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Band structure of an effective-mass superlattice
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The miniband structure of an effective-mass superlattice is analyzed within the effective-mass
envelope-function approximation. The dependence of the full energy on the wave vector (longitudi-
nal and transverse components) is derived. Expressions for finding zero energy gaps are given. Nu-
merical results show that pronounced nonparabolicity of the energy variation with transverse wave
vector, and zero energy gaps, occur in the energy region important for evaluation of macroscopic

properties of this type of superlattice (10—100 meV).

Recently a new type of compositional superlattice, the
effective-mass superlattice (EMSL), was proposed by
Sasaki! where the effective mass of electrons or holes is
changed periodically and the conduction- or valence-
band edges are aligned. A number of candidate materials
for this type of superlattice is given in Refs. 1 and 2. In
the case of effective-mass variation, it is known that the
effective potential on the carriers depends qualitatively on
the transverse component of their wave vectors.> In this
paper we shall discuss the EMSL band structure taking
this effect into account.

We treat an EMSL composed of semiconductor layers
I and II, with thicknesses d; and d, (Fig. 1). We take
their conduction-band edges to be aligned (certainly for
the valence band this is not necessarily so, but it is of no
importance here). Within the effective-mass approxima-
tion electron motion is described by
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where ¥ is the envelope wave function, k, the transverse
wave vector, E the total electron energy, and m (z) equals
m; and m, in materials I and II (for simplicity we take
isotropic effective mass). The effective potential U 4(z)
for k,=0 is z independent and is taken as zero. For
nonzero k,, however, U.(z) is not constant and has a
rectangular variation, as does the effective mass. Taking
m; >m,, layers I become wells and layers II become bar-
riers, as depicted in Fig. 1 by the dashed line.
Applying the conventional Bloch boundary conditions
we arrive at the E (k) dependence. For E >#%k}/(2m,)
it reads

Ueg(2) (1)

— sin(kd )sin(k,d,)+cos(k d)cos(k,d,)=cos(k,d) ,

2[(E —E)(E —Ep)]"?

r=m/my, ki,=

For E <#k}/(2m,), sin(k,d,) and cos(k,d,) should be
replaced by i sinh(k3d,) and cosh(k3d,), where k) =ik,.
The above energy spectrum is minibandlike with band
edges determined by cos(k,d)==*1. Following Allen
(Ref. 4) we factorize the expression (2) for cos(k,d)=1 as
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u =k‘dl/2, U=k2d2/2, ;\'E(mldl)/(mzd2) (3)
and for cos(k,d)=—1 as
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The wave functions at the band edges being either even
or odd, we get energies corresponding to even and odd
wave functions by equating the first and the second fac-
tors of (3) and (4) to zero, respectively.

It is an interesting point here to investigate the ex-
istence of zero-energy gaps (ZEG’s) in the (E,k?) plane.
If for some definite k, both factors of (3) or (4) happen to
be zero, the wave function has no definite parity and the
energy gap vanishes [two neighboring band-edge E (k?)
lines cross each other here].

The first ZEG condition is given by
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- - T from (5) and (6), points (E, k,,) satisfying either of these
0 E.(2) two ZEG conditions may be found.
4

Furthermore, one can derive that the slopes of the
band-edge E (E,,) lines at ZEG points given by (5) are
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FIG. 1. Effective potential in an EMSL for k, =0 (solid lines) dE_, r +ri2A3 A il_ d ve 1 ®)
and k, > 0 (dashed lines). dE, 2= 14,2203 © d, and v= n

where (7) applies for (i) k,=0, I, and n even, even wave
n I function, (ii) k, =0, /, and n odd, odd wave function, (iii)
BN and v = Ln=123,... (5) k,=m/d, n even, I odd, even wave function, and (iv)

k,=/d, n odd, | even, odd wave function, while (8)
where [ +n should be even for k,=0 and odd for holds for the rest of the cases.

