents the energy of a radiation field
having frequency u, omitting the zero-point contribution.
Here a and a are, respectively, the photon creation and
annihilation operators. Thc second and third terms are
the Zeeman and dipolar energies of the spin system,
where Hd= QH2d in g—eneral contains both secular
( m =0) and nonsecular ( m &0) contributions. The
fourth term in Eq. (2.1) describes the coupling between
the spins and a single mode of the radiation field with po-

sists of two quasiconserved components plus small non-
commuting terms. For the second example, these are the
radiation 6eld and the model Harniltonian found by ap-
plying the AHT to Eq. (1.2), namely H20. Over inter-
mediate times these components evolve to states charac-
terized by separate temperatures. Over long times the os-
cillator and dipole energies evolve to a common tempera-
ture. I demonstrate that when the applied 6eld surpasses
a critical value, the 6nal temperature is very high; it is
essentially the temperature of the radiation field. Thus,
equilibration of the spins with the radiation 6eld, for
which there is no provision within the semiclassical
framework, explains the saturation of the dipole order
observed in this experiment, Below the critical applied
6eld, the system evolves to a much colder equilibrium
temperature nearly equal to the quasistationary value,
and the system is predicted not to saturate.

The small noncommuting terms, e.g., the counterrotat-
ing terms of the rotating-frame Hamiltonian, provide a
weak thermal link that leads to the equilibrium between
the spins and radiation 6eld. The Provotorov theory of
saturation ' is used to 6nd the rate at which the subsys-
tems approach equilibrium. The value obtained here
agrees with that of Abragam and Goldman.

In Sec. II, I introduce the Hamiltonian for a spin sys-
tem in a quantized radiation 6eld and decompose it into a
sum of quasiconserved terms and a noncommuting term.
Section III describes the quasistationary state of the irra-
diated spin system that develops at intermediate times
while Sec. IV considers the eventual equilibrium that de-
velops between the spins and the radiation field. Section
V compares the present results to predictions obtained
within the semiclassical description. Section VI describes
the dynamics of the approach to equihbrium.
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larization e. In the case of near-resonant-spin locking,
co=coo in Eq. (2.1). For the example of Abragam and
Goldman, 600=0, and the nonsecular terms are omitted.

Associated with the radiation field is a magnetic field s

(gueikr+ ~~ eo t~ ikr—
) (2.2}

where

{2.3)

(2.&)

where y is the gyromagnetic ratio of the spins.
Before embarking on an analysis of the dynamics and

equilibrium properties of a system described by the Ham-
iltonian of Eq. (2.1), it is instructive to compare it with
the corresponding semiclassical Hamiltonian,

For radio-frequency fields the wavelength of the radiation
is sufficiently large compared to atomic dimensions to
permit the approximation e' "=1. The constant p essen-
tially represents the magnetic field due to a photon.
From the interaction of the magnetic moment of a spin
with the magnetic field of the radiation, given by yH( I
we deduce that

C0( =2k, tT (2.8)

A complete discussion of the quantized radiation field, its
interaction with matter, and the derivation of the ap-
propriate Hamiltonians is available in the text by
Loudon.

B. Qnasiconstants of the motion

We turn next to examine the combined Hamiltonian
for the spin system and radiation field. For simplicity we
choose the polarization to lie along the x axis. In a basis
of states

I m, mN, n ), where m; are the magnetic
quantum numbers of the spins, the Hamiltonian of Eq.
(2.1) has the form illustrated by Fig. 1. The kth diagonal
block represents the energy of the spin system plus the
energy of k photons. The off-diagonal blocks couple di-
agonal blocks differing by one photon in addition to mix-
ing states within a given block.

When the coupling between the spins and the radiation
field is weak, the ofF-diagonal blocks and the nonsecular
dipole interaction

V=AI„{a +a)+ g Hz~ (2.9)
m(~0)

act as a perturbation on the unperturbed Hamiltonian,

%(r)=ioolz+H +r0i cos(Cot+/) a''I . (2.5) &o——oia ii+roolz+Hio ~

d (2.10)

In particular, it is from this Hamiltonian, possibly includ-
ing modifications of the third term to account for the
modulation used to produce various pulse sequences, that
the methods of spin thermodynamics in the rotating
frame begin. One derives the semiclassical version from
the fully quantum-mechanical Hamiltonian in a straight-
forward manner, first by a unitary transformation of Eq.
(2.1} via V(t)=e'~ " into an interaction representation
with respect to the radiation field and second by taking
the expectation value in a coherent state of the radia-
tion field. The choice of coherent state,

which has the energy-level diagram shown schematically
in Fig. 2(a). In general, the unperturbed Hamiltonian
supports three constants of the motion, the energ'y of the
oscillator associated with the single-mode radiation field,
the Zeeman energy, and the secular component of the di-
pole energy. Under the unperturbed Hamiltonian, the ra-
diation field remains in its initial state over intermediate
times, while the spins evolve to a quasistationary state
characterized by independent temperatures for the Zee-

(2.6)

where
I
k) are harmonic-oscillator eigenstates, is made

because it is uniquely this state that corresponds to a
classical stable electromagnetic wave. Two important
properties of these states are (i) a

I
a) =a

I a), implying
that coherent states are eigensiaies of the annihilation
operator and (ii) &a

I

a'u Ia) =
I
a I'=n, the average

number of photons in the state.
Taking the expectation value over the oscillator opera-

tors and setting &aI a
I
a) =n '/ e '~ yields a Hamii-

ton1an,

gf{r) ~p +~d+gn (/2(~pe i(alt+yl+~p hei(rdt+y—))I.
(2.7)

that depends only on spin operators, but one that is also
time dependent. Comparison of the Hamiltonians given
by Eqs. (2.5) and (2.7) reveals that the intensity of the
classical radio-frequency Seld is related to the coupling
parameter by

I

~OI, + H

+ 34)

~0l, + H
43m&,

+ 24)

FIG. 1. Matrix representation of the coupled spin-radiation
Hamiltonian in a basis of simultaneous eigenstates of I, and a a.
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V'=(A/2)(I+a +I a)+ g Hz
m(+0)

(2.13)

we have the alternate decomposition of the Hamiltonian

%=%„+%a+V' . (2.14)

[+,0 &

FIG. 2. {a) Simpli6ed energy-level diagram of the spin-
radiation Hamiltonian for cooggHL g~m. The corresponding
eigenstates are labeled ~ith + and —denoting the Zeeamn
state and n=0, 1,2 denoting the number of photons. The
Gaussian-shaped curves represent the broadening of the levels
into a continuum by the many-body dipole interaction. {b)
SimpBSed energy-level diagram of the spin-radiation Hamiltoni-
an in the resonant case anth co=~0.

man and dipole thermodynamic reservoirs. Over long
times the perturbation V mixes these reservoirs to a com-
mon temperature.

