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Band structure of an efFective-mass superlattice
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The miniband structure of an effective-mass superlattice is analyzed within the effective-mass
envelope-function approximation. The dependence of the full energy on the wave vector (longitudi-
nal and transverse components) is derived. Expressions for 6nding zero energy gaps are given. Nu-
merical results show that pronounced nonparabolicity of the energy variation with transverse wave
vector, and zero energy gaps, occur in the energy region important for evaluation of macroscopic
properties of this type of superlattice (10-100meV).

Recently a new type of compositional superlattice, the
effective-mass superlattice (EMSL), was proposed by
Sasaki' where the effective mass of electrons or holes is
changed periodically and the conduction- or valence-
band edges are aligned. A number of candidate materials
for this type of superlattice is given in Refs. 1 and 2. In
the case of efFective-mass variation, it is known that the
effective potential on the carriers depends qualitatively on
the transverse component of their wave vectors. In this
paper we shall discuss the EMSL band structure taking
this efFect into account.

We treat an EMSL composed of semiconductor layers
I and II, with thicknesses d, and d2 (Fig. 1). We take
their conduction-band edges to be aligned (certainly for
the valence band this is not necessarily so, but it is of no
importance here). Within the effective-mass approxima-
tion electron motion is described by

fi d 1 dP + ett(z)4=

A k,2

where g is the envelope wave function, k, the transverse
wave vector, E the total electron energy, and m (z) equals
m i and mz in materials I and II (for simplicity we take
isotropic effective mass}. The efFective potential U,s(z)
for k, =0 is z independent and is taken as zero. For
nonzero k„however, U,it(z) is not constant and has a
rectangular variation, as does the eI'ective mass. Taking
m

& g m&, layers I become wells and layers II become bar-
riers, as depicted in Fig. 1 by the dashed line.

Applying the conventional Bloch boundary conditions
we arrive at the E(k) dependence. For E )A k, /(2m2)
it reads

r'"(E E„)+r '"(E— E„)-—
sin(k id, )sin(k2dz )+cos(kid, )cos(kzd2) =cos(k, d),

2[(E E„)(E—E, )—]'~

2m, 2(E E„,z) — R k,~
m 1/mz k 1 2 Eil t2=, d =d, +d2 . (2)

m 1,2

For E (R k, /(2mz), sin{k2d2) and cos(k2d2) should be
replaced by i sinh{kzdz) and cosh(kzdz), where kz ikz-—
The above energy spectrum is minibandlike with band
edges determined by cos(k,d)=+1. Following Allen
(Ref. 4) we factorize the expression (2) for cos(k, d) = 1 as

(Autgu +utgu)(A uctgu +uctgu) =0,
u =k, d, /2, u =k~d2/2, A, —:(m, d, )/(m2d2) (3)

and for cos(k, d) = —I as

(Xuctgu utgu)(Autgu —uctgu) =0 . —

The wave functions at the band edges being either even
or odd, we get energies corresponding to even and odd
wave functions by equating the Srst and the second fac-
tors of (3) and (4) to zero, respectively.

It is an interesting point here to investigate the ex-
istence of zero-energy gaps (ZEG's) in the (E,k,~) plane.
If for some definite k, both factors of (3) or (4) happen to
be zero, the wave function has no de6nite parity and the
energy gap vanishes [two neighboring band-edge E(k, }
lines cross each other here].

The 6rst ZEG condition is given by
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where s is even for k, =O and odd for k, =m/d. Thus,
from (5) and (6), points (Eo,k,o) satisfying either of these
two ZEG conditions may be found.

Furthermore, one can derive that the slopes of the
band-edge E(E„)lines at ZEG points given by (5) are

dE
&

r+6
dE, )

' 1+5,

or

FIG. 1. Effective potential in an EMSL for k, =0 (solid lines)

and k, & 0 t', dashed lines).
dE r+r vb, I=A2= and v=-
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u = and u =, I n =1,23, . . .Pk '$T Im

2 2'
where I+n should be even for k, =0 and odd for
k, =n /d The .second ZEG condition takes the form

where (7) applies for (i) k, =0, I, and n even, even wave
function, (ii) k, =0, I, and n odd, odd wave function, (iii)

k, =n/d, n even, I odd, even wave function, and (iv)

k, =m/d, n odd, I even, odd wave function, while (8)
holds for the rest of the cases.