u =

k,=m/d. The second ZEG condition takes the form At ZEG points given by (6) slopes are given by
J
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FIG. 2. Energy-band diagram for an EMSL with d,=d, =100 A and m y=2m,;=0.2m,. The crosshatched areas denote the al-
lowed bands. The solid (dashed) band-edge lines correspond to even (odd) wave functions. Points of line intersection are labeled with
(I,n) where [ and n are integers in Eq. (5), or with (s) the integer in Eq. (6). Note that points (2,1) and (3) coincide.
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FIG. 3. Energy-band diagram for an EMSL with d, =100 A,
m,=2m,=0.2m,, and m,d? =m,d?, for small k, values. Pairs
of neighboring minibands touch at k, =k, =0.

Finally, we shall briefly analyze a special case,
m,d? =m,d3, mentioned by Sasaki,"? which enables ex-
plicit solution for band edges at k,=0. We find that for
k,=0 all solutions of Eq. (2) fulfill the ZEG’s condition,
while for k, =7 /d band gaps AE,, exist and are given by

AE,,=E,m(p —4)(2arctanR —m/2),
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where p =1,2,3, . . . for subsequent gaps.

The full width of two touching (at k,=0) allowed
bands AE,, are
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E,(arctanR)?, p=1
Ey(p —1)(m—2arctanR), p=2,3,4,....
(11)

According to Refs. 1, 2, and 5 the effective mass ratio
of 1.4 at most may be achieved in an unstrained EMSL,
while higher values may be obtained by introducing the
strained-layer EMSL. For numerical illustration, in Fig.
2 we give the E(E,;) band diagram for a hypothetical,
but roughly realistic EMSL, with m; =2m,=0.2m, (m,
is the free-electron mass), with layers each 100 A thick.
What can immediately be seen from Fig. 2 is that the
ZEG’s in the EMSL occur for much lower energies E and
E,; than is the case in conventional (e.g., GaAs-
Al ,Ga,_, As) superlattices, where ZEG points may be
calculated to be in the eV range® and are therefore hardly
of any significance for most of macroscopic properties.
In the EMSL ZEG points fall in a thermically populated
energy range, and thus do influence the EMSL properties,
e.g., carrier concentration, absorption, etc. Excluding
the band-edge discontinuities, E (k?) dependence in an
EMSL is pronouncedly nonlinear (Fig. 2).

Furthermore, a very interesting point is the inversion
of parity of band-edge wave functions when crossing
ZEG points; e.g., for small k, the top of the first mini-
band possesses the odd wave function, and not the even
one, as does its bottom. Only after crossing the ZEG’s
point does the wave-function parity at both bottom and
top become the same (even for odd minibands and vice
versa, for high enough transverse wave vector k,). This
fact may be important when evaluating optical transition
matrix elements because their values may turn from finite
ones to zero for small change of k,.

We also note that no ZEG’s may appear for energies
E < E,,. With increasing k, the effective barriers (layers
ID) get higher, which makes the allowed bands progres-
sively narrower and eventually nearly discrete (this hap-
pens at realistic values of E,;, a couple of kT at T =300
K).
In Fig. 3 the band diagram of the EMSL with
m,d}=m,d3 for small E, <10 meV is given. As dis-
cussed above, ZEG points occur at k, =k, =0 and two al-
lowed bands touch here, but with increasing k, gaps ap-
pear. The two band-edge lines emerge from these ZEG
points with slopes given by (8).

In conclusion, results of this work may be useful for
more exact evaluation of the EMSL macroscopic proper-
ties, as well as for analyzing, e.g., the performance of pos-
sible negative resistance devices based on it. It was noted
in Ref. 5 that the switches based on resonant electron
tunneling in the EMSL should have an order of magni-
tude lower threshold voltages and 2 orders greater
current density than those with conventional superlat-
tices. The pronounced nonparabolicity of E (k?) in the
EMSL may also find some applications, e.g., in nonlinear
optics.

AE,,=
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