A special case occurs if a=co. The energy levels of
%0 in this situation are shown in Fig. 2(b). Note that be-
cause co=coo it is the group of states

~
M k, n+k)—,

with M = g; m; and k =1,2, . . . , and not the states of a
given diagonal block, that are nearly degenerate and are
therefore most strongly coupled by the perturbation. It
therefore becomes necessary to block diagonalize the
Hamiltonian given by Eq. (2.1) in such a way that off'-

diagonal blocks do not couple nearly degenerate states of
the unperturbed Hamiltonian. A group of nearly degen-
erate levels has an unperturbed energy approximately
given by

&
~
M k, n+k—) =(M+n)co

~

M k, n+k ) . —

This suggests that g, m, +n is an "almost good" quan-
tum number and that the energy,

&„=co(a a+I, ),
is approximately conserved for the irradiated spin sys-
tem. A second approximate constant of the motion that
commutes with %„ is easily found; namely,

&a=BI,+Hd»+(A, /2)(I+a+I a ) . (2.12)

Note the silililarlty of &a to the usual truncated Hanlll-
tonian in the rotating frame; ' taking the expectation
value of Eq. (2.12) in a coherent state

~
a) produces the

exact expression. Upon defining the remaining terms as

%'hen the coupling between the spins and the radiation
field is moderately weak, the above procedure enables us
to decompose the Hamiltonian into two quasiconserved
energies plus a small noncommuting term.
represents the total number of quanta at frequency co,

that is, the energy of n photons plus the net energy of M
spins aligned with a Zeeman field of Ho=co/y.
represents the energy of the spins in an eff'ective Zeeman
field determined by the detuning of the radiation from the
Larmor frequency and the component of the coupling be-
tween spins and radiation field that conserves the total
number of quanta at frequency m. It also contains the
secular component of the dipole interaction between
spina. The noncommuting term contains, in the language
of the rotating-wave approximation, the counter-rotating
component of the applied alternating magnetic field along
with the nonsecular parts of the dipole interaction.

The analysis of the long-time behavior of a spin system
in a resonant quantized radiation field is based on the
decomposition of the Hamiltonian given by Eq. (2.14).
The analysis of spins in a nonresonant field is based on
the decomposition of the Hamiltonian given by Eq.
(2.10). In order to take advantage of the forms (2.10) and
(2.14), we require that the noncommuting terms represent
a perturbation. Hence we limit the ensuing discussion to
the interaction of spins with a moderately weak radio-
frequency field.

HI. QUASISTATIONARY STATE

A. Resonant radiation

If the noncommuting term V' is small, a collection of
spins irradiated near its Larmor frequency evolves during
short- and intermediate-time intervals under the unper-
turbed Hamiltonian &„+it'a which supports two ap-
proximate constants of the motion. As a consequence,
the irradiated spins evolve to a quasistationary state that
consists of two independent thermodynamic baths. In
this section we explore the temperatures of the baths and
the characteristics of the quasistationary state.

The analysis of the quasistationary state follows the
standard principles of statistical mechanics. Problems
encountered in applications of spin thermodynarn. ics to
nonconservative semiclassical Hamiltonians do not arise
in the present theory because the radiation field is explic-
itly included in the Hamiltonian. The treatment here
differs somewhat from the usual applications of spin ther-
modynamics because of the need to include the harmonic
oscillator degree of freedom in the thermodynamic
description.

For the remainder of this section we ignore the efFects
that arise from the noncommuting terms in V'. Under
the spin-temperature hypothesis, the system evolves to a
quasistationary state (a true equilibrium state only if
V'=0)
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p, =Z ' exp( —P„%„)exp( —Pii&s ), (3.1)

characterized by two inverse temperatures P„and Ps. In
the high-temperature approximation this expression
simpMes to the form

perature when the radiation is above the Larmor frequen-
cy and lower it when the field is below resonance.

In order to determine the temperature of the dipole-
efFective field bath, we equate its energy in the initial
state,

p, =Z 'exp( —P„sea a)(1 P„—cd, —Ps&+) . (3.2) Tr(%(sp, )= P—;~Pn ' ~ cos(P )N /4, (3.10)

Within this approximation the partition function is

Z=(1—e " } 'Trl, where for N spins —,', Trl=2N.
The conservation of energy for each thermodynamic
bath,

(%„)=Tr(kf g p; )=Tr(%(g pq, ) (3.3)

(3Vii ) =Tr(kf&p; )=Tr(&iipq, ), (3.4)

p;=(Trl} '(1—P,r00I, )
~

a)(a
~

(3.5)

is the initial density matrix for the combined spin-
radiatlon syste111.

The energy of the Zeeman-radiation reservoir in the in-
itial state is

Tr(kf„p;)=a)
~
a

~

=neo,

whereas in the quasistationary state it is

Tr(&„pq, ) =co(e " 1)—
P„re N/4 Ps—cohN/4 . —

(3.6)

(3.7)

Equating (3.6) and (3.7), and expanding the exponential
function to first order, yields a quadratic equation

(P„r0) N/4+(P„ai)(n+IjshÃ/4+ ,') 1=0 (3.8)——

for the inverse temperature P„. This equation has one
relatively large negative root and one positive root lying
close to zero. Because of the oscillator degree of free-
dom, only positive temperatures are physically meamng-
ful. Using Newton's method to approximate the positive
root, with an initial guess of zero, gives

I „a)=(n+PshN/4+ ,')— (3.9)

Even in a wreak radio-frequency Seld the temperature is
dominated by the photon number; for example, Eqs. (2.4)
and (2.8) show that a 1-Gauss field at 100 krad/s has
4X10 photons in a volume of 1 cmi. An exception
occurs if the detuning is large and the initial spin temper-
ature is cold that serves to raise the quasistationary tem-

where p; is the initial density matrix for the system, pro-
duces two equations from which to determine the two in-
verse temperatures needed to complete the description of
the quasistationary state.