At ZEG points given by (6) slopes are given by

dE r +8 8 sin(2A, u)T2A, u

dE„r+8 ' sin(2u)+2u

sm U

sin (A, u)
for k, =0, s even, even wave function and

kz rr/d, s—odd, odd wave function

cos U
otherwise .

cos (A,u)
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FIG. 2. Energy-band diagram for an EMSL ~ith d l

——d2 ——100 A and m l
——2m2 ——0.2mo. The crosshatched areas denote the al-

lowed bands. The solid (dashed) band-edge lines correspond to even (odd) wave functions. Points of line intersection are labeled with
(l, n) where l and n are integers in Eq. (5), or with (s) the integer in Eq. (6). Note that points (2,1) and (3) coincide.



~R&EF REPORTS

~0 (are tanR )
2 p=»

P —1)(m —2arct „~QP g ( p =2, 3,4

100

& (2, 2)
'

50

E=E,)

2
l

6
T PA NS' VER'S'E' Eh/ENERGY E, ~

(louie&)

FIG. 3. E. Energy-band dia r8
dm&d, =m d

~ith d&
——100 A

z 2, or srna t va ues. Pairs

,=0.

Finall y, we shall bririe6y analyze a s e
'

a special case

so ution for b
sa 1, ' which e

b d d k =
a 1 solutions of ~". , =0. We find that f

~. () SH e EG's condition,

~ exist and are give b'en y

AEg~
——E mEg~ =&0~(p ——,

' )(2 arctanR—c a —m'i2),

1/4 1/2
2

d,

/2~2
0= 2, (10)

1 1

where p = », 2, 3, . . . or suw —,, , . . . or subsequent gaps.
i t of two touching ( k, — a owed

gp are
at, =0) allowed

ccording to R f''» 2, an
.4 at most m

'. d 5 the egect

while hi h
" be achieved i» '" mass ratjo

lg er values ma
in an unstrained E

strained-lay EM
ay be obtained b

-
e

MSL F
y introduc.

we give th
"numerical 11

. g the

bu«oughly „al ." a" d~~g~am g«a h
' '" "ig.

e E(E ) b
. i ustrafion

s jn the E
y e seen from F'

thjck

than
occur f«much 1

that the

" " the cas
wer ener i

Al„Ga A
se in convent

gies E and

i —x s) supei latt'
11 ional

calculated to b;
ices, where ZEG

g GaAs-

"y sig»f cance
an are theref

In the EMS
r most of

LZEG
' macrosco, .

erefore hardl„

energy ran
Points fall in a th

P Properties

ange and thus d
~

rm jcally

ZEG points; e. .
- ge wave «nctio

inversion

band
' 'g' for ~mall k th

when crossi„

P ssesses th d
t e top of th

one, as does 't b
o wave function d

rst mini

point does th
' O»y after c

e even
ottom.

an not th

toP become th
- ction pa ity t b

ZEG
wave-fun

. c«ssing the

versa, for h
e e same even for odd

'
tom andoth bot

fact may be
ig enou g transverse

andminibands a

imPortant wh
ve vector k )

matrix clem
w en evaluatin

t This

one t
ecause their 1

p 'c» transitio
ments be

. ing o tj

s ozerofor
va ues ma

n

y turn from fi it

g igher, which mak
ctive barriers (la

g """ ",„''0
pens at r 1'

wer and ev entually nearl
e ands pl ogrcs-

r y discrete (this ha-

).
In Fig. 3

at T=300

rnid i =in
the ban

zd2 for small E
diagram o
tl&10 meV g

pear. Th
ncreasing k

-e ge lines emer f
s opes given b (8)y

m ore exact evaluatio

'
n, results of this work ma be

va uation of the EMSL

ive resistan
'

as

p'c proper-

d based on it. It
t h b d

EMSL should hag in the E
on resonnant electron

e ower threshold v
ave an order of

onventional
s. e e nonparabolicity of E k

optics.
a ions, e.g., in nonlinear



BRIEF REPORTS 37

'A. Sasaki, Phys. Rev. 8 30, 7016 (1984).
2A. Sasaki, Surf. Sci. 174, 624 (1986).
V. Milanovic and D. Tjapkin, Phys. Status Solidi B 110, 687

(1982); V. Milanovic, D. Tjapkin, and Z. Ikonic, Phys. Rev. 8

34, 7404 (1986).
46. Allen, Phys. Rev. 91, 531 (1953).
5A. Aishima and Y. Fukushima, J. Appl. Phys. 61, 249 (1987).