It remains to define the initial state of the spina and ra-
diation field. We assume that the spins interact initially
with a classical electromagnetic wave and therefore
choose a coherent state ( a) as the initial state of the ra-
diation field. The spin-locking experiments 1 typically
begin with a 90' pulse applied to a sample of spins in a
large static field and at equilibrium with a lattice at in-
verse temperature P;; therefore

to the energy

Tr(&sp, )=—(Ps(h +Hi )

+P„coh+Psk, /(P„a))]N/4 (3.11)

that it has in the quasistationary state. Here

HI, =[Tr(Hzc) /Tr(I, )]' represents the local field pro-
duced by the spins. After inserting the value for P„co
given by Eq. (3.9}into Eq. (3.11), we obtain the quadratic
equation

(PsA, )16N/4+Ps(h +Hi ~n A),
P; r0+—n '~1 cos(P) =0 (3.12}

for the inverse temperature Ps. This has a continued-
fraction solution given by

p;aidan
'~1 cos(p)

b, +HL+A, n+A, PsdN/4
(3.13)

The first-order solution, obtained by setting Pii ——0 on the
right-hand side of Eq. (3.13), is identical to the standard
result found by applying spin thermodynamics in the ro-
tating frame and agrees with the experimental facts. i'

One could argue against this line of reasoning by point-
ing out that the Zeeman-radiation energy may continue
to evolve coherently over the same time period that the
dipole-effective field energy reaches quasiequilibrium. If
this is the case, the density matrix of Eq. (3.1}is not valid
because the Zeeman-radiation energy could not yet be
characterized by a temperature. In fact, it would have
nonzero ofF-diagonal elements unlike p„,. However, this
does not alter the conclusions regarding the dipole-
efi'ective field reservoir. Because the two energies evolve
independently under %0, the quasistationary temperature

Ps depends only on how the energy is partitioned, on
average, between the Zeeman-radiation and dipole-
effective field reservoirs in the initial state. In turn, this
depends only on the expectation value, i.e., diagonal ele-
ments, of the Zeeman-radiation energy. Since the diago-
nal matrix elements ofp, are constructed to conserve the
Zeeman-radiation energy, the analysis produces in Eq.
(3.13}the correct result.

In summary we find that near-resonant radio-frequency
irradiation of a spin system strongly couples the radiation
Seld and Zeeman energies and causes them to evolve as a
single unit to a quasistationary state having a very high
temperature. It is the large number of photons required
to generate even a weak alternating magnetic Seld that is
the cause of the elevated temperature. Evolving quasi-
independently from this bath is the coupled spin system
in an effective Seld deterxnined by the intensity and de-
tuning of the applied field. The energy of this thermo-
dynamic bath is identical to the energy of the spin system
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in the rotating frame. It reaches a quasistationary tem-
perature much lower than the Zeeman-radiation bath. In
fact, the temperature is lower than the initial value be-
cause the major portion of the static magnetic field ~o
couples strongly to the radiation 6eld, and therefore the
spin system evolves under %ha in a relatively weak
efFective magnetic 6eld.

8. Nonresomant radiation

In the second example we consider the evolution of
spin system, initially prepared in a dipole-ordered state,

p, =(Trl) '(1 —P;H fo) i
a) (a i

(3.14)

=2in'~ cos,(cot+/}, (3.15)

has the time evolution of a free classical electromagnetic
wave.

Under %0, the spins evolve independently from the ra-
diation field because the spin operators commute with
coa ta. In accordance with the principles of spin thermo-
dynamics, they evolve to a quasistationary state,

(3.16)

which consists of independent Zeeman and dipolar ther-
modynamic baths. The quasistationary temperatures can
be deduced by inspection. As the initial-dipolar state
commutes with XFO, the dipolar temperature remains con-
stant at Pii =P;. The Zeeman energy also commutes with

&0, however, because the energy of the Zeeman bath ini-
tially equals zero, Pc ——0 also. This situation difFers from
the near-resonant case considered above. In that case,
the radiation Seld couples with the Zeeman energy on a
short-time scale, leaving the spins to evo1ve quasi-
independently in a small static transverse magnetic 6eld.
The order parameter defined by

g =Tr(H zopqs) /Tr(H20p,).(3.17)

under irradiation by a radio-frequency Seld far above res-
onance. As in the previous example the initial state of
the radiation Seld is taken to be a coherent state. The ap-
propriate Hamiltonian, including the radiation field and a
small static magnetic field, is given by Eq. (2.1) with
coo&&co and with e lying along the x axis. In the actual
experimental situation, the oIF-resonant irradiation is car-
ried out in the rotating frame, and therefore the nonsecu-
lar terms of the dipole interaction are absent. 3 Accord-
ingly they are omitted from the analysis.

Over intermediate times we ignore the effects of the
perturbation V and consider the quasistationary state es-
tablished under the unperturbed Hamiltonian given by
Eq. (2.10}. Although there are three constants of the
motion under %0, characterizing this state is simpler
than in the resonant case. The initial coherent state of
the radiation field commutes with all except the oscillator
energy component of %0. In particular it evolves in-

dependently from the spin system. Under %0, the expec-
tation value of the magnetic Seld associated with the
coherent state,

(co,(t)) =Tr[AI„(a +a)e '"' "~ a}(a
~

e' "]

equals unity for the quasistationary state. This behavior
is observed in experiments over intermediate times; how-
ever q decays at long times. ' The reason for the decay is
the subject of the next section.

(4.2)

with respect to the inverse temperature. For the purpose
of this section, we write

(4.3)

with %0 and V given by Eqs. (2.10) and (2.9), respectively.
Transformation of the density matrix into an "interaction
frame" via

p(P) =e 'p(P)

yields an equation

dP(P), &~0 V,
trito (P)-

dP

(4 4)

(4.5)

which is amenable to an approximate solution. The mu-
tual commutativity of the three terms comprising JVO per-

IV. EQUILIBRIUM STATE

A casual inspection of the noncommuting perturbation
V or V' gives the impression that it has only a minor
efFect on the evolution of the spin-radiation system.
When the coupling A, between spins and radiation field is
small, the perturbation introduces only small shifts to the
energy levels of &0. If care has been taken that the per-
turbation does not connect nearly degenerate states then
it only mixes small amounts of the other basis vectors
into a given eigenstate of &0. The latter effect, though
small, is important. The admixture of other states into a
given eigenstate means that the state no longer is a simul-
taneous eigenstate of the individually conserved energies
under %0. In turn, this implies that the quasistationary
state, with its multiple-bath structure, is not appropriate
as the equilibrium state; rather the equilibrium state

p~ =Z ' exp( —P,Q)
is characterized by a single common temperature. Physi-
cally the perturbation V or V' provides a thermal link
that mixes the Zeeman, dipolar, and radiation thermo-
dynamic baths to a common temperature. Because the
coupling constant A, is small, the mixing process takes a
long time (the dynamics are investigated in Sec. VI). It is
this fact that gives signi6cance to the concept of the
quasistationary state. Given suScient time, however, the
system will decay to the equilibrium state indicated by
Eq. (4.1)

The analysis of the equilibrium state proceeds essen-
tially in the same manner for resonant and nonresonant
irradiation; only the values of coo and the initial state
differ in the two examples. %'e begin by making a pertur-
bation expansion of the density matrix following the pro-
cedure of Feynman. The expansion is based on the
property that the density matrix satisfies the differential
equation
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mits us to factor
—Nvo &—»rzo —@"0I. -p ~a

d

e =e e 'e

Two of the transformations are easily accomplished by
taking advantage of

for the equilibrium inverse temperature. The solution of
Eq. (4.11) depends on the relative size of the initial energy
of the radiation 6eld versus the initial energy of the spin
system.

In the limit of large photon number, for which

e *I„e ' =I„cosh(pcoo)+iI„sinh(pcs},
n ' /N &P;cook, cos(P)/(2'), (4.12)

etc. Thus, Eq. (4.5) becomes

dp(p)
A,[l„cosh(pa)0)+il» sinh(pa)0)]

X(e ~a+e~a )+ g e ' H f p(p),
m{~0)

d d

I„=e I„epH2o —pH20

(4.6)

and similarly for X» and H f
At this point we invoke the high-temperature limit to

approximate the hypertrigonometric and exponential
functions in Eq. (4.6) and solve the equation in a Piccard
series. The series converges rapidly for small P and pro-
duces

p(p) =1—p A,I„( a+ a)+ g Hz
rn {+0)

(4.7)

Therefore the perturbation expansion for the equilibrium
density matrix is

p =Z 'e ~0 1 —p, AI, (a+at)+ g Hz"
m{~0)

—P opQ 4l=Z 'e ~ Il —p~[a)01, +XI„(a+at)+H ]] .

A. Resonant rachatfion

The initial state of the cw spin-locking example is given
by Eq. (3.5). Its energy is

Tr(&p; )= neo P;coPn '~ c—os($)N /2,
whereas the energy of the equilibrium state is

Tr(&p,q) =co(e ~ —1)
g3 67

—P,q(coo+Hn )N/4 —A, N/(2a) ), (4.10)

with H»»=[Tr(H ) /Tr(I, )]' . The conservation of en-
ergy yields the quadratic equation,

p,q(aPz+Hz)N/4+p [neo p;copn '~ cos(p—)N/2

+A, N/(2'}] —1=0, (4.11)

(4.8)

The conservation of energy provides a means for deter-
mining the temperature needed to complete the descrip-
tion of the equilibrium state.

Eq. (4.11) has two real roots; one is negative, but relative-
ly large in absolute value while the other is positive and
lies close to zero. The negative root is physically unten-
able. The use of Newton"s method, with an initial guess
of p, =0, to determine the positive root leads to the
first-order approximation of

p, =[no) p;c0—(pin
'i cos(p)N/2] (4.13)

for the equilibrium inverse temperature. The large pho-
ton number limit holds under normal experimental condi-
tions. In a typical high-field NMR, for example a 1-cm
sample containing =5X 10 fiuorine spins in a 100-MHz
static field at room temperature and irradiated on reso-
nance, condition (4.12) requires that n &1.1X10 pho-
tons. Equivalently, this requires that the applied alter-
nating magnetic field exceed roi/y & 1.4X10 6; thus,
the large photon limit is obtained with a small field
indeed. In a very low intensity radiation field, for which
the initial spin energy exceeds the radiation energy and
condition (4.12}does not hold, Eq. (4.11) has a relatively
large positive root and a negative root lying close to zero.
The physically acceptable solution is

P; co02An'~ co, s(P) —4n co/N
(4.14)

N{)+HD

A plot of the ratio of the equilibrium inverse tempera-
ture to the quasistationary value for the dipole-efFective
field, pa versus photon number in Fig. 3 illustrates the
predicted transition from low to large photon number. I
have chosen a static magnetic field of coo=100 krad/s and
a low initial spin temperature of P, =0. 1 K (however,
one satisfying the high-temperature approximation) for
this example. The small static field is chosen because, as
shown in Sec. VI, it takes much too long for the system
to reach the equilibrium state for a typical high-6eld
magnet. Reducing the static 6eld decreases the relaxa-
tion time, however, it also drastically reduces the critical
value of n separating high and low photon number limits,
y. problem that is recti6ed by choosing a low initial spin
temperature.

As Fig. 3 demonstrates, the quasistationary inverse
temperature of the dipole-elective field bath increases
with the intensity of the radiation field (proportional to
n '~2) in accordance with the predictions spin thermo-
dynamics applied in the rotating frame and in agreement
with experimental measurements. Eventually, however,
the dipole-effective field bath heats up due to coupling
with the Zeeman-radiation bath. For very low-intensity
radiation fields, the heating is relatively ineffective, i.e.,
p, /pe is slightly less than unity and is primarily due to
coupling of energy to the Zeeman part of the Zeeman-
radiation bath. In the vicinity of the critical photon
number, corresponding to ~I/y=6&10 G in Fig. 3,
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large n regime

Peq(coc+Hz )N/4

+p, [neo —p;HzN/4+A, zN/(2'�)) 1—=0, (4.16)

an equation very similar to the corresponding equation
for resonant irradiation in high field. This equation, too,
has difterent solutions depending upon the relative values
of the initial energy in the radiation 6eld versus the dipo-
lar bath. In the limit of large photon number, for which

n/N &P;Hzl(4'), (4.17)

I I I I I I I I I

3

10'~ n (photons}

FIG. 3. The ratio of the equilibrium to quasistationary spin
temperature as a function of photon number in the critical re-
gion that separates large and low photon number regimes.
These curves apply to resonant irradiation of a spin system in a
large static Seld initially prepared by a 90' pulse. The two
curves marked p~/pII illustrate the two branches obtained from
the approximate solution for the positive root of the quadratic
equation for P~. The exact solution varies continuously be-
tween these branches. Sholem for comparison is the ratio of the
quasistationary spin temperature to its initial value. For the
purpose of illustration &0=100 kradts, 5=0, HL, ——30 krad/s,
(P;) '=0. 1 K, and A, =6.5X10 rad/s.

peq decreases rapidly with applied field. Above the criti-
cal photon number, at a more typical field of zoI/y =1 6,
the photon energy dominates the expression for the ex-

pression for the equilibrium temperature. The conclusion
is that given suScient time, the spin system irradiated un-

der typical magnetic-resonance conditions is heated from
the quasistationary temperature to the much higher tem-

perature of the radiation Geld. A consequence of the
heating is a decay of observables such as the magnetiza-
tloii of tile spills.

the acceptable root for the equilibrium inverse tempera-
ture is approximately

P,q=(neo P;Hz—N/4) (4.18)

&oo I

I

I I I I

10

As Fig. 4 shows, the large photon number limit is
achieved for n & 8.5X 10' photons, that is for an applied
Seld of col/y & 0.005 G, in the case that the local field is

Hz ——30 krad/s and P,. =0. 1 K. With higher initial spin
temperatures the critical field is even lower. When the
intensity of the applied radiation field does not satisfy Eq.
(4.17), the two roots of Eq. (4.16) change sign and the
physically acceptable solution for the equilibrium inverse
temperature in the low photon number regime is approxi-
mately given by

P;Hz 4n co/N—
(4.19)

o+HI.

The transition between low and high photon number
regimes is very sharp, as evident from Fig. 4. Below a
critical intensity of the radiation field, the spin system

S. Nonreionant radiation
low n regime large n regime

Tr(XFp;) =neo P,Hz N/4, — (4.15)

as compared to the energy of the equilibrium state given
by Eq. (4.10) witll Hn replaced by Hz. Equatlllg lllltial
and equilibrium energies yields

We now consider the fate, at long times, of a dipole-
coupled spin system initially prepared in a dipole ordered
state and evolving under irradiation by a low-intensity al-
ternating magnetic field far above resonance. Besides the
difference in initial state, this example dilers from the
previous one in that the static magnetic field, if existent,
is weak; ruo ~~~. It has, however, many features in com-
mon with the previous example; for instance, the analysis
proceeds in essentially the same manner.

The initial density matrix for the dipole-ordered spin-
radiation system is given by Eq. (3.14). The energy of
this state is

io-9

10

10' n {photons)

FIG. 4. The ratio of the equilibrium to initial C=quasista-
tionary) spin temperature as a function of photon number in the
critical region that separates large and low photon number re-
gimes. These curves apply to weak irradiation far above reso-
nance of an initially-dipole-ordered spin system. The solid and
dashed curves illustrate the two branches obtained from the ap-
proximate solution for the positive root of the quadratic equa-
tion for P~. The exact solution varies continuously between
these branches. For the purpose of illustration mo

——0, m= 100
krad/s, Hz ——30 krad/s, (P, ) '=O. l K, aud A, =6.5X10
rad/s.
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remains essentially at its quasistationary temperature
(equal in this case to the initial temperature). Above the
critical applied field, at intensities typically employed in
experiments, the spin system evolves from a quasistation-
ary state at low temperature to an equilibration state with
a considerably higher temperature. At this temperature,
the dipolar order parameter ri=P, ~/P, has decayed from
a quasistationary value of one to nearly zero. The equih-
bration of the spins with the radiation field to the temper-
ature of the latter provides an explanation for the satura-
tion, discussed by Abragam and Goldman, ' for the weak-
ly irradiated, dipole ordered state.

V. COMPELS(ON TO SEMICL4F&SIC' RESULTS

The two examples considered in this paper are well-
known problems in magnetic resonance. The preparation
of a spin system by a 90' pulse into an initial state with
magnetization transverse to a strong static field, followed
by irradiation of spins near their Larmor frequency by an
alternating field polarized in the direction of the magneti-
zation is known as spin locking. The standard derivation
of the relationship between the magnetization that
remains at long times and the intensity of the irradiating
field is via spin thermodynamics applied in the rotating
frame

The spin-locking problem is described in the laboratory
frame by the semiclassical Hamiltonian given by Eq.
(2.5}. The absorption of energy by the near resonance of
the perturbation prohibits the direct application of spin-
thermodynamic principles. However, in a frame rotating
about the z axis of the laboratory frame at the Larmor
frequency the Hamiltonian becomes

&1(t}=bI,+H~~+ [1+cos(2cot)]I,
2

CO)
sin(2cot }I~+ g e' "'Hz~,

m(+0)
(5.1)

and the oscillations of the time-dependent terms lie far
above resonance.

In calculating the evolution of the density in the rotat-
ing frame one takes advantage of the eriodic time
dependence of %1(t) and Floquet's theorem 6' to write

pi(nr}= exp( —iHn~}pi(0) exp(iHnr) (5.2)

after n periods of ~. The Magnus expansion' provides a
convenient means to determine the effective Hamiltonian
H. The great advantage of Eq. (5.2) is that is provides a
conservative model for the stroboscopic evolution of the
spin system.

The leading term in the Magnus expansion is the aver-
age Hamiltonian

H '"= I'm, (r)dr =—ai, +H" +

also known as the truncated Hamiltonian. %'e postu-
late that the density matrix in Eq. (5.2) evolves to the
cquillbnum state

(5.4)

A comparison of the energy of the initial state

p,. =l —P, aiof, to the energy of the equilibrium state
yields the expression

1
P =—

2 5 +HL+coi/4
(5.5)

VI. RKmX+maz eVXWMICS

The conclusion that a spin system coupled to a radia-
tion field eventually reaches equihbrium with the radia-
tion field naturally raises the question of how long it
takes the system to reach equilibrium. The spin system
typically evolves to the quasistationary state in a time ap-
proximately a few time constants Tz in duration. The
evolution of the system over this time scale conserves in-

for the equilibrium inverse temperature. Spin locking
takes its name from the fact that if co»pHL, the equilib-
rium magnetization approximately equals the initial
value. Except for couching the derivation of Eq. (5.5) in
the language of Haeberlen and Waugh of the average
Hamiltonian theory, this is essentially the procedure em-
ployed by Redfield.

The interesting feature of the "equilibrium" tempera-
ture calculated in the rotating frame is that it is identical
to the first-order expression for the quasistationary tem-
perature of the dipole-effective field bath given by Eq.
(3.13) (with / =0). The semiclassical calculation does not
predict the decay of this state because it depends only on
quantum-mechanical expectation values of the oscillator
degree of freedom and therefore there is no Zeeman-
radiation bath with which the spin system can equili-
brate. Because the Magnus expansion does not converge
when Eq (1.1) is not satisfied, in this case when rnro
does not lie above all resonances of the s in system, the
AHT also introduces the following error. The averag-
ing process eliminates in Eq. (5.1) terms oscillating at
mao, terms that are responsible for absorption of energy
by the few levels in the dipolar line shape that are
separated by m hro. It is this absorption, albeit very weak,
that leads at long times to the equilibrium between the
Zeeman-radiation bath and the dipole-coupled spins.

Predicting the. equihbrium temperature in the experi-
ment described by Abragam and Goldman via the semi-
classical approach follows the procedure used above.
The Hamiltonian, assuming zero static field, is simply
&(r)=H20+co, cos(ait ) I,. Further transformation to an
interaction frame is not necessary because of the assump-
tion that ai ~~Hz . Apphcation of the average Hamiltoni-
an theory yields an effective Hamiltonian H'"=Hf~ to
first order. From an initial state p;=1 ~P Hzo and as-.
suming an equilibrium state p =1—P~"', we con-
clude that the equilibrium temperature is Peq ——P;.

This reproduces the result obtained in Sec. III for the
quasistationary temperature of the dipole bath but not its
equilibrium temperature. Again the reasons are that the
semiclassical description has no provision for an equilib-
rium between the spins and the radiation field and that
the AHT ignores absorption at frequency u.
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dividually the energies %„and %a that comprise the un-

perturbed Hamiltonian %0=%„+%~.During the time
T2 the o8-diagonal elements of the initial density matrix
associated with the spin degrees of freedom decay to
zero; thus„we can characterize the thermodynamic bath
containing the energy of the spins %~ with a quasista-
tionary temperature P~. As discussed in Sec. III, the ofF-

diagonal elements of the initial density matrix corre-
sponding to the radiation field may not decay to zero on
the same time scale of T2, however, we can assign the di-
agonal component a temperature P„. In efFect, we as-
sume that the evolution of the spin-radiation field over in-
termediate times is described by a density matrix of the
form"

p,(t)=Z 'exp[ P—„(t)&„]exp[—P~(t)%~]+p~(t)

=Z 'exp[ —P„(t)coa a][1 P—„(t)(%„—toa a) —Pz(t)&i{]+p~(t), (6.1)

where p~(t) represents the o8'-diagonal elements of the
density matrix that persist beyond a time period of a few
T2 ~

The time dependence of the quasistationary tempera-
tures refiects the fact that the quasistationary state con-
tinues to evolve under the full Hamiltonian

(6.2)

The relatively small size of the perturbation V (or V'), im-
plies that it does not contribute rapid oscillations to the
time dependence of pq, (t). Nor does it significantly alter
the energy of either k„or %ftt Inste. ad, its main func-
tion is as a thermal link between the two thermodynamics
baths. It allows the exchange of energy between %„and
%ftt, whereby the quasistationary temperatures evolve
slowly to a common equilibrium value

Pq ( oo ) =Pq( {N )=P~, and the oIF-diagonal elements of
the density matrix decay to p~(cc)=0. The purpose of
this section is to examine the rate at which P„and Pz ap-
proach their equilibrium values.

One can determine the rate of approach to equilibrium
1

i{%'0+—V)t i{%0+u)t
(6.3)

in the approximate form

I

by a variety of methods. A simple procedure would be to
estimate a transition rate for the exchange of energy be-
tween gf'„and %Ftt from the Fermi Golden rule. A more
sophisticated procedure would employ the memory-
function technique of Deninghaus and Mehring to de-
scribe the evolution of the quasistationary temperatures.
I employ a method of intermediate sophistication that is
related to the Provotorov theory of saturation. ' The
text by Goldman gives a lucid discussion on the use of
the Provotorov theory with the spin-temperature hy-
pothesis. The theory is based on a second-order pertur-
bation solution for the evolution of the density matrix. It
is appropriate in ihe present circumstances because of the
weak nature of the coupling introduced by the perturba-
tion V.

In the spirit of the perturbation treatment, we write the
evolution of the density matrix

p(t}=e p(0) i f dt'—[V(t'),p(0)]—f dt'f dt"[V(t'), [V(t"),p(0)]]+ e (6.4)

with the definition

%e will monitor the evolution of the quasistationary temperature by the change in time of the average energy associat-
ed with &„,

(6.5)

and similarly for %~. Because ff„and %~ commute with %o, only the term in parenthesis on the right side of Eq.
(6.4) contributes to the time dependence of (%„(t)); thus

(&„(t))=Tr[&„p,(0)]—i f td' rT[&„[ (Vt'), pq()0]I —f dt' f dt" TrI&„[V(t'),[V(t") pq (0)]]I .
0 0 0

(6.6)

The diagonal portion of pq, also commutes with &0 implying that its contribution to the first-order term in Eq. (6.6} is
zero; thus, we must go to second order to determine the evolution of P„(t) and Ptt(t). As is typical of perturbation
theories, the Srst-order contribution from the o8'-diagonal portion of the density matrix is comparable in size to the
second-order contribution from the diagonal portion. %e will examine the 6rst-order contribution of p,~ to the evolu-
tion of (%„(t)) below; but we omit p~ from the second-order term.

The commutativity ofp&(t), the diagonal part of the density matrix, and &„and gfo enables a straightforward evalu-
ation of one integral of the second-order term. This result combined with the 5rst-order contribution from pz yields



RELAXATION AND EQUILIBRIUM OF A SPIN SYSTEM. . .

(&„(t)) W„(0))=—I ttt (t'—t )T'r[&„[V(t )'[,V, p t(0)]]]—i I dt T'rf&'„[V(t') prt(0)]l . (6.7)
0 0

A similar equation holds for (%s(t) ). Our concern here is with the evolution of (gf„(t)) over time periods t ~~ T2,
but vrith t sufBciently short that the quasistationary temperatures do not vary signi5cantly. Because of the many-body
nature of the dipolar coupling between spins, coherence in V(t) is rapidly lost, and the contribution to the integrals in
Eq. (6.7) from t &~ Tz is negligible. This permits us to replace the upper limits of integration with t ~ 00 and to replace

p,(0) by p,(t). It also allows us to approximate t t'=—t. The average rate of change in (&„(t))over a time t long
compared to T2 is found by dividing Eq. (6.7) by t; thus,

(ff„(t))=—f dt'TrI[&„, V(t')][V,p~]j i—/t f dt'TrI&„[V(t'), p~]j,
represents the approximate equation of motion for the quasiconserved energy %„. Because of the 1/t factor, the
second term of Eq. (6.8) generally makes a negligible contribution to the evolution of the quasistationary energy. How-
ever, in light of the fact that the radiation field may contribute oIF-diagonal elements to the density matrix that persist
over times longer than Tz we will consider separately the contribution of the second term in the application of Eq. (6.8)
to the examples below.

A. Non@eeoc~t ra(Nation

The quasistationary state of an initially-dipolewrdered spin system irradiated far above resonance is somewhat of a
special case because it is the same as the initial state. That is, the dipolewrdered spins remain in that state under %0
and the radiation field, initially in a coherent state, evolves as a coherent state under %0. Nonetheless, it is useful to as-
sume that the spin-radiation system evolves to equilibrium via a quasistationary state of the form (6.1) that has separate
temperatures to describe the spin and radiation energies and includes an ofi'-diagonal component. It is the rate at
which this state approaches equilibrium that we address here.

The expression for the rate of change in the energy A'„ leads to an equation of motion for the corresponding inverse
temperature upon substitution of the density matrix (6.1} into Eq. (6.8). Before proceeding, let us examine the first-
order contribution to Eq. (6.8) that arises from p~. Starting from the initial density matrix of Eq. (3.15), the density
matrix to first order is

p(t)=e p; i f d—t'[V(t'), (1 13;Hzo)
~

n—)(a
~
](Trl) ' e

The first-order contribution to (%„(tj), including both diagonal and ofi'-diagonal matrix elements ofp(t), is

iP; f dt'Tr(I, Hfz)(a
~

[toata, (e '"'a+e' 'at)]
~
a)(Trl) '=0,

0 s

which equals zero because the trace over spin operators is Tr, (I,Hzo) =0. Thus, in spite of the existence of ofF-diagonal
elements in the quasistationary density matrix, they do not afFect the evolution of (&„(t)) to first order

Proceeding with the substitution of Eq. (6.1}into (6.8), after some algebra and taking the trace with respect to the os-
cillator states, leads to

( I/P„) =2i A2Ps/P„ f td' rT([ H~2,0I(t')] I)sin(tot')(Trl) '+2c0A, f dt'Tr[I, (t')I„]cos(tot')(Trl)
0

where the remaining trace is over the spin variables and where I,(t) is defined by

1„(t)—:exp(iH20t )I,exp( —iH~zot ) .

By rewriting [H2[],I„(t')]= id /dt'I„(t') and—integrating the first term by parts, Eq. (6.9) simpMes to

--- (I/P„)= 2(Ptt /P„—I koA—fdt' T, r[I,(t '}l„]cos(tot')(Tr1 )

(6.9)

2n(Ptt /P„—1)coA—, g(co)N/4, (6.10)

where g(to) is the absorption line shape of the dipole
spectrum. This provides a dil'erential equation from
which to determine the evolution of P„. However, it de-
pends on a second independent variable, namely the spin
temperature Ps. It is possible to obtain a second
differential equation from the evolution of (%s(t) ) and
thereby have two equations for the two unknown temper-

atures. A simpler procedure is to use the conservation of
total energy

(6.11)

ignoring the small contribution from V, to obtain a rela-
tionship,
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P»(t)=[1/Pg(t) —E„,)4I(NHt ), (6.12)

between the two quasistationary temperatures. This rela-
tion allows us to rewrite Eq. (6.10) entirely in terms of the
spin temperature p», which is of more immediate interest
than P„;thus,

Gft
P»—= 2n—[P». +P»E„(4/(NHt )

4I(—NHL )]col. g(co)N/4 . (6.13)

for the evolution of the quasistationary spin temperature.
Equation (6.14) predicts a nonexponential decay of the

quasistationary spin temperature to its equilibrium value.
A similar expression holds for the time dependence of
p„(t). The decay is decidedly nonexponential in the low
photon number regime for which A is small compared to
p»(t). However, in the large photon number limit, when
condition (4.17) holds, A »p»(t) and the quasistationary
temperature decays exponentially to the equilibrium
value with a rate constant

k =ma) a),g(co)l(2Ht ) . (6.15)

Here, Eq. (2.8) has been used to express the coupling pa-
rarneter k in terms of the classical field intensity ~,. This
is precisely the expression that Abragam and Goldman'
report for the rate of saturation of the dipole-ordered sys-
tem by a weak rf field. Their point is to give an example
of a spin system for which use of the Magnus expansion
to find a model Hamiltonian compatible with spin ther-
modynamics predicts an equilibrium state that contra-
dicts experimental observations. The experiments show
that the equihbrium state predicted via the model Hamil-
tonian is reached after a time T2, but that the system sat-
urates over long times. The present theory predicts that
the spin-radiation system reaches a quasistationary state
after a time T2„which is identical with the state predict-
ed as equilibrium" via the Magnus expansion within the
semiclassical treatment of the radiation field. An ex-
planation for the saturation of the system is that the di-
polar spin reservoir slowly equihbrates with the radiation
field, an eventuality that is not provided for within a

The quadratic factor in p» is the same as Eq. (4.16),
which is used to determine the equilibrium spin tempera-
ture; therefore, one root is simply p,q. The negative root,
abbreviated by A, is approximately E„,4—/(NHt )
= —A in the large photon number limit and 1/E~,
= —A in the low photon number limit. Factoring the
quadratic term enables a straightforward integration of
Eq. (6.13) and yields

p»(t) p,q
—p»(0) p,q—

P»(t)+ A P»(0)+ A

Xexp[ 2nt0A—g(u)(,P,q+ A )tN/4] (6.14)

semiclassical framework.
In order to gain an idea of the time required for the

spins to equilibrate with the radiation field, let us deter-
mine the time constant for the example given in Sec.
IV B. Consider a 1-cm sample of fluorine spins prepared
in a dipole-ordered state with p; =0. 1 K ' and interact-
ing with a local field of Hz ——30 krad/s. The dipolar line
shape is assumed to be Gaussian with a standard devia-
tion of ~3Hz and the system is irradiated by an rf field
having ru = 100 krad/s. In the large photon number hmit,
for example, with n =10' photons or equivalently with
an applied field of cubi/y =0.016 6, the spins relax to the
temperature of the radiation field with a time constant of
k '=300 ms. If the spin system is prepared with a low
initial temperature, then the transition from low to high
photon number occurs at a relatively large value of n; i.e.,
at a relatively large applied field t0, . If the lattice is also
at this initial temperature, so that the spin-lattice relaxa-
tion time is long, then it should be feasible to measure the
relaxation of the quasistationary state to the quite
difFerent equilibrium state predicted in the low photon
number regime. Using the analog to Eq. (6.15) appropri-
ate in the low photon number regime and assuming
n =5 X 10', the predicted time constant is =8 s for the
spin system to relax to equilibrium in this regime.

B. Resonant radiation

Having determined the rate at which the quasistation-
ary state approaches equilibrium with the radiation field
in the case of of-resonant irradiation, we turn our atten-
tion to the relaxation process when the spin system is in a
large static magnetic field and is irradiated near the Lar-
mor frequency. As above, we assume that the spin-
radiation system evolves to equilibrium via a quasista-
tionary state of the form (6.1). The analysis of the relaxa-
tion dynamics proceeds along the same lines as in the
previous section; except that it is more difficult to calcu-
late V(t) owing to the more complex nature of%(» in the
resonant situation. For this reason, the following discus-
sion is limited to weak applied fields ~& g~HI for which
it is justified to retain only the leading term of

exp( i&» t ) V exp( i%» t ) . —

The analysis is further complicated by the fact that the
nonsecular components of the dipole interaction contrib-
ute to the relaxation. In the discussion belo~ we concen-
trate on the effect that the counter rotating terms of the
radiation field have on the relaxation dynamics and do
not include the contribution from the nonsecular dipole
interaction.

Insertion of the quasistationary density matrix into Eq.
(6.8), after performing the unitary transformations re-
quired to determine V(t'), taking the trace with respect
to the operators of the radiation field, and integrating by
parts, leads to

—( I/p~ pz co N/4 p»b coN/4) =——4(p» /pz ——1)col, f dt' Tr[1„(t')I„]cos[(2t0+5)t'](Trl )dt 0
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E«, n——co P—;cogn ' cos(P)N/2 .

After rewriting the above expression in terms of Ps, we

find that

dt
==Ps = —n(Pis+P&E«, /Q —1/Q kok, g(2co+ b )N

(6.17)

provides the equation of motion for the quasistationary
temperatures of the dipole-efFective field bath, where

Q:(b,t—0+6 +Ht )N/4 and where

g(t0) =—(n ) ' I dt' Tr[I„(t')I„]cos(an't')(TrI, )

represents the dipolar absorption line shape. The quadra-
tic term in Eq. (6.17) can be factored to
(Ps —P~)(Ps+ A ), with A —=E„,/Q in the large-n hmit
and A—:—1/E«, in the low-n limit. A straightforward
integration of Eq. (6.17) shows that the quasistationary
temperature evolves to equilibrium via

Ps(t) P~ —Ps(0) —P,q

Ptt(t)+ A Ps(0)+ A

Xexp[ mcokig(2—co+6)N(P~+ A )t] .

(6.18)

The evolution of the spin-radiation system to equihbri-
um in the case of near-resonant irradiation is similar to
relaxation behavior of the dipole-coupled spin system ir-
radiated far above resonance. In the low photon number
regime, the relaxation follows a nonexponential decay. In
the large-n regime, the relaxation is approximately ex-
ponential in nature and has a rate constant of

k =re)2a)2ig(2ai+b )/(bco~h + Ht ) . (6.19)

The principal difference between the near-resonant versus
off-resonant irradiation is the dependence of the rate con-
stant on the dipolar line shape at a frequency 2c0+5
from the center of the absorption line in the former case
as compared to a frequency of ~ when the rf field is far
above resonance. Because the line shape function de-
creases rapidly with increasing frequency, the fact that k
is proportional to g(2ra+ 6) under resonant irradiation as
opposed to g(co) in the nonresonant case implies that the
relaxation to equibbrium at a given ~ takes much longer
under resonant than nonresonant irradiation.

The dependence of the rate constant for the decay to
equilibrium on g(2&v+ 5) accounts for the success of the
standard methods of spin thermodynamics. As pointed
out in Secs. III and V, the "equilibrium" state is in reality
a quasistationary state of the combined spin-radiation
system. Given the high I.armor frequency of a typical
high-field magnetic-resonance spectrometer (e.g., 100

The conservation of total energy, neglecting the small
contribution from V', provides the relation

13„(t)=[P (t)(dco+5 +H )N/4+E„, ]
' (6.16)

between the two quasistationary temperatures, where

MHz), the value of the line shape function at frequency
2~+2k is in6nitesimal and hence the time constant for re-
laxation of the quasistationary state to equilibrium is
nearly in5nite.

VII. CQNCI. USION

The current understanding of the long-term behavior
of a spin system subject to an external time-dependent
perturbation derives principally from the extension of
spin thermodynamics to rotating, togghng„or other in-
teraction frames. The standard procedure used to predict
equilibrium properties involves finding a suitable interac-
tion frame and identifying a time-independent model
Hamiltonian under which the evolution of the spin sys-
tem mimics "sufficiently" closely the evolution under the
true Hamiltonian. Invariably errors are made in finding
the model. For example, the counter-rotating terms are
omitted from the truncated Hamiltonian in the rotating-
wave approximation. Well-known, if often minor, conse-
quences of the counter-rotating term are the Bloch-
Siegert shift~ and the absorptions at odd subharmonics
of the Larmor frequency. 2i ~' In this paper we find a new
effect of the counter-rotating terms; they can lead at long
times to the spins equilibrating to the temperatures of the
radiation field and accordingly to a saturation of the ob-
served order parameters of the system.

The semiclassical description of the radiation field
sufFers from the deficiency that it has no provision for the
spins and radiation field to reach equihbrium. Further-
more it is very difficult to satisfy the requirement that all
the eigenvalues of the model Hamiltonian found via the
AHT fall into an interval of length 2n/r which is neces-
sary for convergence of the Magnus expansion and the
validity of applying spin thermodynamics to the model.
One error that not satisfying this requirement introduces
is to average out terms in the semiclassical Hamiltonian
that lead to absorption at frequencies n2m/r by the spin
system. This error has only minor consequences over
short times, hence the success of the AHT in analyzing
pulsed NMR spectra. Over long times, this error ignores
heating of the spins by the radiation field and leads to
more serious errors.

An examination of the full spin-radiation Hamiltonian,
for a weak rf field, shows it to consist of two (or more)
quasiconserved energies plus a small noncommuting
term. The exact decomposition of the Hamiltonian de-
pends on whether or not the frequency of the rf field is
resonant with the spins. If it is not, then the Zeeman, di-
pole, and radiation energies are each quasiconserved.
The equivalent semiclassical treatment includes only the
first two. If the radiation is resonant, then the Zeeman
(minus the resonance offset) and radiation energies couple
strongly to form one quasiconserved component, the
Zeeman-radiation term. The energy of the spins, in-
teracting among themselves and with a transverse
effective field, is also conserved. The analogous semiclas-
sical treatment includes only the second of these—
namely the energy of the spins in the rotating frame. The
conclusion is that the equilibrium state within the semi-
classical framework corresponds to a quasistationary
state of the full spin-radiation system. The semiclassical
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predictions, therefore, are valid only as long as the
quasistationary state persists.

The small noncommuting (counter-rotating) terms pro-
vide a weak thermal link between the quasi-independent
thermodynamic reservoirs corresponding to the spins and
radiation field. To determine the equilibrium state, one
needs only know that this link exists. The properties of
this state depend on the relative temperatures of the
quasistationary reservoirs. Even for weak intensity rf ir-
radiation, the spins interact with a very large number of
photons —a suSciently large number that the tempera-
ture of the radiation field, or Zeeman-radiation field, is
very much higher than the spin temperature. Thus, the
thermal link provided by the counter-rotating terms
causes a substantial heating of the spins and, accordingly,
saturation of observables such as magnetization or dipole
order. As the intensity of the field is reduced, there is a
critical photon number at which a sharp transition ap-
pears in the final temperature of the spin-radiation sys-
tem. Below the critical photon number, the energy in the
radiation, or Zeeman-radiation, reservoir is too small to
heat the spin system, which remains comparatively close
to its quasistationary temperature.

From the above analysis we draw the conclusion that
in the experiment described by Abragam and Goldman
relaxation of the spin system by the radiation field is re-
sponsible for saturation of the dipolar order by low-
intensity, o6'-resonant rf irradiation. Both the description
of the quasistationary state and the rate at which the sys-
tem relaxes to equilibrium agree with the known features
of this experiment. Furthermore, with a low initial lat-
tice temperature used to provide a large initial dipole or-
der and to increase the time of spin-lattice relaxation, it
should be feasible to observe the transition in equilibrium
temperature from high to low photon number regime.

Though the analysis of this paper concentrates on the
interactions of a spin system with a single-mode radiation
field, the extension to arbitrary time-dependent fields,
e.g. , multiple-pulse sequences, is straightforward. One
mode of the radiation field is introduced for each Fourier
component of the time-dependent perturbation. The de
tails will be presented elsewhere, however, the general
conclusions remains the same. At long times the spin
system will equilibrate with the radiation field, and this is
difficult to incorporate into the semiclassical description
of the irradiated spins.
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